
 

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx. 
E-mail address: xyz@abc.com. 

 1 

A review on fumonisins  2 

 3 

 4 
.5 

ABSTRACT  6 

Fumonisins are the group of mycotoxins generated usually by the Fusarium spp. in foods and feeds. 
However more than 15 isomers of fumonisin have been recognized, but the B series of fumonisins are 
the main and referral isomers of fumonisins. Fumonisin B can cause, leukoencephalomalacia in 
rabbits and horses and porcine pulmonary edema in swine. Also, fumonisin B is nephrotoxic, 
hepatotoxic, immunotoxic and carcinogenic. Fumonisin B blocks sphingolipid biosynthesis (hence, 
hinder the synthesis of ceramide) by a noticeable resemblance to sphingosine and sphinganine. This 
paper gives a review of the toxicity, occurrence, and mechanism of carcinogenicity, hepatotoxicity, 
nephrotoxicity, and immunotoxicity of fumonisins. Fumonisins are mainly found on several foods and 
feed in Africa, America, Europe, Asia, and Oceania. In this paper, we talk about current information on 
the worldwide contamination of feeds and foods by fumonisins. Because of economic losses induced 
by fumonisins and their hurtful effect on animal and human health, the various procedure for 
detoxifying infected feeds and foods have been illustrated in this review, containing; biological, 
physical, and chemical processes. Besides in this paper, we discuss dietary intakes and maximum 
limits of fumonisins in some countries. 
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1. INTRODUCTION  11 

 12 

Fumonisins are a group of further than 10 mycotoxins created by Fusarium species like; F. globosum, 13 
F. oxysporum, F. proliferatum, F. verticillioides and other species of Fusarium, Alternaria alternata f. 14 
sp. lycopersici, and Aspergillus niger [1, 2]. 15 
Fumonisins have a noncyclic structure (opposite of most mycotoxins). In this structure, there is a 16 
chain with 19- or 20- carbon aminopolyhydroxyalkyl that by tricarballylic acid groups (propane-1,2,3-17 
tricarboxylic acid) was diesterified Fig. 1. Hitherto, various chemically associated series or groups of 18 
fumonisins have been isolated. These series are consist of A, B, C, and P. The main detected forms 19 
of fumonisins in foods, are the B series of fumonisins [3]. Fumonisins B1, fumonisins B2, and 20 
fumonisins B3 are the broadest mycotoxins between the more than 15 fumonisin forms that have been 21 
described until now [4]. 22 
 23 



 

 

 24 
Fig. 1. Chemical structures of the fumonisins. From: [1, 2] 25 
 26 
Fungi-producing fumonisin contaminated apple, barley, beef, breakfast cereals, black tea, corn, 27 
cornbread, corn flour, corn flakes, corn grits, corn snacks, basmati rice, crunchy nut, egg, milk, oats, 28 
polenta, popcorn, row corn, soybean, canned foods, tomato, tortilla, and wheat [5]. 29 
Intake of fumonisin B induced a different of toxic effect in animals, containing leukoencephalomalacia 30 
in horses [6], change in weight of body and internal organ in broiler chicken [7, 8], pulmonary edema 31 
and hepatocellular necrosis in piglet [9, 10]. Moreover, renal and hepatic toxicity has been detected in 32 
different animal, containing rabbits, lambs, turkeys, mice, rats, and broilers [7, 11-14]. 33 
In human, fumonisins were increased risk of neural tube defects (NTD) and developing esophageal 34 
cancer [15, 16]. 35 
 36 

2. TOXICITY OF FUMONISINS 37 

 38 

In the human and different animal, fumonisins beget some toxic effects such as carcinogenic, 39 
hepatotoxic, and nephrotoxic. Moreover, sensitivity to fumonisins is different in human and varies 40 
animal for example; based on [17] saying, rats are more sensitive to fumonisin B1 than mice. We 41 
summarized in Table 1 disorder effects, dosage, duration and source of fumonisin. 42 
 43 



 

 

Table 1. Some disorder effects induced by fumonisins 44 

 Dosage and Fumonisin 
source 
 

Duration Effects 

Human Both FB1 and FB2 
High corn intake higher risk 
than low corn intake 

case–
control 
study 

Developing esophageal 
cancer  

Human FB1 in corn of three area of 
China, average of 
contamination was; 2.84, 
1.27, and 0.65 mg/kg 

1 year Esophageal- and hepato-
carcinogenesis 

Human 
cells 

Medicine with FB1 for 24, 48, 72 and 96 h The proliferation of human 
esophageal epithelial cells 
(HEECs) 

Women Exposure to FB1 corn 
tortilla intake during the first 
trimester and before the 
pregnancy. 

case–
control 
study 

Raise the risk of NTD 

Lamb Intraruminally; 11.1, 22.2, 
45.5 mg fumonisin B1, B2, 
B3/kg b.w 
 

9 days Tubular nephrosis, mild 
hepatopathy, diarrhea, 
lethargy, death 

Cattle Feeding; 15, 31, 148 µg 
fumonisins /kg b.w 
 

31 days Increase in the AST, GGT, 
LDH, bilirubin, cholesterol 
and lymphocyte 
blastogenesis 
Mild microscopic liver 
lesions 

Cattle Intravenous; 1 mg fumonisin 
B1/kg b.w 
 

7 days Lethargy, the decrease in 
appetite 
Increase in Sa/So, 
proliferation and  
hepatocyte apoptosis, the 
proliferation of bile 
ductular cells, vacuolar 
change, proliferation of 
proximal renal tubular 
cells, apoptosis, and 
karyomegaly. 

Broiler 
chicken 

Feeding; 0, 100, 200, 300 or 
400 mg fumonisin B1/kg b.w 

21 days The decline in body weight 
Increase in the liver-, 
proventriculus-, and 
gizzard-weights, Serum 
calcium, cholesterol, and 
AST 

Broiler 
chicken 

Feeding; 0, 75, 150, 225, 
300, 375, 450, 525 mg 
fumonisin B1/kg b.w 

21 days Increase in liver and 
kidney weights, MCV, 
MCHC, Sa/So 
Histological lesions in the 
liver 

Broiler 
chicken 

Dietary; 0, 20, 40, 80 mg 
fumonisin B1/kg b.w 

21 days Increase in the Sa/So, 
GGT, AST, the  weights of 
liver, proventriculus,  
spleen, kidney, and bursa 
of Fabricius. 

Broiler 
chicken 

Dietary; 0, 50, 100 or 200 
mg fumonisin B1/kg b.w 

21 days Cell proliferation in 
response to mitogens, 
immunosuppress 

Broiler 
chicken 

Dietary; 300 mg fumonisin 
B1/kg b.w 

21 days Increase activities of AST, 
LDH, GGT 



 

 

Broiler 
chicken  
Cobb 500 

Orally and postnatal; 100 
mg fumonisin B1/kg b.w 

21 days Increase in the liver 
weight, Sa/So, hepatic 
TBARS, Vit C, catalase 

Chicken 
Embryos 

Injection in air cell of 
chicken eggs; 0, 2, 4, 8, 16, 
32, and 64 µg 
fumonisin/egg 

In 72h of 
incubation 

Not microscopic 
abnormalities but 
haemorrhages of the  
neck, thoracic area, and  
head of the dead embryos 

Turkey Dietary; 0, 100, 200 mg 
fumonisin B1/kg b.w 
 

21 days Increase in AST, alkaline 
phosphatase, MCV, MCH, 
liver-, kidney-, and 
pancreas-weights 
Biliary hyperplasia, , 
thymic cortical atrophy, 
hypertrophy of Kupffer's 
cells, and moderate 
broaden out of the 
proliferating hypertrophied 
zones of tibial physes 
The decrease in spleen 
and heart weights, body 
weight gains, cholesterol 

Duck Orally; 0, 5, 15, 45 mg 
fumonisin B1/kg b.w 
 

12 days Body weight gain was 
slightly retarded, liver 
hyperplasia 
Increase in liver weight, 
total protein, AST, Sa/So, 
LDH, GGT, cholesterol 

Mouse 
embryos 

Exposure of FB1 Long term 
Short-term 

NTD; 65% in continuing 
experimentation and by 
almost 50% in temporary 
experimentation 

Mice Subcutaneous; 2.25 mg 
fumonisin B1/kg b.w 
 

5 days Hepatotoxic effects, 
increase in AST and liver 
enzymes in circulation 

Mice Dietary; 0, 14, 70, and 
140μmol fumonisin B1 , B2, 
B3, hydrolyzed fumonisin 
B1,  fumonisin P1,  N-
(carboxymethyl)fumonisin  
B1 or N-(acetyl)fumonisin 
B1/kg  

28 days Increase in whole bile 
acids, alkaline 
phosphatase, cholesterol, 
hepatocellular apoptosis, 
macrophage pigmentation, 
Kupffer cell hyperplasia, 
and hepatocellular 
hypertrophy. 

Mice Gavage; 1-75 mg fumonisin 
B1/kg 

14 days In the liver, mitosis, 
anisokaryosis, and 
hepatocellular single cell 
necrosis 
Increase in ALT, serum 
cholesterol, blood urea 
nitrogen in male, 
vacuolated lymphocytes 
and myeloid cells 
Mild decreases in ion 
transport of kidney 
 

Mice Dietary; 0, 1, 3, 9, 27, or 81 
ppm FB1 

13 weeks Hepatopathy 

Female 
B6C3F1 

Fed 50 or 80 ppm FB1 2-year 
feeding 

Hepatocellular adenomas 
and carcinomas 



 

 

mice 

Rat Dietary; 0, 1, 3, 9, 27, or 81 
ppm FB1 

13 weeks Nephrosis 

Male BD 
IX rats 

Intake of 50 ppm FB1 Up to 2 
years 

Culminated in the 
appearance of  
hepatocellular carcinomas 
and cholangiocarcinomas 

Male F344 
rats 

FB1 2-year 
feeding 

No hepatocarcinogenic 
effects ,but FB1 caused 
renal tubule tumors 

Male BD 
IX rats 

0.08 and 0.16 mg FB/100 g 
of (bw)/day over  

2 years Induce cancer, mild toxic, 
and preneoplastic lesions 

Rabbit Gavage; 0, 31.5, 630 mg 
fumonisin B1/kg b.w 

Single 
dose 

Increase in AP, ALT, AST, 
GGT, urea, total protein, 
and creatinine 

Rabbit Gavage; 1.75 mg fumonisin 
B1/kg b.w 

9,13 days Focal small bilateral 
hemorrhages in the  white 
matter cerebral, malacia, 
apoptosis in kidney and 
liver 

Horse Intravenously; 1.25-4 , 1-4 
mg fumonisin B1/kg b.w 

33-35 days Lesions of LEM 
Apathy, incoordination, 
walking into objects, 
changes in temperament, 
paralysis of the lips and 
tongue,  

Horse Intravenously; 0.125 mg 
fumonisin B1/kg b.w 

0-9 days Apathy, trembling, paresis 
of the lower lip and 
tongue,  reluctance to 
move, a wide-based 
stance, ataxia, tetanic 
convulsion, inability to 
drink or eat 
Focal necrosis in the 
medulla oblongata and 
severe edema in brains, 
bilaterally symmetrical. 

Horse Feeding; 160-3800 μg 
fumonisin B1/kg b.w 
20-950 μg fumonisin B1/kg 
b.w 

 FB1 is the major fumonisin 
in LEM in horses 

Arabian 
horse 

Dietary; 12.490 μg 
fumonisin B1/kg b.w, 5.251 
μg fumonisin B2/kg b.w 

 Blindness, 
hyperexcitability, four leg 
ataxia, circling, aimless 
walking,   
death 
Focal areas of 
hemorrhage, softening of 
the sub-cortical white 
matter and brown-yellow 
discoloration 
Microscopic brain lesions; 
wide areas of malacia 
within the white matter of 
the brainstem, cerebral 
hemispheres, and 
cerebellum 

Pony Feeding; 1-88 ppm 
fumonisin B1, B2, B3 

120 days Leukoencephalomalacia  
and hepatic necrosis 



 

 

Pigs Intravenously; 4.6-7.9 mg 
fumonisin B1/kg b.w 
Orally; 48-166 ppm FB1 

15 days Pulmonary edema and 
hepatic necrosis 

Pigs Dietary; 16 mg fumonisin 
B1/kg b.w 

 Hydrothorax, variably 
severe pulmonary edema, 
icterus and hepatocellular 
necrosis 

Pigs Dietary; 20 ppm fumonisin 
B1 

42 days Strong edema in the lung, 
mild degenerative 
changes in the kidneys, 
slight edema in the 
different interior organs 

Gilt Dietary; 0.1 g fumonisin 
B1/kg b.w 

7, 27-80 
days 

Nodular hyperplasia in 
liver, hyperkeratosis, 
parakeratosis, formation of 
papillary, hyperplastic 
plaques in esophageal 
mucosa  

Weaned 
piglets 

Orally; 5 mg fumonisin 
B1/kg b.w 

Single 
dose 

Increase in cholesterol, 
alkaline phosphatase and 
highest Sa and Sa/So 
ratios in plasma and urine 

 45 
 46 

2.1 Carcinogenicity 47 

Stockmann [16] reported that the FB1 and FB2 in wheat and corn increased the risk of esophageal 48 
cancer in many countries. Also, there is a significant correlation between esophageal cancer and 49 
contaminated rice with FB1, in Iran [18]. [19] declare that, high concentration rates of FB1 has a 50 
feasible contributive role in human esophageal carcinogenesis and hepatic carcinogenesis. 51 
Fumonisin B can stimulate the proliferation of human esophageal epithelial cells (HEECs) [20], the 52 
proliferation of bile ductular cells and hepatocyte proliferation in cattle [21]. 53 
In rats, continuing (up to 2 years) intake of FB1 consequenced the introduction of renal tubule tumors, 54 
hepatocellular adenomas, cholangiocarcinomas, and carcinomas [22, 23]. 55 
 56 

2.2 Hepatotoxic Effect 57 

[11] by performing histological examination demonstrated that the fumonisins can create a mild 58 
hepatopathy in lambs. 59 
Fumonisin effects in the research of [24] on calves were significant. According to their study, 60 
increases in gamma-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), serum aspartate 61 
aminotransferase (AST), cholesterol and bilirubin, and mild microscopic liver lesions in two calves 62 
were existd. In [21] observation, hepatic lesions were distinguished by the different severity of 63 
disorganized hepatic cords and hepatocyte apoptosis. 64 
In broiler chicken increasing dietary fumonisin B1 caused the increase in liver weights, serum calcium, 65 
cholesterol, and AST levels. In addition, biliary hyperplasia and multifocal hepatic necrosis were 66 
present in these chickens [8]. In researches of [7, 25], chickens fed with fumonisin B1, sphinganine: 67 
sphingosine (Sa: So) ratio, serum glutamate oxaloacetate aminotransaminase (SGOT), levels of free 68 
sphinganine in the serum, AST ratios, LDH, and GGT were increased. Nonetheless, total liver lipids of 69 
chicks were decreased significantly. [26] demonstrated that subacute treatment of broiler chicks to 70 
fumonisin B1 bring about hepatic oxidative stress simultaneously with SA/SO gathering. Also, TBARS 71 
(Thiobarbituric acid reactive substance) levels, catalase activity, and Vit C content were increased. 72 
Feeding the turkey with fumonisin B1 caused increases in liver weights and serum AST levels. 73 
However, serum cholesterol, alkaline phosphatase, MCH (mean cell hemoglobin) and MCV (mean 74 
cell volume) were declined. Also, hypertrophy of Kupffer's cells and biliary hyperplasia were present in 75 
these turkeys [13]. 76 
Because of FB1 in the plasma, cholesterol, total protein, alanine aminotransferase (ALT), LDH, GGT 77 
and SA/SO (sphinganine to sphingosine ratio) were risen. Liver weight growth with liver hyperplasia 78 
was existed in ducks [27]. 79 
[28] declared that hepatic effects of FB1 in mice were increased in liver enzymes like AST and ALT in 80 
circulation. In addition, [17, 29] demonstrated that serum levels of the whole bile acids, alkaline 81 
phosphatase, and cholesterol, were risen and hepatocellular hypertrophy, hepatocellular apoptosis, 82 



 

 

Kupffer cell hyperplasia, hepatocellular single cell necrosis, mitosis, anisokaryosis, and macrophage 83 
pigmentation were detected in the mice that fed with FB1. 84 
FB1 in rabbits can cause a significant increase in alkaline phosphatase (AP), total protein, AST, ALT, 85 
and GGT. Also, degeneration of hepatocytes and apoptosis were the prominent degenerative 86 
changes in liver of rabbits [14, 30]. 87 
Because of fumonisin B1, B2, and B3, a hepatic necrosis in ponies occurred [31]. 88 
Effect of fumonisins in the liver of piglet was apoptosis, necrosis, hepatocyte proliferation, hyperplastic 89 
hepatic nodules (in chronic studies), icterus, and hepatocellular necrosis. Besides serum cholesterol, 90 
alkaline phosphatase, AST activities and sphinganine and sphingosine concentrations in kidney, 91 
heart, lung, and liver were elevated. But there were no detectable portal triads or central veins, 92 
adjacent parenchyma, and the perilobular connective tissue was compressed [10, 32-34] 93 
 94 

2.3 Kidney Toxicity 95 

Fumonisin in the kidney of lambs revealed with tubular nephrosis [11]. 96 
Accumulation of sphingosine and sphinganine in the kidney of calves created renal lesion like 97 
vacuolar change, karyomegaly, apoptosis, dilatation of proximal renal tubules (that included protein 98 
and cellular debris) and the proliferation of proximal renal tubular cells [21]. 99 
Effect of fumonisin in the kidney of turkeys and broiler chicken was increasing in kidney weight [7, 13, 100 
35]. 101 
In both sexes of rats, fumonisins were decreased kidney weight, also nephrosis in outer medulla of 102 
rats (especially in female rats) was observed [12]. 103 
[14, 30] reported that the effect of fumonisin in the kidney of the rabbit was apoptosis and 104 
degeneration of renal tubule epithelium, also level of urea and creatinine was increased. 105 
Fumonisins in the kidney of pigs create a mild degenerative change and in the urine of pigs the 106 
highest Sa/So ratio and Sa ratio were produced in the 48

th
  h [9, 33]. 107 

 108 

2.4 Leukoencephalomalacia 109 

[36] reported that fumonisins (especially fumonisin B1) are the causal factor in the development of 110 
LEM in horses. The lethality rates, mortality, and morbidity in horses were 85.7%, 10%, and 11.6% 111 
respectively [6]. 112 
Nervous signs that were emerged by fumonisin in horses, consisted mainly of ; apathy, incoordination, 113 
walking into objects, changes in temperament, just in one horse paralysis of the tongue and lips, 114 
paresis of tongue and the lower lip, inability to drink or eat, a wide-based stance, reluctance to move, 115 
trembling, hyperexcitability, four leg ataxia, blindness, tetanic convulsion, aimless walking and circling 116 
developed by death [6, 36, 37]. 117 
In horses with LEM because of fumonisins, the brain lesions were observed such as; severe to early 118 
bilaterally symmetrical edema of the brain, brown-yellow discoloration, focal necrosis in the medulla 119 
oblongata, focal or multifocal areas of hemorrhage, sporadically pyknotic nucleus all over the areas of 120 
rarefaction hemorrhage, softening of the sub-cortical white matter, cavitations crowded with 121 
proteinaceous edema with rarefaction of the white matter, mild percolation by infrequent eosinophils 122 
and neutrophils, intracytoplasmic eosinophilic globules, inflamed glial cells with plentiful eosinophilic 123 
cytoplasm, inflamed glial cells with plentiful eosinophilic cytoplasm, cell edges were seprated, 124 
hyperchromatic, edema, necrosis, wide parts of malacia in the white matter of the cerebral 125 
hemispheres, cerebellum, and brainstem [6, 36, 37]. 126 
Fumonisin created leukoencephalomalacia in rabbits and the bilateral brain microscopic lesions 127 
consisted of focal small bleeding in the malacia, cerebral white matter, and bleeding in the 128 
hippocampus [30]. 129 
 130 

2.5 Porcine Pulmonary Edema (PPE) 131 

Usual damages in Fumonisin B-fed pigs were severe edema in the lung by inhibiting sphingolipid 132 
biosynthesis and phagocytosis in pulmonary macrophages and gathering of substance material in 133 
pulmonary capillary endothelial cells [9, 32]. 134 
The clinical sign in pigs because of pulmonary edema (induced by fumonisins) consisted of; 135 
hydrothorax and respiratory distress (reveal by getting up respiratory rate and effort with open mouth 136 
and abdominal breathing). Lethal pulmonary edema appears during 4 to 7 days after the daily feed or 137 
intravenous treatment of FB1[10, 32]. 138 
 139 

2.6 Other Toxic Effects 140 



 

 

Exposure to FB1 during the first trimester and before the pregnancy emerged to get up the hazard of 141 
neural tube defects (NTD; by reason of defeat of the neural tube to close, embryonic defects of the 142 
spinal cord and brain happened) [15, 38]. 143 
Diarrhea and lethargy were detected in fumonisin administrated lambs [11]. 144 
Feeding by fumonisin in calves has some effects such as; impairing the lymphocyte blastogenesis 145 
[24], lethargy, increasing of sphingosine and sphinganine concentrations in the heart, lung, and 146 
skeletal muscle. Elevate in the concentration of sphinganine, but not sphingosine, in brains of 147 
managed calves [21]. 148 
In broiler chicks, FB1 had a bad effect on weight, water consumption, feed efficiency, and body [35]. 149 
Although body weight was decreased, the weight of  bursa of Fabricius, gizzard, and proventriculus 150 
was increased. Other effects of FB1 consisted of diarrhea, thymic cortical atrophy, and rickets [8, 35]. 151 
Fumonisin B1 in turkey appeared thymic cortical atrophy, and moderate enlarging of the proliferating 152 
and degenerating hypertrophied zones of tibial physis [13]. 153 
[39] reported that fumonisin in the egg can cause extreme haemorrhages of the thoracic area, head, 154 
neck of the dead embryos. 155 
In mice, fumonisins can cause adrenal cortical cell vacuolation and may cause increases in serum 156 
cholesterol. Vacuolated lymphocytes and myeloid cells were also detected in mice due to fumonisins 157 
[17]. 158 
Fumonisins in pigs had some effects such as; decrease in left ventricular dP/dT (max) (an indicator of 159 
heart contractility). But mean pulmonary artery pressure, heart rate, mean systemic arterial pressure, 160 
cardiac output, and pulmonary artery wedge pressure by obstruction of L-type Ca channels by get up 161 
sphinganine and/or sphingosine mass, were increased. Also in studies, parakeratosis, postpone in the 162 
pattern of papillary of the distal esophageal mucosa (part of stratum basale), hyperkeratosis, and 163 
hyperplastic nodules in the liver cell, esophageal plaques, and right ventricular hypertrophy were 164 
detected [32, 34]. 165 
 166 
 167 

3. METABOLISM AND MECHANISM OF FUMONISINS 168 

Structure of fumonisin B has a noticeable similarity to sphinganine and sphingosine Fig. 2 both 169 
sphingosine and sphinganine are intermediates in the degradation and biosynthesis of sphingolipids. 170 
Furthermore, [40] reported that fumonisin B obstruct sphingolipid biosynthesis by specifically inhibiting 171 
sphingosine (sphinganine) N-acyltransferase, in vitro and in situ. 172 
 173 



 

 

 174 
Fig. 2. Structures of fumonisin B, sphingosine, sphinganine and ceramide backbone[1]; [3] 175 
 176 
 177 
Sphingolipids are a group of lipids that can be detected in the whole of eukaryotic cells. All of the 178 
sphingolipids include a sphingoid (long-chain base backbone). Sphingolipids are urgent basic 179 
molecules and rule as regulators of a numeral of cell act [41]. In Fig. 3 location of working of fumonisin 180 
B-induced inhibition of the enzyme CER synthase, is presented. 181 
 182 



 

 

 183 
Fig. 3. A summarized scheme of the sites of action of fumonisin B-induced inhibition of the 184 
enzyme ceramide synthase on the pathway of de novo sphingolipid synthesis and turnover in 185 
mammalian cells and [4]. 186 
 187 

3.1 Mechanism of Fumonisins in Apoptosis and Cancer 188 

Interruption of sphingolipid metabolism can cause the increase in available sphingoid backbone and 189 
their 1-phosphates, changing in compound sphingolipids, and decrease in the biosynthesis of 190 
ceramide (CER). Available sphingoid backbone induced cell death but fumonisin inhibition of CER 191 
synthase can restrain cell death influenced by ceramide [42]. 192 
Feedback of the apoptosis and carcinogenicity effects induced by fumonisin B1 can be some 193 
mechanisms including oxidative damage, lipid peroxidation and maybe induction of hepatic, and renal 194 
tumors can happen [16]. Also, [43] discovered that FB1 was able to promote the production of free 195 
radicals (by increasing the rate of oxidation) and by lipid peroxidation in membranes can accelerate 196 
chain reactions. 197 
Increasing in sphinganine of tissue by FB was able to elevate beginning a cascade of cellular 198 
changes that probably product the carcinogenicity and toxicity by an unknown mechanism(s). 199 
However, in the following of sphinganine-induced cell proliferation and apoptosis and cancer 200 
incidence might be elevated [3]. 201 
In some studies following fumonisin B1 treatment in different cells of human and animals, has been 202 
shown that apoptosis caused by fumonisin B1 does not entail p53 or Bcl-2 group proteins and protect 203 
cells from the apoptosis by baculovirus gene (CpIAP). Baculovirus gene obstructs induced apoptosis 204 
by the tumor necrosis factor (TNF) pathway that caspase-8 was cleaved. The mitochondrial pathway 205 
perhaps is consisted of induced apoptosis by fumonisin B1 by the actuation of Bid, release cytochrome 206 
c [16]. 207 
[20] reported that fumonisin B1 in human normal esophageal epithelial cells (HEECs) stimulated the 208 
proliferation. Mechanism of the proliferation of HEECs is, decreasing in protein expression of cyclin E, 209 
p21, and p27 and increase in protein expression of cyclin D1. 210 



 

 

 211 
Fig. 4. A schematic landscape of the pathways conduct to apoptosis and the mechanisms 212 
probably consisted of fumonisin B1 -induced activation of caspase-3 resulted in apoptosis. X 213 
mark showed the mechanisms that are not consisted of the apoptosis caused by fumonisin B1 214 
[4]. 215 
 216 

3.2 Mechanism of Fumonisins in Hepatotoxicity 217 

Accumulation of sphingoid base because of induced fumonisin B1 can induce TNF-α and make the 218 
hepatotoxicity in mice. Also, TNF-α receptor 1b is urgant mediating in the hepatotoxic responses by a 219 
rise in the circulation of liver enzymes [28]. 220 
 221 

3.3 Mechanism of Fumonisins in Immunotoxicity 222 

Exposure to FB1 in human dendritic cells; getting up the exhibition of IFN-γ and the associated 223 
chemokine CXCL9. Nevertheless, fumonisin B1 may decline the lipopolysaccharide-induced liver and 224 
brain expression of IL-1β and IFN-γ in addition to the lipopolysaccharide -induced expression of IL-1β, 225 
IL-6, and the chemokines CCL3 and CCL5 in human dendritic cells [16]. 226 
In piglets, fumonisin B1 exposure can increase expression of IL-18, IL-8, and IFN-γ mRNA. But mRNA 227 
measure of TNF-α, IL-1β in piglet alveolar macrophages and levels of IL-4 may decrease [44]; [45]. 228 
After exposure to fumonisin B1 in mouse, a getup expression of TNF-α and interleukin-1β (IL-1β) has 229 
been observed in kidney and the liver. Also, FB1 can raise expression of IFN-γ, IL-1α, IL-18, IL-12, IL-230 
10, and IL-6 in liver of mouse [16]. 231 
 232 

3.4 Mechanism of Fumonisins in Some Disorder 233 

[46] recommended that the fumonisin B1-induced destruction of cardiovascular action may be one of 234 
the major elements provide to the happening of equine leukoencephalomalacia by the get up in serum 235 
and sphingosine concentrations and myocardial sphinganine. 236 



 

 

Interruption of sphingolipid metabolism resulted in FB1 before the pregnancy and during the first 237 
trimester may affect folate uptake and cause by a development risk of NTD [47]; [48]. 238 
FB1 by the increase in sphingosine and/or sphinganine concentrations reduces the mechanical 239 
potency of the left ventricle and blocks L-type Ca channels. Pulmonary edema could generally be 240 
caused by acute left-sided heart failure [49]; [50]. 241 
 242 
 243 

4. DETOXIFICATION OF FUMONISINS 244 

Strategies of detoxification for infected feeds and foods to diminish or remove the toxic effects of 245 
fumonisins by biological, physical, and chemical processes are essential to boost food safety, hinder 246 
financial damage, and recover infected commodities. Data detected on biodegradation, detoxification, 247 
and binding procedures of fumonisins are abridged in Table 2. 248 
  249 
Table 2. Biodegradation, detoxification, and binding processes of fumonisins 250 
 251 
 252 
 253 

Process Observation 

Biological process  
Lactic acid bacteria 
(Micrococcus luteus, acillus 
subtilis) 

Binding to FB1 and FB2 

Sphingopyxis sp. Hydrolysis of FB1 to HFB1 
Saccharomyces Decrase in FB1 and FB2 
Lactobacillus strains (L. 
plantarum B7 and L. 
pentosus X8) 

Removing fumonisins (FB1 
and FB2) 

Black yeasts  Rhinoclodiella 
atrovirensa and Exophiala 
spinifera 

Ester bonds was hydrolyzed 
of FB1 

Candida parapsilosis Mycelial growth inhibition 
Physical process  
150–200 °C 87–100 % destruction of 

fumonisin B1 in corn cultures 
Extrusion and roasting 60–70 % loss of FB1 and 

FB2 
Extrusion 30 % loss of FB1 and FB2 
Extrusion 92 % loss of fumonisin B1 
Extrusion of drymilled 
products 

Decrease in fumonisin 
accumulation by 30–90 % for 
mixing-type extruders and 
20–50 % for non-mixing 
extruders 

Baking corn 16 and 28 % loss of FB1 
Frying corn chips loss of 67 % of the fumonisin 
Cooking and canning Small influence on fumonisin 

measure (23%) 
Ethanol–water extraction 
solvent at 80 °C 

The most environmentally 
friendly,  least toxic, and 
cheapest  

Cholestyramine Adsorption 85% of FB1 
Activated carbon Adsorption 62% of FB1 
Ammonia process Reduce FB1levels 30-45%  

No mutagenic potentials 
were apparent 

Fructose Obstruct the amine group of 
FB1, that is urgent for its 
toxicity 

Chlorophorin Reduced FB1 levels by 90–



 

 

91% 
Oxidizing agents Little effects in FB1, but 

applicable because of the 
minimal cost and the minimal 
destruction of important 
nutrients 

Bentonite Adsorbed only 12% of the 
toxin FB1 

Celite Not effective 
Chemical process  
Solution of SO2 at 60 °C for 6 
h 

Most impressive treatment to 
decline the measure of 
fumonisin B1 

Acidic aqueous solution by 
the addition of NaNO2 

Fumonisin  B1 was 
significantly deaminated 

NaCl solution Fumonisin B1 had a little 
mass and that 86 % of the 
toxin could be eliminated 

Ozone (O3)  No significant difference in 
FB1 

Single Ca(OH)2 
(nixtamalization) or with Na-
HCO3 + H2O2 (modified 
nixtamalization) 

reduction of  100% FB1 and 
40% decresed  toxicity of 
brine shrimp by Ca 

 254 

4.1 Biological Methods 255 
An enzymatic detoxification process is by recombinant enzymes from the bacterium Sphingopyxis sp. 256 
resulted in hydrolysis of fumonisin B1 to HFB1; deamination of HFB1 by aminotransferase (miss of the 257 
two tricarballylic side-chains via carboxylesterase) in the existence of pyridoxal phosphate and 258 
pyruvate. Lactic acid bacteria such as Micrococcus luteus and Bacillus subtilis bind to fumonisin B1 259 
and fumonisin B2, therefore detoxification is processed. Peptoglycan bind to leastwise one 260 
tricarballylic acid part in the structure of FB1 and especially FB2 [2]. 261 
[51] removed 52.9% FB1 and 85.2% FB2 by two Lactobacillus strains (L. pentosus X8 and L. 262 
plantarum B7), in the aqueous medium. 263 
[52] reported that fermentation using three different yeast strains (Saccharomyces) is a method for 264 
detoxification of fumonisins, thus a maximal decrease was observed in 28%  and 17% for fumonisin 265 
B1 and fumonisin B2, respectively. 266 
Hydrolyzing ester bonds of fumonisin B1 by black yeasts (Exophiala spinifera and Rhinoclodiella 267 
atrovirensa) reported by [53]. 268 
[54] by means of Candida parapsilosis could inhibit mycelial growth of Fusarium species from 74.54% 269 
and 56.36%, and the maximum and minimum decrease in whole created fumonisin was 78% and 270 
12%, respectively.  271 
 272 

4.2 Physical and Chemical Methods 273 

Fumonisin B1 needs a massive temperature (150–200 °C) to gain 87–100 % demolition in corn 274 
cultivation [53]. 275 
[55] reported that because of the extrusion of dry-milled products, decreasing in the measure of 276 
fumonisins was 20–50 % for non-mixing extruders and 30–90 % for mixing-type extruders. For the 277 
production of cornflakes through the extrusion and roasting of raw corn, 60–70 % of fumonisins B1 and 278 
B2 were loosened. But removing of fumonisins only in the extrusion step was less than 30 % [56]. 279 
Destroying of fumonisin B1 in extrusion processing of grits, was 92 % [56]. The economical, lowest 280 
toxic and most biodegradable solvent for fumonisin extraction is ethanol-water [57]. 281 
[58] and [59] in their studies reported that in baking corn muffins, removing of fumonisin during baked 282 
for 20 minutes were amidst 16 and 28 % at 175 °C and 200 °C respectively, also flotation the corn in 283 
water reduced the amount of fumonisin B1, and frying corn chips for 15 minutes at 190 °C bring about 284 
a remove of 67 % of the fumonisin. But spiked corn masa fried at 140–170 °C (while degradation 285 
begin to take placed above 180 °C) has no significant loss of fumonisin B1. 286 
One of the most impressive management to decline the measure of fumonisin B1 is a 0.2 % solution 287 
of SO2 at 60 °C for six hours [60]. But canning and cooking had a small influence on fumonisin 288 
measure [61]. 289 



 

 

In [62] studies, the adsorption capacity of cholestyramine for fumonisin B1; 85% from a solution 290 
including 200 µg/ml FB1, were reported. 291 
Detoxification of corn with ammonia process reduced fumonisin levels (30 to 45 %) and no mutagenic 292 
potentials were obvious in the managed corn [63]. 293 
Obstruction the amine group of fumonisin B1 by reaction with fructose is another way to the 294 
detoxification of fumonisin B1 [64]. 295 
The percentage of reduction of FB1 in corn by single Ca(OH)2 (nixtamalization) or with Na-HCO3 + 296 
H2O2 (modified nixtamalization), was 100% [65]. 297 
Chlorophorin gets from vanillic acid, ferulic acid, caffeic acid, and iroko decreased FB1 levels by 90–298 
91% [66]. 299 
Treatment with oxidizing agents is an economical method for detoxification of fumonisin B1, but this 300 
method isn’t demonstrated in bioassays [65]. 301 
The acidic aqueous solution such as NaNO2 can create deamination in fumonisin B1, significantly [67]. 302 
In the floating section after treatment with NaCl solution, 86% of FB1 were removed [68]. 303 
Celite and O3 couldn’t make a significant difference in the level of FB1, but bentonite adsorbed only 304 
12% of the FB1 [62, 69]. 305 
 306 
 307 

5. OCCURRENCE 308 

According to [70] by means of increases in global grain exchange, probably fungi spread from one 309 
country to another. In Fusarium fungi, this hazard expected to be minimum whereas these 310 
phytopathogens are field sooner than storage organisms. The global infection of animal feeds and 311 
foodstuffs with fumonisins is described in Table 3. 312 
 313 
Table 3. Occurrence of fumonisins from human foods, cereals, and crops in various countries. 314 

Nation-seed Fumonisin B1 
(mg/kg) 

Fumonisin B2 
(mg/kg) 

Fumonisin B3 
(mg/kg) 

Barley 

Brazil 2.43   

France Not detected   

Spain 0.2 to 11.6 0.5  

UK Not Detected Not Detected Not Detected 

Corn 

Argentina Average of fumonisins in 2003: 10.2 and in 2004: 4.7 µg/kg 

Brazil 0.2 to 38.5 0.1 to 12  

Brazil 5.45 to 10.59 3.62 to 10.31  

Brazil 0.5 to 1.38 0.01 to 0.59  

Brazil 0.2 to 6.1   

Brazil 78.92   

Brazil 3.2 3.4 1.7 

Honduras 0.068 to 6.5   

Uruguay 0.165 to 3.688   



 

 

USA 0 to 1.614   

USA 0.058 to 1.976 0.054 to 0.890  

Venezuela 0.025 to 15.05   

    

China 0.872 to 0.890 0.33 to 0.448  

China 0.08 to 21 0.05 to 4.35 0.06 to 1.66 

China <0.05 to 25.97 <0.10 to 6.77 <0.10 to 4.13 

China Total fumonisins <0.5 to 16.0 

China 0.058 to 1.976 0.056 to 0.89 0.053 to 0.385 

China 0.003 to  71.121   

China 0.0165 to 0.3159   

India 0.07 to 8   

India <1 to 100   

Iran 1.270 to 3.980 0.190 to 1.175 0.155 to 0.960 

Iran 223.64   

Japan <0.05 to 4.1 <0.1 to 10.2  

Philippines Total fumonisins 0.3 to 10 

Taiwan 0.63 to 18.8 0.05 to 1.4  

Taiwan (Australia) ≤0.477   

Taiwan (USA) ≤1.614   

Taiwan (South Africa) ≤0.865 ≤0.12  

Taiwan (South Africa) ≤0.05 to 0.9 <0.05 to 0.25  

Taiwan (Thailand) ≤0.334   

Vietnam Total fumonisins 0.3 to 9.1 

Australia Total fumonisins 0.3 to 40.6 

Australia ≤0.477   

Austria <15   

Croatia 0.01 to 0.06 0.01  

Croatia The highest concentrations fumonisins 25.5, mean values of 4.509 



 

 

Greece 0.1 to 0.56   

Portugal 0.09 to 2.3 0.25 to 4.45  

Poland 0.01 to 0.02 <0.01  

Romania 0.01 to 0.02 0.01  

Spain ≤22 ≤0.7  

Spain 70 to 334 102 to 379  

Spain 0.2 to 19.2 0.2 to 5.9  

Spain 0.035 to 0.043 0.019 to 0.022   

The Netherlands Traces to 0.380   

The Netherlands Traces to 3.35    

UK 0.2 to 6   

Benin Total fumonisins: 6.1 to 12 in 1999-2003 

Ethiopia 0.606 0.202 0.136 

Ghana 0.011 to 1.655 0.01 to 0.77 0.07 to 0.224 

Malawi 0.02 to 0.115 0.03  

Morocco 1.930   

South Africa <10 to 83   

South Africa ≤0.63 ≤0.25  

South Africa 0.05 to 117.5 0.05 to 22.9  

South Africa 0.2 to 46.9 0.15 to 16.3  

South Africa <0.2 to 2   

South Africa 
(Argentina) 

0.05 to 0.7 <0.05 to 0.5 <0.05 to 0.5 

South Africa (USA) 0.9 to 3.9 0.3 to 1.2 0.08 to 0.6 

Tanzania 0.025 to 0.165 0.06  

Zimbabwe 0.125 0.04  

Corn flakes 

Argentina 0.002 to 0.038  Not detected  

Brazil 0.66 0.03  

Uruguay 0.218 Not detected  



 

 

USA Total fumonisins: <0.25 

USA ≤0.088 Not detected  

USA or Canada 0.012 to 0.155   

Korea 0.018 to 0.143   

Germany Total fumonisins <0.01 to 1 

Italy 0.01 Not detected  

Italy 0.020 to 1.092 0.006 to 0.235  

Nordic countries 0.005 to 1.030 0.004 to 0.243  

Spain 0.02 to 0.1   

Switzerland 0.055   

The Netherlands 1.43   

Turkey Not detected Not detected  

South Africa Not detected Not detected  

Corn flour  

Argentina 0.038 to 1.86 0.02 to 0.768  

Brazil ≤1.46 ≤0.51  

USA Total fumonisins: <0.25 to 1 

China 0.06 to 0.2 <0.10  

Italy 3.54 0.84  

Nordic countries 0.017 to 0.86 0.007 to 0.024  

UK Total fumonisins 0.218 

The Netherland 0.04 to 0.09   

Corn grits 

Argentina 0.092 to 0.494 0.02 to 0.1  

Argentina 1.1 0.425  

Brazil 0.17 to 1.23 0.05 to 0.3  

USA Average 0.6 Average 0.4  

USA Total fumonisins: 0.251 to 1 

USA Total fumonisins: <0.25 



 

 

Japan 0.2 to 2.6 0.3 to 2.8  

Germany 0.0139   

Italy 3.76 0.9  

Nordic countries 0.007   

Spain 0.03 to 0.09 Not detected  

Switzerland 0 to 0.79 0 to 0.16  

South Africa <0.05 to 0.19 <0.05 to 0.12  

Corn kernel 

Bahrain 0.025   

China 5.3 to 8.4 2.3 to 4.3  

Nepal 0.05 to 4.6 0.1 to 5.5  

Indonesia 0.051 to 2.44 <0.376  

Egypt 69 to 4495   

Ghana 0.07 to 33.1 0.06 to 12.3  

Kenya 0.11 to 12   

Corn meal 

Argentina 0.06 to 2.86 0.061 to 1.09 0.018 to 1.015 

Argentina 0.603 to 1.171 0.717  

Brazil 0.56 to 4.93 0.21 to 1.38  

Canada 0.05   

Peru 0.66 0.13  

USA Average: 1 0.3  

USA Total fumonisins: <0.25 to >1 

China <0.5 to 8.8 <0.5 to 2.8 <0.5 to 0.9 

Turkey  0.25 to 2.66 0.55  

South Africa Average: 0.14 Average: 0.08  

Oat 

Brazil 0.17   

UK Total fumonisins not detected 



 

 

Rice 

Iran 21.59   

UK Total fumonisins not detected 

Wheat 

Brazil 24.35   

France Not detected   

Spain 0.2 to 8.8 0.2  

UK Total fumonisins not detected 

 315 

5.1 North and South America 316 

In the USA, the infection of corn by fumonisins was detected by [71] and [72] 317 
[73] declared that the infection of corn with fumonisin B1 in Honduras was 0.068 to 6.5 mg/kg. 318 
In Brazil, the incidence of fumonisins was detected in corn by [74], [75], [76], [77], [78] and [79]. The 319 
infection of wheat, oat and barely by fumonisins was also detected by [78]. 320 
In Uruguay, a research for checking measure of fumonisins in corn commodities showed the 321 
contamination of corn with fumonisin B1 was  0.165 to 3.688 mg/kg [80]. 322 
[81] reported that the infection of corn with fumonisin B1 in Venezuela was 25 to 15050 ng/g. 323 
The average of fumonisins in corn of Argentina was 10200 µg/kg in 2003 and 4700 µg/kg in 2004 [82]. 324 
 325 

5.2 Asia and Oceania 326 

In China, the contamination of corn with fumonisins was reported by [83]; [84], [85], [71], [86] and [87]. 327 
Based on these studies the most extreme concentration of fumonisin B1, B2 and B3 were 25.97 mg/kg, 328 
6.77 mg/kg and 4.13 mg/kg respectively. Also, [88] reported that in China total fumonisins 329 
concentration was 0.5 to 16 mg/kg. 330 
The contamination of corn with fumonisin B1 and B2  was detected by [89] in Japan. 331 
In Iran [90] investigated infection of corn with fumonisin B1, B2, and B3. Also, [18] reported the corn’s 332 
contamination with fumonisin B1. 333 
[91] declared that the measure of whole fumonisins in corn of Philippines and Vietnam was 0.3 to 10 334 
mg/kg and 0.3 to 9.1 mg/kg, respectively. 335 
Contamination of Taiwan’s corn with fumonisins was investigated by [92], [72] and [93]. 336 
The incidence of fumonisins in corn of India declared by [94] and [95]. 337 
[72] and [91] reported the contamination of corn in Australia and the highest fumonisins level was 40.6 338 
mg/kg. 339 
 340 

5.3 Europe 341 

[96] published a review article on information about the occurrence of fumonisins from some 342 
European nations (Croatia, Poland, Portugal, and Romania). [97] reported the highest concentration 343 
of fumonisins in Croatia was 25,200 ng/g, and mean value was 4,509 ng/g. 344 
In Spain, contamination of corn with fumonisins investigated by [98], [99], [100], and [101]. Also, [102] 345 
reported the concentration of fumonisin B1 and B2 in wheat and barley. 346 
Fumonisin B1 was not found in wheat and barley of France [103]. 347 
[104] reported the corn contamination with fumonisin B1 in Austria. 348 
In oat, barley and wheat of United Kingdom [105] have not detected fumonisins but [106] declared the 349 
concentration of fumonisin B1 in corn of UK (0.2 to 6 mg/kg). 350 
 351 

5.4 Africa 352 

Albeit majority African territory has a weather distinguished by high temperature and high humidity 353 
that suitable for the development of molds, little data is accessible on the occurrence of toxins of 354 
Fusarium. High infection of the basic material is a developing problem. Regulative problems are not 355 
accessible in the territory of food retailing and exhibition, and mycotoxin issues now have been 356 
combined with some food infection in some parts in Africa [107]. 357 



 

 

The infection of corn with fumonisins in South Africa was reported by [108], [109], [93], [110], [111] 358 
and [112]. Based on these studies the most extreme concentration of fumonisin B1, B2 and B3 were 359 
117.5 mg/kg, 22.9 mg/kg and 0.6 mg/kg respectively. 360 
A high measure of fumonisins (12 mg/kg) was also detected in corn from Benin [113]. 361 
[114] have detected the fumonisin B1, B2, and B3 in corn of Ethiopia. 362 
Corn from Ghana and Morocco was also infected with fumonisins [115]; [116]. 363 
  364 
 365 

6. DIETARY INTAKE 366 

In the European diet, the total intake of FB1 has been evaluated at 1.4 µg/kg of body weight/week 367 
[117]. Daily intake of fumonisins in varies countries and foods, were summarized in Table 4. 368 
In [117]; [118] articles, tolerable daily intake (TDI) of FB1 was reported 800 ng/kg. Also, provisional-369 
maximum-tolerable-daily-intake (PMTDI) of fumonisin was noted 2 µg/kg of body weight per day on 370 
the basis of the no-observed-effect-level (NOEL) of 0.2 mg/kg of body weight/day and a safety aspect 371 
of one hundred. 372 
By means of the simulation model, mean concentrations of fumonisin B1 in milk were evaluated 0.36 373 
μg/kg. Whenas the pretended tolerable daily intakes (TDI) from milk for females and males fell lesser 374 
European Union guidelines [119]. 375 
[14] demonstrated that feces are the major way of excretion of fumonisin B1 in rabbits, by comparing 376 
the concentration of FB1 in urine, liver and feces. 377 
 378 
Table 4. Daily intake of fumonisins for different countries and foods 379 

Food Nation Intake 
(ng/kg of 
bw/day) 

Explantion 

Beer USA 20 to 54 Camputed on the base of 
the 60 kg body weight 

Cereal 
commodities 

France 22.8 All children in france 

Cereal 
commodities 

France 4.6 All female adults in france 

Cereal 
commodities 

France 3.2 All male adults in france 

Cereal 
commodities 

France 9.96 All people in france 

Cereal 
commodities 

Germany 31.8 Users >14 years 

Cereal 
commodities 

Norway 430 6 month babies 

Corn Brazil 392 Camputed on the base of 
the 70 kg body weight from 
urban area 

Corn Brazil 1276 Camputed on the base of 
the 70 kg body weight from 
rural area people 

Corn Brazil 4.1 
3.4 
3.8 

Conventional corn 
Organic corn 
Total 

Corn France 45.6 All children in france  
Corn France 12.4 All female adults in france  
Corn France 7.4 All male adults in france 
Corn France 9.96 All people in france  
Corn Germany 8.7 Users >14 years 
Corn Switzerland 30  
Corn The 

Netherlands 
3.1 Adults 

Corn USA 80  
Corn USA 600000 to 

2100000 
Natural outbreak of LEM in 
horses 

Corn Zimbabwe 140 and 5760 Shamva district 



 

 

Corn Zimbabwe 180 and 8092  Makoni district 
Corn 
commodity 

Brazil 63.3 São Paulo population 

Food with 
corn based 

Argentina 0.73 to 2.29 Camputed on the base of 
the 70 kg body weight 

Food with 
corn based 

Brazil maximum 
probable daily 
intake (MPDI): 
256.07 
average 
probable daily 
intake (APDI): 
120.58 

 

Food with 
corn based 

Canada 89 All children 

Food with 
corn based 

Canada 190 Child users 

Food with 
corn based 

Denmark 400  

Food with 
corn based 

South Africa 14,000 to 
440,000 

A group of people 
exhibiting a high 
prevalence of human 
esophageal 

Food with 
corn based 

South Africa 5,000 to 
59,000 

A group of people 
exhibiting a less 
prevalence of human 
esophageal 

Food with 
corn based 

UK 30  

Corn inferred 
commodities 

Belgium 16.7  

Corn inferred 
commodities 

China 450 to 15,810 
(Mean=3020) 

Camputed on the base of 
the 50 kg body weight 

Corn inferred 
commodities 

Germany 10.4 Users >14 years 

Corn inferred 
commodities 

Italy 185.6 Italian users 

Corn inferred 
commodities 

Italy 24.6 All people in Italy 

Corn inferred 
commodities 

Norway 0.24 Adult male and female 
population 

Corn inferred 
commodities 

Norway 0.50 Adult male and female 
users 

Corn powder Argentina 79 to 198 For samples during 
1996/1997 and January 
1998 

Corn pieces Germany 69.8 Users >14 years 

Corn pieces Italy 283.6 Italian users 

Corn pieces Italy 15.9 All people in Italy 

Rice France 12.1 All children in france  
Rice France 5.6 All female adults in france  
Rice France 5.6 All male adults in france 
Rice France 5.7 All people in france 
Rice Germany 0.6 Users >14 years 
Wheat 
commodities 

France 345.1 All children in france  

Wheat 
commodities 

France 230.8 All female adults in france  

Wheat 
commodities 

France 256 All male adults in france  



 

 

Wheat 
commodities 

France 240.08 All people in france  

Wheat 
commodities 

Italy 62.1 Italian users 

Wheat 
commodities 

Italy 10.6 All people in Italy 

Food and 
feeds 

Germany bad case 
scenario: 
21,000 
mean case 
scenario: 
1,100 

German users 

 380 
 381 

7. MAXIMUM LIMITATION 382 

There are different variables that may affect the foundation of tolerances for specific mycotoxins, such 383 
as the delivery of mycotoxins through products, regulations of trade contact in different countries, 384 
availability data of toxicological or dietary exposure, and the accessibility of techniques for analysis 385 
[120]. 386 
Deadline level for fumonisins in maize and other cereals, at the moment change from 5 to 100000 387 
µg/kg. Present laws of fumonisins in feeds and foods set by nations from America, Africa, Europe, 388 
and Asia and described by [121]; [122] and denoted in Table 5.  389 
 390 
Table 5. Maximum limits for Fumonisins in feeds and foods in different countries [138]; [139] 391 

Country Maximum limit 
(µg/kg) 

Commodity 

Bulgaria (FB1, 
FB2) 

1000 Maize and processed products thereof 

Cuba (FB1) 1000 Maize, rice 
France (FB1) 3000 Cereals & cereal products 
Iran (FB1, FB2) 1000 Maize 
Singapore (FB1, 
FB2) 

Not given Corn & corn products 

Switzerland (FB1, 
FB2) 

1000 Maize 

Taiwan (FB1) Based on the result of 
risk evaluation 

Maize commodities 

USA (FB1, FB2, 
FB3) 
 

2000 
 
 
3000 
 
4000 
 
 
 
5000 
 
20000 
 
30000 
 
 
 
60000 
 
 
100000 
 
10000 

Disinfected dry milled corn commodities (e.g. corn grits,  
flaking grits, corn meal, corn flour with fat content of 
<2.25%, dry weight basis) 
 
purified corn purpose of popcorn 
 
Total of partially disinfected dry milled corn 
commodities (e.g. corn grits,  flaking grits, corn meal, 
corn flour with fat content of <2.25%, dry weight basis); 
dehydrated milled corn bran; purified corn purpose of 
masa production 
 
Corn and corn derived purpose of rabbits and equids  
 
Corn and corn derived purpose of catfish and swine 
 
Corn and corn derived purpose of breeding mink, 
breeding poultry, and breeding ruminants (contains 
hens laying eggs and lactating dairy cattle for human 
use) 
 
Mink upbringing for pelt output and Ruminants >3 
months old upbringing for slaughter 



 

 

 
Poultry upbringing for slaughter 
 
Pet animals and all other species or classes of 
livestock 
 

European Union 
fumonisins 
 

2000 
1000 

Unprocessed maize 
Maize products for human 

European Union 
(FB1, FB2) 
 

50 
5 

Animal feeds except Equines 
Feeds of Equines 

Food and Drug 
Administration 
(FB1, FB2, FB3) 

30 
5 

Animal feeds except Equines 
Feed of Equines 

 392 
 393 
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