Metabolism, Toxicity, Detoxification, Occurrence, Intake and legislations of Fumonisins - A review

7

1

ABSTRACT

Fumonisins are the group of mycotoxins generated usually by the *Fusarium spp*. in foods and feeds. However more than 15 isomers of fumonisin have been recognized, but the B series of fumonisins are the main and referral isomers of fumonisins. Fumonisin B can cause, leukoencephalomalacia in rabbits and horses and porcine pulmonary edema in swine. Also, fumonisin B is nephrotoxic, hepatotoxic, immunotoxic and carcinogenic. Fumonisin B blocks sphingolipid biosynthesis (hence, hinder the synthesis of ceramide) by a noticeable resemblance to sphingosine and sphinganine. This paper gives a review of the toxicity, occurrence, and mechanism of carcinogenicity, hepatotoxicity, nephrotoxicity, and immunotoxicity of fumonisins. Fumonisins are mainly found on several foods and feed in Africa, America, Europe, Asia, and Oceania. In this paper, we talk about current information on the worldwide contamination of feeds and foods by fumonisins. Because of economic losses induced by fumonisins and their hurtful effect on animal and human health, the various procedure for detoxifying infected feeds and foods have been illustrated in this review, containing; biological, physical, and chemical processes. Besides in this paper, we discuss dietary intakes and maximum limits of fumonisins in some countries.

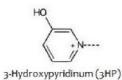
8 9 10

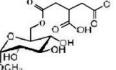
11 12

13

1. INTRODUCTION

Fumonisins are a group of further than ten mycotoxins created by *Fusarium* species like; *F. globosum*, *F. oxysporum*, *F. proliferatum*, *F. verticillioides* and other species of *Fusarium*, *Alternaria alternata f. sp. lycopersici*, and *Aspergillus niger* [1, 2].


Keywords: Fumonisins: Toxicity; Detoxification; Mechanism; Occurrence; Intake


Fumonisins have a noncyclic structure (opposite of most mycotoxins). In this structure, there is a chain with 19- or 20- carbon aminopolyhydroxyalkyl that diesterified by tricarballylic acid groups (propane-1,2,3-tricarboxylic acid) Fig 1. Hitherto, various chemically associated series or groups of fumonisins were isolated. These series are consist of A, B, C, and P. The main detected forms of fumonisins in foods, are the B series of fumonisins [3]. Fumonisins B₁, fumonisins B₂, and fumonisins B₃ are the broadest mycotoxins between the more than 15 fumonisin forms that have been described until now [4].

	0.00			R5		
-	_	-	-	Group		
Fumonisins	R1	R2	R3	R4	R5	R6
FA,	TCA	TCA	OH	OH	NHCOCH3	CH3
FA ₂	TCA	TCA	Н	OH	NHCOCH ₃	CH_3
FA ₃	TCA	TCA	OH	Н	NHCOCH ₃	CH_3
FAK,	=O	TCA	OH	OH	NHCOCH ₃	CH_3
FB,	TCA	TCA	OH	OH	NH ₂	CH3
FB ₂	TCA	TCA	Н	OH	NH ₂	CH₃
FB ₃	TCA	TCA	OH	Н	NHz	CH₃
FB ₄	TCA	TCA	Н	Н	NH ₂	CH3
FC,	TCA	TCA	OH	OH	NH ₂	н
FP ₁	TCA	TCA	OH	OH	3HP	CH ₃
FP ₂	TCA	TCA	Н	OH	3HP	CH ₃
FP ₃	TCA	TCA	OH	Н	3HP	CH ₃
PH _{1a}	TCA	ОН	OH	OH	NH ₂	CH,
PH _{tb}	OH	TCA	OH	OH	NH ₂	CH ₃
AP ₁ (Hydrolyzed FB ₁)	OH	ОН	ОН	ОН	NH ₂	CH,
N-(carboxymethyl) FB,	TCA	TCA	ОН	ОН	$NH(C_2H_3O_2)$	CH,
N-(deoxy-D-fructos-1-yl)B,	TCA	TCA	ОН	ОН	$NH(C_6H_{11}O_5)$	CH,
Fumonisin B1-di(methyl-α-	MG	MG	OH	ОН	NH ₂	CH ₃
D-glucopyranoside)			2017/00		1002062	ر

Tricarballylic Acid (TCA)

Methyl-a-D-glucopyranoside (MG)

Fig. 1. Chemical structures of the fumonisins. From: [1, 2]

Fungi-producing fumonisin contaminated apple, barley, beef, breakfast cereals, black tea, corn,
cornbread, corn flour, corn flakes, corn grits, corn snacks, basmati rice, crunchy nut, egg, milk, oats,
polenta, popcorn, row corn, soybean, canned foods, tomato, tortilla, and wheat [5].

Intake of fumonisin B induced a different of toxic effect in animals, containing leukoencephalomalacia
in horses [6], change in weight of the body and internal organ in broiler chicken [7, 8], pulmonary
edema and hepatocellular necrosis in piglet [9, 10]. Moreover, renal and hepatic toxicity has been
detected in different animal, containing rabbits, lambs, turkeys, mice, rats, and broilers [7, 11-14].

In human, fumonisins were increased risk of neural tube defects (NTD) and developing esophageal cancer [15, 16].

37 38

25 26

27

38 2. TOXICITY OF FUMONISINS39

40 In the human and different animal, fumonisins beget some toxic effects such as carcinogenic, 41 hepatotoxic, and nephrotoxic. Moreover, sensitivity to fumonisins is $\frac{a}{a}$ different in human and varies 42 animal, for example; based on [17] saying, rats are more sensitive to fumonisin B₁ than mice. We 43 summarized in Table 1 disorder effects, dosage, duration and source of fumonisin.

45		order effects induced by fumo Dosage and Fumonisin	Duration	Effects
		source	Duration	Encots
	Human	Both FB1 and FB2 High corn intake higher risk than low corn intake	case– control study	Developing esophageal cancer
	Human	FB1 in corn of three area of China, average of contamination was; 2.84, 1.27, and 0.65 mg/kg	1 year	Esophageal- and hepato- carcinogenesis
	Human cells	Medicine with FB1 for 24, 48,	72 and 96 h	The proliferation of human esophageal epithelial cells (HEECs)
	Women	Exposure to FB1 corn tortilla intake during the first trimester and before the pregnancy.	case– control study	Raise the risk of NTD
	Lamb	Intraruminally; 11.1, 22.2, 45.5 mg fumonisin B1, B2, B3/kg b.w	9 days	Tubular nephrosis, mild hepatopathy, diarrhea, lethargy, death
	Cattle	Feeding; 15, 31, 148 μg fumonisins /kg b.w	31 days	Increase in the AST, GGT, LDH, bilirubin, cholesterol and lymphocyte blastogenesis Mild microscopic liver lesions
	Cattle	Intravenous; 1 mg fumonisin B1/kg b.w	7 days	Lethargy, the decrease in appetite Increase in Sa/So, proliferation and hepatocyte apoptosis, the proliferation of bile ductular cells, vacuolar change, proliferation of proximal renal tubular cells, apoptosis, and karyomegaly.
	Broiler chicken	Feeding; 0, 100, 200, 300 or 400 mg fumonisin B1/kg b.w	21 days	The decline in body weight Increase in the liver-, proventriculus-, and gizzard-weights, Serum calcium, cholesterol, and AST
	Broiler chicken	Feeding; 0, 75, 150, 225, 300, 375, 450, 525 mg fumonisin B1/kg b.w	21 days	Increase in liver and kidney weights, MCV, MCHC, Sa/So Histological lesions in the liver
	Broiler chicken	Dietary; 0, 20, 40, 80 mg fumonisin B1/kg b.w	21 days	Increase in the Sa/So, GGT, AST, the weights of liver, proventriculus, spleen, kidney, and bursa of Fabricius.
	Broiler chicken	Dietary; 0, 50, 100 or 200 mg fumonisin B1/kg b.w	21 days	Cell proliferation in response to mitogens, immunosuppress
	Broiler chicken	Dietary; 300 mg fumonisin B1/kg b.w	21 days	Increase activities of AST, LDH, GGT

cł	roiler hicken obb 500	Orally and postnatal; 100 mg fumonisin B1/kg b.w	21 days	Increase in the liver weight, Sa/So, hepatic TBARS, Vit C, catalase
C	hicken mbryos	Injection in air cell of chicken eggs; 0, 2, 4, 8, 16, 32, and 64 µg fumonisin/egg	In 72h of incubation	Not microscopic abnormalities but haemorrhages of the neck, thoracic area, and head of the dead embryos
Τι	urkey	Dietary; 0, 100, 200 mg fumonisin B1/kg b.w	21 days	Increase in AST, alkaline phosphatase, MCV, MCH, liver-, kidney-, and pancreas-weights Biliary hyperplasia, , thymic cortical atrophy, hypertrophy of Kupffer's cells, and moderate broaden out of the proliferating hypertrophied zones of tibial physes The decrease in spleen and heart weights, body
D	uck	Orally; 0, 5, 15, 45 mg fumonisin B1/kg b.w	12 days	weight gains, cholesterol Body weight gain was slightly retarded, liver hyperplasia Increase in liver weight, total protein, AST, Sa/So, LDH, GGT, cholesterol
	louse mbryos	Exposure of FB1	Long term Short-term	NTD; 65% in continuing experimentation and by almost 50% in temporary experimentation
М	lice	Subcutaneous; 2.25 mg fumonisin B1/kg b.w	5 days	Hepatotoxic effects, increase in AST and liver enzymes in circulation
Μ	lice	Dietary; 0, 14, 70, and 140µmol fumonisin B1 , B2, B3, hydrolyzed fumonisin B1, fumonisin P1, N- (carboxymethyl)fumonisin B1 or N-(acetyl)fumonisin B1/kg	28 days	Increase in whole bile acids, alkaline phosphatase, cholesterol, hepatocellular apoptosis, macrophage pigmentation, Kupffer cell hyperplasia, and hepatocellular hypertrophy.
М	lice	Gavage; 1-75 mg fumonisin B1/kg	14 days	In the liver, mitosis, anisokaryosis, and hepatocellular single cell necrosis Increase in ALT, serum cholesterol, blood urea nitrogen in male, vacuolated lymphocytes and myeloid cells Mild decreases in ion transport of kidney
	lice	Dietary; 0, 1, 3, 9, 27, or 81 ppm FB1	13 weeks	Hepatopathy
	emale 6C3F1	Fed 50 or 80 ppm FB1	2-year feeding	Hepatocellular adenomas and carcinomas

mice			
Rat	Dietary; 0, 1, 3, 9, 27, or 81 ppm FB1	13 weeks	Nephrosis
Male BD IX rats	Intake of 50 ppm FB1	Up to 2 years	Culminated in the appearance of hepatocellular carcinomas and cholangiocarcinomas
Male F344 rats	FB1	2-year feeding	No hepatocarcinogenic effects ,but FB1 caused renal tubule tumors
Male BD IX rats Rabbit	0.08 and 0.16 mg FB/100 g of (bw)/day over Gavage; 0, 31.5, 630 mg fumonisin B1/kg b.w	2 years Single dose	Induce cancer, mild toxic, and preneoplastic lesions Increase in AP, ALT, AST, GGT, urea, total protein, and creatinine
Rabbit	Gavage; 1.75 mg fumonisin B1/kg b.w	9,13 days	Focal small bilateral hemorrhages in the white matter cerebral, malacia, apoptosis in kidney and liver
Horse	Intravenously; 1.25-4 , 1-4 mg fumonisin B1/kg b.w	33-35 days	Lesions of LEM Apathy, incoordination, walking into objects, changes in temperament, paralysis of the lips and tongue,
Horse	Intravenously; 0.125 mg fumonisin B1/kg b.w	0-9 days	Apathy, trembling, paresis of the lower lip and tongue, reluctance to move, a wide-based stance, ataxia, tetanic convulsion, inability to drink or eat Focal necrosis in the medulla oblongata and severe edema in brains, bilaterally symmetrical.
Horse	Feeding; 160-3800 µg fumonisin B1/kg b.w 20-950 µg fumonisin B1/kg		FB1 is the major fumonisin in LEM in horses
Arabian horse	b.w Dietary; 12.490 μg fumonisin B1/kg b.w, 5.251 μg fumonisin B2/kg b.w		Blindness, hyperexcitability, four leg ataxia, circling, aimless walking, death Focal areas of hemorrhage, softening of the sub-cortical white matter and brown-yellow discoloration Microscopic brain lesions; wide areas of malacia within the white matter of the brainstem, cerebral hemispheres, and cerebellum
Pony	Feeding; 1-88 ppm fumonisin B1, B2, B3	120 days	Leukoencephalomalacia and hepatic necrosis

Pigs	Intravenously; 4.6-7.9 mg fumonisin B1/kg b.w Orally; 48-166 ppm FB1	15 days	Pulmonary edema and hepatic necrosis
Pigs	Dietary; 16 mg fumonisin B1/kg b.w		Hydrothorax, variably severe pulmonary edema, icterus and hepatocellular necrosis
Pigs	Dietary; 20 ppm fumonisin B1	42 days	Strong edema in the lung, mild degenerative changes in the kidneys, slight edema in the different interior organs
Gilt	Dietary; 0.1 g fumonisin B1/kg b.w	7, 27-80 days	Nodular hyperplasia in liver, hyperkeratosis, parakeratosis, formation of papillary, hyperplastic plaques in esophageal mucosa
Weaned piglets	Orally; 5 mg fumonisin B1/kg b.w	Single dose	Increase in cholesterol, alkaline phosphatase and highest Sa and Sa/So ratios in plasma and urine

48 **2.1 Carcinogenicity**

Contamination of wheat, corn and rice with Fumonisin B can increase the risk of esophageal cancer in
human [16, 18, 19] by stimulating the proliferation of human esophageal epithelial cells (HEECs) [20].
Also, Mathur in 2001 observed some different effects of stimulation of the proliferation in liver cells
consisted of a proliferation of bile ductular cells and hepatocyte proliferation in cattle [21].

In rats, continuing intake of FB₁ (up to 2 years) consequenced the introduction of renal tubule tumors,
 hepatocellular adenomas, cholangiocarcinomas, and carcinomas [22, 23].

56 2.2 Hepatotoxic Effect

[11] by performing histological examination demonstrated that the fumonisins could create a mild hepatopathy in lambs. But hepatotoxic effects of Fumonisins in cattle is more extensive than lamb, and consisted of increases in gamma-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), serum aspartate aminotransferase (AST), cholesterol and bilirubin, and mild microscopic liver lesions [24] hepatic lesions were distinguished by the different severity of disorganized hepatic cords and hepatocyte apoptosis [21]. Therefore it is possible that cattle are more sensitive to Fumonisins than lamb.

65 In broiler chicken increasing dietary fumonisin B_1 caused the increase in liver weights, serum calcium, 66 cholesterol, and AST levels. Also, biliary hyperplasia and multifocal hepatic necrosis were present in 67 these chickens [8]. In researches of [7, 25], chickens fed with fumonisin B₁, sphinganine: sphingosine (Sa: So) ratio, serum glutamate oxaloacetate aminotransaminase (SGOT), levels of free sphinganine 68 in the serum, AST ratios, LDH, and GGT were increased. Nonetheless, total liver lipids of chicks were 69 70 decreased significantly. [26] demonstrated that subacute treatment of broiler chicks to fumonisin B₁ 71 bring about hepatic oxidative stress simultaneously with SA/SO gathering. Also, TBARS 72 (Thiobarbituric acid reactive substance) levels, catalase activity, and Vit C content were increased. 73 Therefore (according to the measure of treatment with fumonisins) sensitivity to Fumonisin in broiler 74 chicken is increased in compare with the latest research. Also, hepatotoxic effects of Fumonisins 75 besides of change in the level of liver enzymes can influence other factors like Vit C content, TBARS, 76 and even liver weight of broiler chicken.

Feeding the turkey with fumonisin B₁ caused increases in liver weights and serum AST levels.
 However, serum cholesterol, alkaline phosphatase, MCH (mean cell hemoglobin) and MCV (mean cell volume) were declined. Also, hypertrophy of Kupffer's cells and biliary hyperplasia were present in these turkeys [13].

Because of FB₁ in the plasma, cholesterol, total protein, alanine aminotransferase (ALT), LDH, GGT and SA/SO (sphinganine to sphingosine ratio) were rose. Liver weight growth with liver hyperplasia

83 existed in ducks [27]. These effect of fumonisins in ducks probably created by SA to SO ratio and 84 oxidative damages.

85

86 [28] declared that hepatic effects of FB1 in mice were increased in liver enzymes like AST and ALT in 87 circulation. Also, [17, 29] demonstrated that serum levels of the total bile acids, alkaline phosphatase, and cholesterol, were risen and hepatocellular hypertrophy, hepatocellular apoptosis, Kupffer cell 88 89 hyperplasia, hepatocellular single cell necrosis, mitosis, anisokaryosis, and macrophage pigmentation 90

- were detected in the mice that fed with FB₁. 91 FB₁ in rabbits can cause a significant increase in alkaline phosphatase (AP), total protein, AST, ALT, 92 and GGT. Also, degeneration of hepatocytes and apoptosis were the prominent degenerative
- 93 changes in liver of rabbits [14, 30].
- 94 Because of fumonisin B₁, B₂, and B₃, hepatic necrosis in ponies occurred [31].
- 95 Effect of fumonisins in the liver of piglet was apoptosis, necrosis, hepatocyte proliferation, hyperplastic 96 hepatic nodules (in chronic studies), icterus, and hepatocellular necrosis. Besides serum cholesterol. 97 alkaline phosphatase, AST activities, and sphinganine and sphingosine concentrations in kidney,
- 98 heart, lung, and liver were elevated. But there were no detectable portal triads or central veins,
- 99 adjacent parenchyma, and the perilobular connective tissue was compressed [10, 32-34]. The hepatic
- 100 changes especially disorganization in piglet by fumonisins probably is because of an acute pathway of 101 this mycotoxin.
- 102

103 2.3 Kidney Toxicity

- 104 Fumonisin in the kidney of lambs revealed with tubular nephrosis [11].
- Accumulation of sphingosine and sphinganine in the kidney of calves created renal lesion like 105 106 vacuolar change, karyomegaly, apoptosis, dilatation of proximal renal tubules (that included protein and cellular debris) and the proliferation of proximal renal tubular cells [21]. 107
- 108 Effect of fumonisin in the kidney of turkeys and broiler chicken was increasing in kidney weight [7, 13, 109 35].
- In both sexes of rats, fumonisins decreasing in the kidney weight, nephrosis in outer medulla of rats 110 111 (especially in female rats) was observed [12].
- 112 [14, 30] reported that the effect of fumonisin in the kidney of the rabbit was apoptosis and 113 degeneration of renal tubule epithelium, also level of urea and creatinine were increased.
- 114 Fumonisins in the kidney of pigs create a mild degenerative change, and in the urine of pigs, the highest Sa/So ratio and Sa ratio were produced in the 48th h [9, 33]. 115
- According to this researches, perhaps toxic effects of fumonisins in the kidney is not extensive such 116 117 as liver and sensitivity of kidney of rodents and chicken to fumonisins is lesser than other animals.
- 118

119 2.4 Leukoencephalomalacia

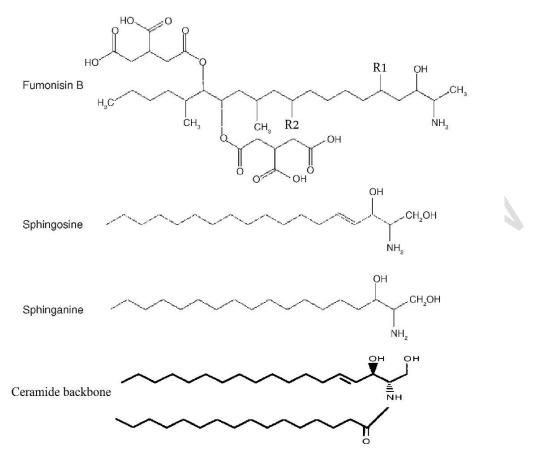
- 120 Fumonisins (especially fumonisin B_1) are the causal factor in the development of LEM in horses [36]. 121 The lethality rates, mortality, and morbidity in horses were 85.7%, 10%, and 11.6% respectively [6].
- 122 In horses with LEM because of fumonisins, the brain lesions were observed such as; severe to early 123 bilaterally symmetrical edema of the brain, brown-yellow discoloration, focal necrosis in the medulla 124 oblongata, focal or multifocal areas of hemorrhage, sporadically pyknotic nucleus all over the areas of rarefaction hemorrhage, softening of the sub-cortical white matter, cavitations crowded with 125 proteinaceous edema with rarefaction of the white matter, mild percolation by infrequent eosinophils 126 and neutrophils, intracytoplasmic eosinophilic globules, inflamed glial cells with plentiful eosinophilic 127 cytoplasm, inflamed glial cells with plentiful eosinophilic cytoplasm, cell edges were separated, 128 129 hyperchromatic, edema, necrosis, wide parts of malacia in the white matter of the cerebral hemispheres, cerebellum, and brainstem [6, 36, 37]. Perhaps these brain lesions (that were emerged 130 by fumonisin in horses) leads horses to nervous signs, consisted mainly of; apathy, incoordination, 131 132 walking into objects, changes in temperament, just in one horse paralysis of the tongue and lips, 133 paresis of tongue and the lower lip, inability to drink or eat, a wide-based stance, reluctance to move, trembling, hyperexcitability, four leg ataxia, blindness, tetanic convulsion, aimless walking and circling 134 developed by death [6, 36, 37]. 135
- 136

137 Fumonisin created leukoencephalomalacia in rabbits, and the bilateral brain microscopic lesions 138 consisted of small focal bleeding in the malacia, cerebral white matter, and bleeding in the 139 hippocampus [30]. But as you see brain lesions and nervous signs because of 140 leukoencephalomalacia in rabbits, is not extensive and prevalent like horses. Therefore the brain of horses is more sensitive than rabbits, to fumonisins. 141

143 2.5 Porcine Pulmonary Edema (PPE)

- Usual damages in Fumonisin B-fed pigs were severe edema in the lung by inhibiting sphingolipid biosynthesis and phagocytosis in pulmonary macrophages and gathering of substance material in pulmonary capillary and the line 221
- 146 pulmonary capillary endothelial cells [9, 32].
- 147 The clinical sign in pigs because of pulmonary edema (induced by fumonisins) consisted of;
- 148 hydrothorax and respiratory distress (reveal by getting up respiratory rate and effort with open mouth
- and abdominal breathing). Lethal pulmonary edema appears during 4 to 7 days after the daily feed or
- intravenous treatment of FB₁[10, 32].

152 2.6 Other Toxic Effects


- Exposure to FB₁ during the first trimester and before the pregnancy emerged to get up the hazard of neural tube defects (NTD; because of defeat of the neural tube to close, embryonic defects of the
- 155 spinal cord and brain happened) [15, 38].
- 156 Diarrhea and lethargy detected in fumonisin administrated lambs [11].
- 157 Feeding by fumonisin in calves has some effects such as; impairing the lymphocyte blastogenesis
- [24], lethargy, increasing of sphingosine and sphinganine concentrations in the heart, lung, and
 skeletal muscle. Elevate in the concentration of sphinganine, but not sphingosine, in brains of
 managed calves [21].
- 161 In broiler chicks, FB₁ had a bad effect on weight, water consumption, feed efficiency, and body [35].
- 162 Although decreasing in the body weight, but sthe weight of bursa of Fabricius, gizzard, and
- proventriculus was increased. Other effects of FB_1 consisted of diarrhea, thymic cortical atrophy, and rickets [8, 35].
- Fumonisin B₁ in turkey appeared thymic cortical atrophy, and moderate enlarging of the proliferating
 and degenerating hypertrophied zones of tibial physis [13].
- [39] reported that fumonisin in the egg could cause extreme hemorrhages of the thoracic area, head,
 neck of the dead embryos.
- In mice, fumonisins can cause adrenal cortical cell vacuolation and may cause increases in serum
 cholesterol. Vacuolated lymphocytes and myeloid cells were also detected in mice due to fumonisins
 [17]
- Fumonisins in pigs had some effects such as; decrease in left ventricular dP/dT (max) (an indicator of heart contractility). But mean pulmonary artery pressure, heart rate, mean systemic arterial pressure, cardiac output, and pulmonary artery wedge pressure by obstruction of L-type Ca channels by get up sphinganine and/or sphingosine mass, were increased. Also in studies, parakeratosis, postpone in the
- 176 pattern of papillary of the distal esophageal mucosa (part of stratum basale), hyperkeratosis, and 177 hyperplastic nodules in the liver cell, esophageal plaques, and right ventricular hypertrophy were
- 178 detected [32, 34].

179

180

181 3. METABOLISM AND MECHANISM OF FUMONISINS

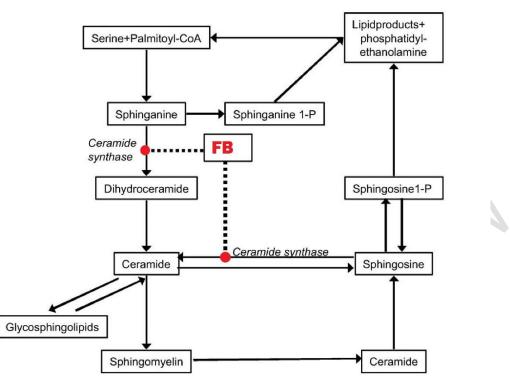

Structure of fumonisin B has a noticeable similarity to sphinganine and sphingosine Fig. 2 both
sphingosine and sphinganine are intermediates in the degradation and biosynthesis of sphingolipids.
Furthermore, [40] reported that fumonisin B obstruct sphingolipid biosynthesis by specifically inhibiting
sphingosine (sphinganine) N-acyltransferase, in vitro and situ.

Fig. 2. Structures of fumonisin B, sphingosine, sphinganine and ceramide backbone[1]; [3] 189

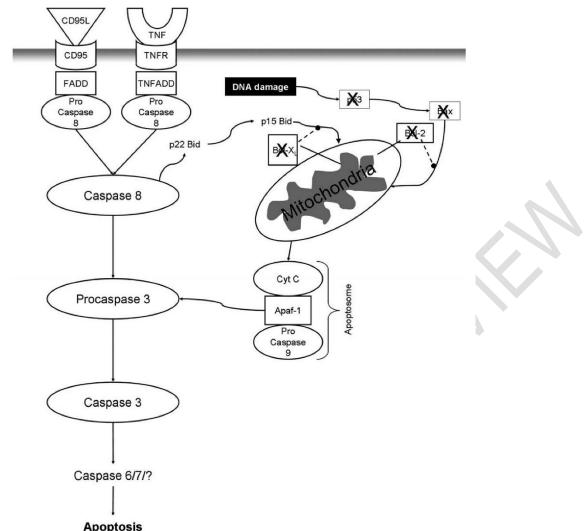
190

Sphingolipids are a group of lipids that can detected in the whole of eukaryotic cells. All of the sphingolipids include a sphingoid (long-chain base backbone). Sphingolipids are urgent basic molecules and rule as regulators of a numeral of cell act [41]. In Fig. 3 location of working of fumonisin B-induced inhibition of the enzyme CER synthase, is presented.

Fig. 3. A summarized scheme of the sites of action of fumonisin B-induced inhibition of the enzyme ceramide synthase on the pathway of de novo sphingolipid synthesis and turnover in mammalian cells and [4].

200

201 3.1 Mechanism of Fumonisins in Apoptosis and Cancer


Interruption of sphingolipid metabolism can cause the increase in available sphingoid backbone and their 1-phosphates, changing in compound sphingolipids, and decrease in the biosynthesis of ceramide (CER). Available sphingoid backbone induced cell death but fumonisin inhibition of CER synthase can restrain cell death influenced by ceramide [42].

Feedback of the apoptosis and carcinogenicity effects induced by fumonisin B_1 can be some mechanisms including oxidative damage, lipid peroxidation and maybe induction of hepatic, and renal tumors can happen [16]. Also, [43] discovered that FB₁ was able to promote the production of free radicals (by increasing the rate of oxidation) and by lipid peroxidation in membranes can accelerate chain reactions.

Increasing in sphinganine of tissue by FB was able to elevate beginning a cascade of cellular
changes that probably product the carcinogenicity and toxicity by an unknown mechanism(s).
However, in the following of sphinganine-induced cell proliferation and apoptosis and cancer
incidence might be elevated [3].

In some studies following fumonisin B₁ treatment in different cells of human and animals, has been
 shown that apoptosis caused by fumonisin B₁ does not entail p53 or Bcl-2 group proteins and protect
 cells from the apoptosis by baculovirus gene (CpIAP). Baculovirus gene obstructs induced apoptosis
 by the tumor necrosis factor (TNF) pathway that caspase-8 was cleaved. The mitochondrial pathway

- 219 perhaps is consisted of induced apoptosis by fumonisin B_1 by the actuation of Bid, release cytochrome 220 c [16].
- [20] reported that fumonisin B_1 in human normal esophageal epithelial cells (HEECs) stimulated the
- proliferation. Mechanism of the proliferation of HEECs is, decreasing in protein expression of cyclin E,
 p21, and p27 and increase in protein expression of cyclin D1.

224 225 Fig. 4. A schematic landscape of the pathways conduct to apoptosis and the mechanisms 226 probably consisted of fumonisin B1 -induced activation of caspase-3 resulted in apoptosis. X 227 mark showed the mechanisms that do not consisted of the apoptosis caused by fumonisin B1 228 [4].

229

3.2 Mechanism of Fumonisins in Hepatotoxicity 230

Accumulation of sphingoid base because of induced fumonisin B_1 can induce TNF- α and make the 231 232 hepatotoxicity in mice. Also, TNF-a receptor 1b is urgent mediating in the hepatotoxic responses by a 233 rise in the circulation of liver enzymes [28].

234 235 3.3 Mechanism of Fumonisins in Immunotoxicity

Exposure to FB₁ in human dendritic cells; getting up the exhibition of IFN-γ and the associated 236 chemokine CXCL9. Nevertheless, fumonisin B1 may decline the lipopolysaccharide-induced liver and 237 brain expression of IL-1ß and IFN-y in addition to the induced lipopolysaccharide expression of IL-1ß, 238 239 IL-6, and the chemokines CCL3 and CCL5 in human dendritic cells [16].

240 In piglets, fumonisin B1 exposure can increase expression of IL-18, IL-8, and IFN-v mRNA, But mRNA 241 measure of TNF- α , IL-1 β in piglet alveolar macrophages and levels of IL-4 may decrease [44]; [45].

- After exposure to fumonisin B_1 in mouse, a getup expression of TNF- α and interleukin-1 β (IL-1 β) has 242 been observed in kidney and the liver. Also, FB₁ can raise expression of IFN-γ, IL-1α, IL-18, IL-12, IL-243
- 244 10, and IL-6 in the liver of mouse [16]. 245

3.4 Mechanism of Fumonisins in Some Disorder 246

247 [46] recommended that the fumonisin B₁-induced destruction of cardiovascular action may be one of

- the major elements provide to the happening of equine leukoencephalomalacia by the get up in serum 248
- 249 and sphingosine concentrations and myocardial sphinganine.

Interruption of sphingolipid metabolism resulted in FB₁ before the pregnancy and during the first
 trimester may affect folate uptake and cause by a development risk of NTD [47]; [48].

FB₁ by the increase in sphingosine and/or sphinganine concentrations reduces the mechanical potency of the left ventricle and blocks L-type Ca channels. Pulmonary edema could generally caused by acute left-sided heart failure [49]; [50].

255 256

257 **4. DETOXIFICATION OF FUMONISINS**

Strategies of detoxification for infected feeds and foods to diminish or remove the toxic effects of fumonisins by biological, physical, and chemical processes are essential to boost food safety, hinder financial damage, and recover infected commodities. Data detected on biodegradation, detoxification, and binding procedures of fumonisins are abridged in Table 2.

263 Table 2. Biodegradation, detoxification, and binding processes of fumonisins

- 264 265
- 266

Process	Observation
Biological process	
Lactic acid bacte	ria Binding to FB1 and FB2
(Micrococcus luteus, acill	us
subtilis)	
Sphingopyxis sp.	Hydrolysis of FB1 to HFB1
Saccharomyces	Decrase in FB1 and FB2
Lactobacillus strains	(L. Removing fumonisins (FB1
plantarum B7 and	L. and FB2)
pentosus X8)	
Black yeasts Rhinoclodie	lla Ester bonds was hydrolyzed
atrovirensa and Exophia	ala of FB1
spinifera	
Candida parapsilosis	Mycelial growth inhibition
Physical process	
150–200 °C	87–100 % destruction of
	fumonisin B1 in corn cultures
Extrusion and roasting	60–70 % loss of FB1 and
	FB2
Extrusion	30 % loss of FB1 and FB2
Extrusion	92 % loss of fumonisin B1
Extrusion of drymill	
products	accumulation by 30–90 % for
	mixing-type extruders and
	20–50 % for non-mixing
	extruders
Baking corn	16 and 28 % loss of FB1
Frying corn chips	loss of 67 % of the fumonisin
Cooking and canning	Small influence on fumonisin
	measure (23%)
Ethanol-water extraction	
solvent at 80 °C	friendly, least toxic, and
	cheapest
Cholestyramine	Adsorption 85% of FB1
Activated carbon	Adsorption 62% of FB1
Ammonia process	Reduce FB1levels 30-45%
	No mutagenic potentials
	were apparent
Fructose	Obstruct the amine group of
	FB1, that is urgent for its
.	toxicity
Chlorophorin	Reduced FB1 levels by 90-

	91%
Oxidizing agents	Little effects in FB1, but
	applicable because of the
	minimal cost and the minimal
	destruction of important
	nutrients
Bentonite	Adsorbed only 12% of the
	toxin FB1
Celite	Not effective
Chemical process	
Solution of SO2 at 60 °C for 6	Most impressive treatment to
h	decline the measure of
A . II	fumonisin B1
Acidic aqueous solution by	
the addition of NaNO2	significantly deaminated Fumonisin B1 had a little
NaCI solution	mass and that 86 % of the
	toxin could be eliminated
Ozone (O3)	No significant difference in
	FB1
Single Ca(OH)2	
(nixtamalization) or with Na-	
HCO3 + H2O2 (modified	
nixtamalization)	

268 4.1 Biological Methods

267

286

An enzymatic detoxification process is by recombinant enzymes from the bacterium *Sphingopyxis sp.* resulted in hydrolysis of fumonisin B_1 to HFB₁; deamination of HFB₁ by aminotransferase (a miss of

the two tricarballylic side-chains via carboxylesterase) in the existence of pyridoxal phosphate and

- 272 pyruvate. Lactic acid bacteria such as Micrococcus luteus and Bacillus subtilis bind to fumonisin B1
- and fumonisin B_2 . Peptidoglycan bind to leastwise one tricarballylic acid part in the structure of FB_1 and especially FB_2 [2].
- 275 52.9% of FB₁ and 85.2% of FB₂ removed by two *Lactobacillus* strains (*L. pentosus X8* and *L. plantarum B7*), in the aqueous medium [51].
- Fermentation using three different yeast strains (*Saccharomyces*) is a method for detoxification of fumonisins, thus a maximal decrease was observed in 28% and 17% for fumonisin B_1 and fumonisin B_2 , respectively [52].
- Hydrolyzing ester bonds of fumonisin B_1 by black yeasts (*Exophiala spinifera* and *Rhinoclodiella atrovirensa*) reported by [53].
- 282 Candida parapsilosis could inhibit mycelial growth of Fusarium species from 74.54% and 56.36%, and
- the maximum and minimum decrease in total created fumonisin was 78% and 12%, respectively [54].
- 284 Therefore we can remove 17 to 85 % of Fumonisins using the biological process, and Lactobacillus
- 285 knew as the most effective strains for detoxification of Fumonisins.

287 4.2 Physical and Chemical Methods

- Fumonisin B_1 needs a massive temperature (150–200 °C) to gain 87–100 % demolition in corn cultivation [53].
- 290 **During** extrusion of dry-milled products, decreasing in the measure of fumonisins was 20–50 % for 291 non-mixing extruders and 30–90 % for mixing-type extruders [55]. For the production of cornflakes 292 through the extrusion and roasting of raw corn, 60–70 % of fumonisins B_1 and B_2 were loosened. But 293 removing of fumonisins only in the extrusion step was less than 30 % [56]. Destroying of fumonisin B_1
- in extrusion processing of grits, was 92 % [56]. The economical, lowest toxic and most biodegradable
 solvent for fumonisin extraction is ethanol-water [57].
- In baking corn muffins, removing of fumonisin during baked for 20 minutes were amidst 16 and 28 % at 175 °C and 200 °C respectively, also flotation the corn in water reduced the amount of fumonisin B₁, and frying corn chips for 15 minutes at 190 °C bring about a remove of 67 % of the fumonisin. But spiked corn masa fried at 140–170 °C (while degradation begins to take placed above 180 °C) has no
- 300 significant loss of fumonisin B₁[58],[59].

301 One of the most impressive management to decline the measure of fumonisin B1 is a 0.2 % solution

of SO_2 at 60 °C for six hours [60]. But canning and cooking had a small influence on fumonisin measure [61].

- In [62] studies, the adsorption capacity of cholestyramine for fumonisin B_1 ; 85% from a solution including 200 μ g/ml FB₁, were reported.
- 306 Detoxification of corn with ammonia process reduced fumonisin levels (30 to 45 %), and no mutagenic 307 potentials were found in the managed corn [63].
- 308 Obstruction the amine group of fumonisin B1 by reaction with fructose is another way to the 309 detoxification of fumonisin B_1 [64].
- The percentage of reduction of FB₁ in corn by single Ca(OH)₂ (nixtamalization) or with Na-HCO₃ + H_2O_2 (modified nixtamalization), was 100% [65].
- Chlorophorin gets from vanillic acid, ferulic acid, caffeic acid, and iroko decreased FB₁ levels by 90– 91% [66].
- Treatment with oxidizing agents is an economical method for detoxification of fumonisin B₁, but this method isn't demonstrated in bioassays [65].
- 316 The acidic aqueous solution such as $NaNO_2$ can create deamination in fumonisin B₁, significantly [67].
- 317 In the floating section after treatment with NaCl solution, 86% of FB₁ were removed [68].
- 318 Celite and O3 couldn't make a significant difference in the level of FB_1 , but bentonite adsorbed only 319 12% of the FB_1 [62, 69].
- According to these reports, physical and chemical methods are the most effective way for detoxification of Fumonisin (in compare with the biological method), so it is necessary to intervention for remove the Fumonisin from feeds and foods.

323324 5. OCCURRENCE

- According to [70] using increases in global grain exchange, probably fungi spread from one country to another. In *Fusarium* fungi, this hazard expected to be minimum whereas these phytopathogens are field sooner than storage organisms. The global infection of animal feeds and foodstuffs with fumonisins is described in Table 3.
- 329 330

Table 3. Occurrence of fumonisins from human foods, cereals, and crops in various countries.

Fumonisin B1 (mg/kg)	Fumonisin B2 (mg/kg)	Fumonisin B3 (mg/kg)
2.43		
Not detected		
0.2 to 11.6	0.5	
Not Detected	Not Detected	Not Detected
Average of fumonisins ir	a 2003: 10.2 and in 2004: 4	1.7 μg/kg
0.2 to 38.5	0.1 to 12	
5.45 to 10.59	3.62 to 10.31	
0.5 to 1.38	0.01 to 0.59	
0.2 to 6.1		
78.92		
3.2	3.4	1.7
	(mg/kg) 2.43 Not detected 0.2 to 11.6 Not Detected Average of fumonisins in 0.2 to 38.5 5.45 to 10.59 0.5 to 1.38 0.2 to 6.1 78.92	(mg/kg) (mg/kg) 2.43 Not detected 0.2 to 11.6 0.5 Not Detected Not Detected Average of fumonisins in 2003: 10.2 and in 2004: 4 0.2 to 38.5 0.1 to 12 5.45 to 10.59 3.62 to 10.31 0.5 to 1.38 0.01 to 0.59 0.2 to 6.1 78.92

Honduras	0.068 to 6.5		
Uruguay	0.165 to 3.688		
USA	0 to 1.614		
USA	0.058 to 1.976	0.054 to 0.890	
Venezuela	0.025 to 15.05		
China	0.872 to 0.890	0.33 to 0.448	
China	0.08 to 21	0.05 to 4.35	0.06 to 1.66
China	<0.05 to 25.97	<0.10 to 6.77	<0.10 to 4.13
China	Total fumonisins <0.5 to	16.0	
China	0.058 to 1.976	0.056 to 0.89	0.053 to 0.385
China	0.003 to 71.121		
China	0.0165 to 0.3159		
India	0.07 to 8	\mathbf{O}	
India	<1 to 100		
Iran	1.270 to 3.980	0.190 to 1.175	0.155 to 0.960
Iran	223.64		
Japan	<0.05 to 4.1	<0.1 to 10.2	
Philippines	Total fumonisins 0.3 to 1	10	
Taiwan	0.63 to 18.8	0.05 to 1.4	
Taiwan (Australia)	≤0.477		
Taiwan (USA)	≤1.614		
Taiwan (South Africa)	≤0.865	≤0.12	
Taiwan (South Africa)	≤0.05 to 0.9	<0.05 to 0.25	
Taiwan (Thailand)	≤0.334		
Vietnam	Total fumonisins 0.3 to 9	9.1	
Australia	Total fumonisins 0.3 to 4	40.6	
Australia	≤0.477		
Austria	<15		

Croatia	0.01 to 0.06	0.01	
Croatia	The highest concentratio	ns fumonisins 25.5, mean	values of 4.509
Greece	0.1 to 0.56		
Portugal	0.09 to 2.3	0.25 to 4.45	
Poland	0.01 to 0.02	<0.01	
Romania	0.01 to 0.02	0.01	
Spain	≤22	≤0.7	
Spain	70 to 334	102 to 379	
Spain	0.2 to 19.2	0.2 to 5.9	
Spain	0.035 to 0.043	0.019 to 0.022	
The Netherlands	Traces to 0.380		
The Netherlands	Traces to 3.35		
UK	0.2 to 6		
Benin	Total fumonisins: 6.1 to 1	2 in 1999-2003	
Ethiopia	0.606	0.202	0.136
Ghana	0.011 to 1.655	0.01 to 0.77	0.07 to 0.224
Malawi	0.02 to 0.115	0.03	
Morocco	1.930		
South Africa	<10 to 83		
South Africa	≤0.63	≤0.25	
South Africa	0.05 to 117.5	0.05 to 22.9	
South Africa	0.2 to 46.9	0.15 to 16.3	
South Africa	<0.2 to 2		
South Africa (Argentina)	0.05 to 0.7	<0.05 to 0.5	<0.05 to 0.5
South Africa (USA)	0.9 to 3.9	0.3 to 1.2	0.08 to 0.6
Tanzania	0.025 to 0.165	0.06	
Zimbabwe	0.125	0.04	
Corn flakes			
Argentina	0.002 to 0.038	Not detected	

Brazil	0.66	0.03
Jruguay	0.218	Not detected
USA	Total fumonisins: <0	.25
USA	≤0.088	Not detected
USA or Canada	0.012 to 0.155	
Korea	0.018 to 0.143	
Germany	Total fumonisins <0.	01 to 1
Italy	0.01	Not detected
Italy	0.020 to 1.092	0.006 to 0.235
Nordic countries	0.005 to 1.030	0.004 to 0.243
Spain	0.02 to 0.1	
Switzerland	0.055	
The Netherlands	1.43	
Turkey	Not detected	Not detected
South Africa	Not detected	Not detected
Corn flour		
Argentina	0.038 to 1.86	0.02 to 0.768
Brazil	≤1.46	≤0.51
USA	Total fumonisins: <0	.25 to 1
China	0.06 to 0.2	<0.10
Italy	3.54	0.84
Nordic countries	0.017 to 0.86	0.007 to 0.024
UK	Total fumonisins 0.2	18
The Netherland	0.04 to 0.09	
Corn grits		
Argentina	0.092 to 0.494	0.02 to 0.1
Argentina	1.1	0.425
Brazil	0.17 to 1.23	0.05 to 0.3
USA	Average 0.6	Average 0.4

USA	Total fumonisins: 0.251	to 1	
USA	Total fumonisins: <0.25		
Japan	0.2 to 2.6	0.3 to 2.8	
Germany	0.0139		
Italy	3.76	0.9	
Nordic countries	0.007		
Spain	0.03 to 0.09	Not detected	
Switzerland	0 to 0.79	0 to 0.16	
South Africa	<0.05 to 0.19	<0.05 to 0.12	
Corn kernel			
Bahrain	0.025		1
China	5.3 to 8.4	2.3 to 4.3	
Nepal	0.05 to 4.6	0.1 to 5.5	
Indonesia	0.051 to 2.44	<0.376	
Egypt	69 to 4495		
Ghana	0.07 to 33.1	0.06 to 12.3	
Kenya	0.11 to 12		
Corn meal			
Argentina	0.06 to 2.86	0.061 to 1.09	0.018 to 1.015
Argentina	0.603 to 1.171	0.717	
Brazil	0.56 to 4.93	0.21 to 1.38	
Canada	0.05		
Peru	0.66	0.13	
USA	Average: 1	0.3	
USA	Total fumonisins: <0.25	to >1	
China	<0.5 to 8.8	<0.5 to 2.8	<0.5 to 0.9
Turkey	0.25 to 2.66	0.55	
South Africa	Average: 0.14	Average: 0.08	
Oat			

Brazil	0.17
UK	Total fumonisins not detected
Rice	
Iran	21.59
UK	Total fumonisins not detected
Wheat	
Brazil	24.35
France	Not detected
Spain	0.2 to 8.8 0.2
UK	Total fumonisins not detected

332 **5.1 North and South America**

In the USA, the infection of corn by fumonisins was detected by [71] and [72].

- Level of infection with fumonisin B₁ in corn of Honduras was 0.068 to 6.5 mg/kg [73].
- In Brazil, the incidence of fumonisins was detected in corn by [74], [75], [76], [77], [78] and [79], the measure of contamination of corn with Fumonisins over 1999 to 2001 was increased. The infection of wheat, oat and barely by fumonisins was also detected by [78].
- 338 In Uruguay, research for checking measure of fumonisins in corn commodities showed the 339 contamination of corn with fumonisin B_1 was 0.165 to 3.688 mg/kg [80].
- [81] reported that the infection of corn with fumonisin B1 in Venezuela was 25 to 15050 ng/g.
- The average of fumonisins in corn of Argentina was 10200 μg/kg in 2003 and 4700 μg/kg in 2004 [82].

342 Corn was the most prevalent source of Fumonisins in North and South America. Moreover, the level
 343 of Fumonisins in South America was higher than in North America, and perhaps it was because of
 344 different climate condition.

- 345 The percentage of Fumonisins in corn product such as corn flour were decreased; this decline 346 probably proved that detoxification method was effective for the control of Fumonisins in America.
- 347

348 5.2 Asia and Oceania

In China, the contamination of corn with fumonisins was reported by [83]; [84], [85], [71], [86] and [87]. Based on these studies the most extreme concentration of fumonisin B₁, B₂ and B₃ were 25.97 mg/kg,

- Based on these studies the most extreme concentration of fumonisin B_1 , B_2 and B_3 were 25.97 mg/kg, 6.77 mg/kg and 4.13 mg/kg respectively. Also, [88] reported that in China total fumonisins concentration was 0.5 to 16 mg/kg. In Iran [90] investigated infection of corn with fumonisin B_1 , B_2 , and B_3 . Also, [18] reported the corn's contamination with fumonisin B_1 . The high concentration of Fumonisins in corn of Iran and China, justify the high prevalence of esophageal cancer in Iranian and Chinese people.
- 356 The contamination of corn with fumonisin B_1 and B_2 was detected by [89] in Japan.
- [91] declared that the measure of total fumonisins in corn of Philippines and Vietnam was 0.3 to 10
 mg/kg and 0.3 to 9.1 mg/kg, respectively.
- Contamination of Taiwan's corn with fumonisins was investigated by [92], [72] and [93], increasing in level of Fumonisins in Taiwan's corn declared that legislation and control program in this country was not efficient and it is necessary to change their programmes.
- 362 The incidence of fumonisins in corn of India declared by [94] and [95].
- [72] and [91] reported the contamination of corn in Australia and the highest fumonisins level was 40.6mg/kg.
- 365

366 **5.3 Europe**

367 [96] published a review article on information about the occurrence of fumonisins from some
 368 European nations (Croatia, Poland, Portugal, and Romania). The highest concentration of fumonisins
 369 in Croatia was 25,200 ng/g, and the mean value was 4,509 ng/g [97].

- In Spain, contamination of corn with fumonisins investigated by [98], [99], [100], and [101]. Also, [102] reported the concentration of fumonisin B_1 and B_2 in wheat and barley.
- Function B_1 was not found in wheat and barley of France [103].
- 373 [104] reported the corn contamination with fumonisin B₁ in Austria.
- 104 In oat, barley and wheat of United Kingdom [105] have not detected fumonisins but [106] declared the
- 375 concentration of fumonisin B_1 in corn of UK (0.2 to 6 mg/kg).

376377 **5.4 Africa**

- Albeit majority African territory has weather distinguished by high temperature and high humidity that suitable for the development of molds, little data is accessible on the occurrence of toxins of *Fusarium*. High infection of the basic material is a developing problem. Regulative problems are not accessible in the territory of food retailing and exhibition, and mycotoxin issues now have been combined with some food infection in some parts in Africa [107].
- The infection of corn with fumonisins in South Africa was reported by [108], [109], [93], [110], [111] and [112]. Based on these studies the most extreme concentration of fumonisin B1, B2 and B3 were 117.5 mg/kg, 22.9 mg/kg and 0.6 mg/kg respectively.
- A high measure of fumonisins (12 mg/kg) was also detected in corn from Benin [113].
- 387 [114] detected the fumonisin B_1 , B_2 , and B_3 in corn of Ethiopia.
- 388 Corn from Ghana and Morocco was also infected with fumonisins [115]; [116].
- 389 390

391 6. DIETARY INTAKE

In the European diet, the total intake of FB_1 has been evaluated at 1.4 μ g/kg of body weight/week [117]. Daily intake of fumonisins in varies countries and foods, were summarized in Table 4.

394 In [117]; [118] articles, tolerable daily intake (TDI) of FB₁ was reported 800 ng/kg. Also, provisional-395 maximum-tolerable-daily-intake (PMTDI) of fumonisin was noted 2 μ g/kg of body weight per day on by 396 the no-observed-effect-level (NOEL) of 0.2 mg/kg of body weight/day and a safety aspect of one 397 hundred.

Using the simulation model, mean concentrations of fumonisin B₁ in milk evaluated 0.36 µg/kg.
 Whenas the pretended tolerable daily intakes (TDI) from milk for females and males fell lesser
 European Union guidelines [119].

- 401 [14] demonstrated that feces are the major way of excretion of fumonisin B_1 in rabbits, by comparing 402 the concentration of FB₁ in urine, liver, and feces.
- 403

404 Table 4. Daily intake of fumonisins for different countries and foods

Food	Nation	Intake (ng/kg bw/day)	of	Explantion
Beer	USA	20 to 54		Camputed on the base of the 60 kg body weight
Cereal commodities	France	22.8		All children in france
Cereal commodities	France	4.6		All female adults in france
Cereal commodities	France	3.2		All male adults in france
Cereal commodities	France	9.96		All people in france
Cereal commodities	Germany	31.8		Users >14 years
Cereal commodities	Norway	430		6 month babies
Corn	Brazil	392		Camputed on the base of the 70 kg body weight from urban area
Corn	Brazil	1276		Camputed on the base of the 70 kg body weight from rural area people
Corn	Brazil	4.1 3.4		Conventional corn Organic corn

0	F	3.8	Total
Corn	France	45.6	All children in france
Corn	France	12.4	All female adults in france
Corn	France	7.4	All male adults in france
Corn	France	9.96	All people in france
Corn	Germany	8.7	Users >14 years
Corn	Switzerland	30	
Corn	The	3.1	Adults
	Netherlands		
Corn	USA	80	
Corn	USA	600000 to	Natural outbreak of LEM in
Com	00/1	2100000	horses
Corn	Zimbabwe	140 and 5760	Shamva district
Corn	Zimbabwe	180 and 8092	Makoni district
Corn	Brazil	63.3	São Paulo population
commodity	A		
Food with	Argentina	0.73 to 2.29	Camputed on the base of
corn based			the 70 kg body weight
Food with	Brazil	maximum	
corn based		probable daily	
		intake (MPDI):	
		256.07	
		average	
		probable daily	
		intake (APDI):	
		120.58	
Food with	Canada	89	All children
corn based	Junuuu	55	
Food with	Canada	190	Child users
	Janaua	130	
corn based	Depresation	400	
Food with	Denmark	400	
corn based		44.000	A
Food with	South Africa	14,000 to	5 1 1 1
corn based		440,000	exhibiting a high
			prevalence of humar
			esophageal
Food with	South Africa	5,000 to	5 - 1 - 1 - 1 -
corn based		59,000	exhibiting a less
			prevalence of humar
			esophageal
Food with	UK	30	
corn based		-	
Corn inferred	Belgium	16.7	
commodities	Deigium	10.7	
Corn inferred	China	150 to 15 910	Computed on the base of
	Unina	450 to 15,810	Camputed on the base of
commodities	Correction	(Mean=3020)	the 50 kg body weight
Corn inferred	Germany	10.4	Users >14 years
commodities			
Corn inferred	Italy	185.6	Italian users
commodities			
Corn inferred	Italy	24.6	All people in Italy
commodities			
Corn inferred	Norway	0.24	Adult male and female
commodities			population
Corn inferred	Norway	0.50	Adult male and female
commodities			users
Corn powder	Argentina	79 to 198	For samples during
	, agonana		1996/1997 and January
			-
Corn pieces	Germany	69.8	1998 Users >14 years

Corn pieces	Italy	283.6	Italian users
Corn pieces	Italy	15.9	All people in Italy
Rice	France	12.1	All children in france
Rice	France	5.6	All female adults in france
Rice	France	5.6	All male adults in france
Rice	France	5.7	All people in france
Rice	Germany	0.6	Users >14 years
Wheat	France	345.1	All children in france
commodities			
Wheat	France	230.8	All female adults in france
commodities			
Wheat	France	256	All male adults in france
commodities			
Wheat	France	240.08	All people in france
commodities			
Wheat	Italy	62.1	Italian users
commodities			
Wheat	Italy	10.6	All people in Italy
commodities			
Food and	Germany	bad case	German users
feeds	-	scenario:	
		21,000	
		mean case	
		scenario:	
		1,100	

407 **7. MAXIMUM LIMITATION**

There are different variables that may affect the foundation of tolerances for specific mycotoxins, such as the delivery of mycotoxins through products, regulations of trade contact in different countries, availability data of toxicological or dietary exposure, and the accessibility of techniques for analysis [120].

Deadline level for fumonisins in maize and other cereals, at the moment change from 5 to 100000
µg/kg. Present laws of fumonisins in feeds and foods set by nations from America, Africa, Europe, and Asia and described by [121]; [122] and denoted in Table 5.

415

416 <u>Table 5. Maximum limits for Fumonisins in feeds and foods in different countries [138]; [139]</u> Country Maximum limit Commodity

Country	(µg/kg)	Commonly
Bulgaria (FB1, FB2)	1000	Maize and processed products thereof
Cuba (FB1)	1000	Maize, rice
France (FB1)	3000	Cereals & cereal products
Iran (FB1, FB2)	1000	Maize
Singapore (FB1, FB2)	Not given	Corn & corn products
Switzerland (FB1, FB2)	1000	Maize
Taiwan (FB1)	Based on the result of risk evaluation	Maize commodities
USA (FB1, FB2, FB3)	2000	Disinfected dry milled corn commodities (e.g. corn grits, flaking grits, corn meal, corn flour with fat content of <2.25%, dry weight basis)
	3000	· · · ·
		purified corn purpose of popcorn
	4000	
		Total of partially disinfected dry milled corn
		commodities (e.g. corn grits, flaking grits, corn meal,
		corn flour with fat content of <2.25%, dry weight basis);
	5000	dehydrated milled corn bran; purified corn purpose of

		masa production
	20000	Corn and corn derived purpose of rabbits and equids
30000		Corn and corn derived purpose of catfish and swine
	60000	Corn and corn derived purpose of breeding mink, breeding poultry, and breeding ruminants (contains hens laying eggs and lactating dairy cattle for human use)
	100000 10000	Mink upbringing for pelt output and Ruminants >3 months old upbringing for slaughter
		Poultry upbringing for slaughter
		Pet animals and all other species or classes of livestock
European Union fumonisins	2000 1000	Unprocessed maize Maize products for human
European Union (FB1, FB2)	50 5	Animal feeds except Equines Feeds of Equines
Food and Drug Administration (FB1, FB2, FB3)	30 5	Animal feeds except Equines Feed of Equines

418 CONCLUSION

Fumonisins can cause fatal diseases in animals and classified as a potential human carcinogen. In this review as the main aspects presents results on studies concerning the ability of Fumonisins to cause varies toxicity effects in different part of body in human and animal, compare and evaluation of Fumonisins occurrence in many countries, effect of different detoxification method for removing the Fumonisins, mechanism of toxicity in cells of human and animals, evaluation the intake of Fumonisins in various consumers of and comparing the limitation of Fumonisins in several countries.

The authors suggestion for future investigation about Fumonisins are; estimate the reproductive effects of fumonisins, refresh and expand the information about the occurrence of fumonisins in different parts of the world, extend masked Fumonisins in detoxification researches, improve the legislation about Fumonisins to change daily intake of these mycotoxins, more notice to mechanisms of Fumonisins on different types of animals and cells, cell-cell interactions, exposure pathway, and exposure measures.

431 432

433 **REFERENCES**

434

435 1. Shimizu K, Nakagawa H, Hashimoto R, Hagiwara D, Onji Y, Asano K, Kawamoto S, Takahashi H,
436 Yokoyama K. The α-oxoamine synthase gene fum8 is involved in fumonisin B2 biosynthesis in
437 Aspergillus niger. Mycoscience. 2015 May 1;56(3):301-8.

438 2. Scott PM. Recent research on fumonisins: a review. Food Additives & Contaminants: Part A. 2012
439 Feb 1;29(2):242-8.

- 440 3. Jackson L, Jablonski J. Fumonisins. InMycotoxins in food 2004 (pp. 367-405).
- 441 4. Humpf HU, Voss KA. Effects of thermal food processing on the chemical structure and toxicity of 442 fumonisin mycotoxins. Molecular Nutrition & Food Research. 2004 Sep;48(4):255-69.
- 5. Soriano JM, Dragacci S. Occurrence of fumonisins in foods. Food Research International. 2004 Jan
 1;37(10):985-1000.

- 6. Giannitti F, Diab SS, Pacin AM, Barrandeguy M, Larrere C, Ortega J, Uzal FA. Equine
 leukoencephalomalacia (ELEM) due to fumonisins B1 and B2 in Argentina. Pesquisa Veterinária
 Brasileira. 2011 May;31(5):407-12.
- 7. Weibking TS, Ledoux DR, Bermudez AJ, Turk JR, Rottinghaus GE, Wang E, Merrill Jr AH. Effects
 of feeding Fusarium moniliforme culture material, containing known levels of fumonisin B1, on the
 young broiler chick. Poultry Science. 1993 Mar 1;72(3):456-66.
- 451 8. Ledoux DR, Brown TP, Weibking TS, Rottinghaus GE. Fumonisin toxicity in broiler chicks. Journal
 452 of Veterinary Diagnostic Investigation. 1992 Jul;4(3):330-3.
- 9. Pósa R, Stoev S, Kovács M, Donkó T, Repa I, Magyar T. A comparative pathological finding in pigs
 exposed to fumonisin B1 and/or Mycoplasma hyopneumoniae. Toxicology and industrial health. 2016
 Jun;32(6):998-1012.
- 456 10. Colvin BM, Cooley AJ, Beaver RW. Fumonisin toxicosis in swine: clinical and pathologic findings.
 457 Journal of Veterinary Diagnostic Investigation. 1993 Apr;5(2):232-41.
- 458 11. Edrington TS, Kamps-Holtzapple CA, Harvey RB, Kubena LF, Elissalde MH, Rottinghaus GE.
 459 Acute hepatic and renal toxicity in lambs dosed with fumonisin-containing culture material. Journal of 460 animal science. 1995 Feb 1;73(2):508-15.
- 461 12. Voss KA, Chamberlain WJ, Bacon CW, Herbert RA, Walters DB, Norred WP. Subchronic feeding
 462 study of the mycotoxin fumonisin B1 in B6C3F1 mice and Fischer 344 rats. Toxicological Sciences.
 463 1995 Jan 1;24(1):102-10.
- 464 13. Weibking TS, Ledoux DR, Brown TP, Rottinghaus GE. Fumonisin toxicity in turkey poults. Journal
 465 of Veterinary Diagnostic Investigation. 1993 Jan;5(1):75-83.
- 466 14. Orsi RB, Dilkin P, Xavier JG, Aquino S, Rocha LO, Corrêa B. Acute toxicity of a single gavage
 467 dose of fumonisin B1 in rabbits. Chemico-biological interactions. 2009 May 15;179(2-3):351-5.
- 468 15. Missmer SA, Suarez L, Felkner M, Wang E, Merrill Jr AH, Rothman KJ, Hendricks KA. Exposure
 469 to fumonisins and the occurrence of neural tube defects along the Texas–Mexico border.
 470 Environmental health perspectives. 2005 Sep 29;114(2):237-41.
- 471 16. Stockmann-Juvala H, Savolainen K. A review of the toxic effects and mechanisms of action of
 472 fumonisin B1. Human & experimental toxicology. 2008 Nov;27(11):799-809.
- 473 17. Bondy GS, Suzuki CA, Fernie SM, Armstrong CL, Hierlihy SL, Savard ME, Barker MG. Toxicity of
 474 fumonisin B1 to B6C3F1 mice: a 14-day gavage study. Food and chemical toxicology. 1997 Oct
 475 1;35(10-11):981-9.
- 476 18. Alizadeh AM, Roshandel G, Roudbarmohammadi S, Roudbary M, Sohanaki H, Ghiasian SA,
 477 Taherkhani A, Semnani S, Aghasi M. Fumonisin B1 contamination of cereals and risk of esophageal
 478 cancer in a high risk area in northeastern Iran. Asian Pacific Journal of Cancer Prevention.
 479 2012;13(6):2625-8.
- 480 19. Sun G, Wang S, Hu X, Su J, Huang T, Yu J, Tang L, Gao W, Wang JS. Fumonisin B1
 481 contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China. Food
 482 Additives and Contaminants. 2007 Feb 1;24(2):181-5.
- 483 20. Wang SK, Wang TT, Huang GL, Shi RF, Yang LG, Sun GJ. Stimulation of the proliferation of
 484 human normal esophageal epithelial cells by fumonisin B1 and its mechanism. Experimental and
 485 therapeutic medicine. 2014 Jan 1;7(1):55-60.
- 486 21. Mathur S, Constable PD, Eppley RM, Waggoner AL, Tumbleson ME, Haschek WM. Fumonisin B1
 487 is hepatotoxic and nephrotoxic in milk-fed calves. Toxicological Sciences. 2001 Apr 1;60(2):385-96.

- 488 22. Gelderblom WC, Abel S, Smuts CM, Marnewick J, Marasas WF, Lemmer ER, Ramljak D.
 489 Fumonisin-induced hepatocarcinogenesis: mechanisms related to cancer initiation and promotion.
 490 Environmental Health Perspectives. 2001 May;109(Suppl 2):291.
- 491 23. Howard PC, Eppley RM, Stack ME, Warbritton A, Voss KA, Lorentzen RJ, Kovach RM, Bucci TJ.
 492 Fumonisin b1 carcinogenicity in a two-year feeding study using F344 rats and B6C3F1 mice.
 493 Environmental Health Perspectives. 2001 May;109(Suppl 2):277.
- 494 24. Osweiler GD, Kehrli ME, Stabel JR, Thurston JR, Ross PF, Wilson TM. Effects of fumonisin495 contaminated corn screenings on growth and health of feeder calves. Journal of animal science. 1993
 496 Feb 1;71(2):459-66.
- 497 25. Kubena LF, Edrington TS, Harvey RB, Buckley SA, Phillips TD, Rottinghaus GE, Casper HH.
 498 Individual and combined effects of fumonisin B1 present in Fusarium moniliforme culture material and
 499 T-2 toxin or deoxynivalenol in broiler chicks. Poultry Science. 1997 Sep 1;76(9):1239-47.
- 26. Poersch AB, Trombetta F, Braga AC, Boeira SP, Oliveira MS, Dilkin P, Mallmann CA, Fighera
 MR, Royes LF, Furian AF. Involvement of oxidative stress in subacute toxicity induced by fumonisin
 B1 in broiler chicks. Veterinary microbiology. 2014 Nov 7;174(1-2):180-5.
- 503 27. Bailly JD, Benard G, Jouglar JY, Durand S, Guerre P. Toxicity of Fusarium moniliforme culture 504 material containing known levels of fumonisin B1 in ducks. Toxicology. 2001 May 28;163(1):11-22.
- 505 28. Sharma RP, Bhandari N, Riley RT, Voss KA, Meredith FI. Tolerance to fumonisin toxicity in a mouse strain lacking the P75 tumor necrosis factor receptor. Toxicology. 2000 Feb 21;143(2):183-94.
- 507 29. Howard PC, Couch LH, Patton RE, Eppley RM, Doerge DR, Churchwell MI, Marques MM, 508 Okerberg CV. Comparison of the toxicity of several fumonisin derivatives in a 28-day feeding study 509 with female B6C3F1 mice. Toxicology and applied pharmacology. 2002 Dec 15;185(3):153-65.
- 510 30. Bucci TJ, Hansen DK, Laborde JB. Leukoencephalomalacia and hemorrhage in the brain of 511 rabbits gavaged with mycotoxin fumonisin B1. Natural toxins. 1996 Jan;4(1):51-2.
- 512 31. Ross PF, Ledet AE, Owens DL, Rice LG, Nelson HA, Osweiler GD, Wilson TM. Experimental 513 equine leukoencephalomalacia, toxic hepatosis, and encephalopathy caused by corn naturally 514 contaminated with fumonisins. Journal of Veterinary Diagnostic Investigation. 1993 Jan;5(1):69-74.
- 32. Haschek WM, Gumprecht LA, Smith G, Tumbleson ME, Constable PD. Fumonisin toxicosis in
 swine: an overview of porcine pulmonary edema and current perspectives. Environmental Health
 Perspectives. 2001 May;109(Suppl 2):251.
- 33. Dilkin P, Direito G, Simas MM, Mallmann CA, Corrêa B. Toxicokinetics and toxicological effects of
 single oral dose of fumonisin B1 containing Fusarium verticillioides culture material in weaned piglets.
 Chemico-biological interactions. 2010 May 14;185(3):157-62.
- 34. Casteel SW, Turk JR, Cowart RP, Rottinghaus GE. Chronic toxicity of fumonisin in weanling pigs.
 Journal of Veterinary Diagnostic Investigation. 1993 Jul;5(3):413-7.
- 523 35. Henry MH, Wyatt RD, Fletchert OJ. The toxicity of purified fumonisin B1 in broiler chicks. Poultry 524 Science. 2000 Oct 1;79(10):1378-84.
- 36. Thiel PG, Shephard GS, Sydenham EW, Marasas WF, Nelson PE, Wilson TM. Levels of
 fumonisins B1 and B2 in feeds associated with confirmed cases of equine leukoencephalomalacia.
 Journal of Agricultural and Food Chemistry. 1991 Jan;39(1):109-11.
- 528 37. Kellerman TS, Marasas WF, Thiel PG, Gelderblom WC, Cawood M, Coetzer JA. 529 Leukoencephalomalacia in two horses induced by oral dosing of fumonisin B1. The Onderstepoort 530 journal of veterinary research. 1990 Dec;57(4):269-75.

- 38. Haschek WM, Motelin G, Ness DK, Harlin KS, Hall WF, Vesonder RF, Peterson RE, Beasley VR.
 Characterization of fumonisin toxicity in orally and intravenously dosed swine. Mycopathologia. 1992
 Feb 1;117(1-2):83-96.
- 534 39. Henry MH, Wyatt RD. The toxicity of fumonisin B1, B2, and B3, individually and in combination, in 535 chicken embryos. Poultry science. 2001 Apr 1;80(4):401-7.
- 40. D'mello JP, Placinta CM, Macdonald AM. Fusarium mycotoxins: a review of global implications for
 animal health, welfare and productivity. Animal feed science and technology. 1999 Aug 30;80(34):183-205.
- 41. Merrill SS, Seeman TE, Kasl SV, Berkman LF. Gender differences in the comparison of selfreported disability and performance measures. The Journals of Gerontology Series A: Biological
 Sciences and Medical Sciences. 1997 Jan 1;52(1):M19-26.
- 42. Riley RT, Enongene E, Voss KA, Norred WP, Meredith FI, Sharma RP, Spitsbergen J, Williams
 DE, Carlson DB, Merrill Jr AH. Sphingolipid perturbations as mechanisms for fumonisin
 carcinogenesis. Environmental health perspectives. 2001 May;109(Suppl 2):301.
- 43. Yin JJ, Smith MJ, Eppley RM, Page SW, Sphon JA. Effects of fumonisin B 1 on lipid peroxidation in membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1998 Apr 22;1371(1):134-42.
- 44. Halloy DJ, Gustin PG, Bouhet S, Oswald IP. Oral exposure to culture material extract containing
 fumonisins predisposes swine to the development of pneumonitis caused by Pasteurella multocida.
 Toxicology. 2005 Sep 15;213(1-2):34-44.
- 45. Taranu I, Marin DE, Bouhet S, Pascale F, Bailly JD, Miller JD, Pinton P, Oswald IP. Mycotoxin
 fumonisin B1 alters the cytokine profile and decreases the vaccinal antibody titer in pigs. Toxicological
 Sciences. 2005 Jan 19;84(2):301-7.
- 46. Smith GW, Constable PD, Foreman JH, Eppley RM, Waggoner AL, Tumbleson ME, Haschek
 WM. Cardiovascular changes associated with intravenous administration of fumonisin B1 in horses.
 American journal of veterinary research. 2002 Apr 1;63(4):538-45.
- 47. Marasas WF, Riley RT, Hendricks KA, Stevens VL, Sadler TW, Gelineau-van Waes J, Missmer
 SA, Cabrera J, Torres O, Gelderblom WC, Allegood J. Fumonisins disrupt sphingolipid metabolism,
 folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for
 human neural tube defects among populations consuming fumonisin-contaminated maize. The
 Journal of nutrition. 2004 Oct 1;134(4):711-6.
- 48. Cornell J, Nelson MM, Beighton P. Neural tube defects in the Cape Town area, 1975-1980. South
 African medical journal= Suid-Afrikaanse tydskrif vir geneeskunde. 1983 Jul;64(3):83-4.
- 49. Constable PD, Smith GW, Rottinghaus GE, Haschek WM. Ingestion of fumonisin B1-containing
 culture material decreases cardiac contractility and mechanical efficiency in swine. Toxicology and
 applied pharmacology. 2000 Feb 1;162(3):151-60.
- 566 50. Smith GW, Constable PD, Eppley RM, Tumbleson ME, Gumprecht LA, Haschek-Hock WM. 567 Purified fumonisin B1 decreases cardiovascular function but does not alter pulmonary capillary 568 permeability in swine. Toxicological Sciences. 2000 Jul 1;56(1):240-9.
- 569 51. Zhao H, Wang X, Zhang J, Zhang J, Zhang B. The mechanism of Lactobacillus strains for their 570 ability to remove fumonisins B1 and B2. Food and Chemical Toxicology. 2016 Nov 1;97:40-6.
- 571 52. Scott PM, Kanhere SR, Lawrence GA, Daley EF, Farber JM. Fermentation of wort containing 572 added ochratoxin A and fumonisins B1 and B2. Food Additives & Contaminants. 1995 Jan 1;12(1):31-573 40.
- 574 53. Volcani Center I. Control of mycotoxins in storage and techniques for their decontamination. 575 Mycotoxins in food. 2004:190.

- 576 54. Fallah B, Zaini F, Ghazvini RD, Kachuei R, Kordbacheh P, Safara M, Mahmoudi S. The 577 antagonistic effects of Candida parapsilosis on the growth of Fusarium species and fumonisin 578 production. Current medical mycology. 2016 Mar;2(1):1.
- 579 55. Saunders DS, Meredith FI, Voss KA. Control of fumonisin: effects of processing. Environmental 580 Health Perspectives. 2001 May;109(Suppl 2):333.
- 581 56. Scudamore KA. Control of mycotoxins: secondary processing. InMycotoxins in food 2004 (pp. 224-243).
- 583 57. Lawrence JF, Niedzwiadek B, Scott PM. Effect of temperature and solvent composition on 584 extraction of fumonisins B1 and B2 from corn products. Journal of AOAC international. 2000 May 585 1;83(3):604-11.
- 586 58. Jackson LS, Katta SK, Fingerhut DD, DeVries JW, Bullerman LB. Effects of baking and frying on 587 the fumonisin B1 content of corn-based foods. Journal of Agricultural and Food Chemistry. 1997 Dec 588 15;45(12):4800-5.
- 589 59. Shapira R, Paster N. Control of mycotoxins. Storage and Techniques for their Decontamination in: 590 Mycotoxins in Food, Woodhead Publishing Limited, Cambridge CB1 6AH, England. 2004.
- 591 60. Pujol R, Torres M, Sanchis V, Canela R. Fate of fumonisin B1 in corn kernel steeping water 592 containing SO2. Journal of agricultural and food chemistry. 1999 Jan 18;47(1):276-8.
- 593 61. Stockenstrom S, Leggott NL, Marasas WF, Somdyala NI, Shephard GS. Preparation of South
 594 African maize porridge: effect on fumonisin mycotoxin levels. South African Journal of Science. 2002
 595 Jul 1;98(7):393-6.
- 596 62. Solfrizzo M, Visconti A, Avantaggiato G, Torres A, Chulze S. In vitro and in vivo studies to assess
 597 the effectiveness of cholestyramine as a binding agent for fumonisins. Mycopathologia. 2001 Sep
 598 1;151(3):147-53.
- 599 63. Norred WP, Voss KA, Bacon CW, Riley RT. Effectiveness of ammonia treatment in detoxification 600 of fumonisin-contaminated corn. Food and chemical toxicology. 1991 Jan 1;29(12):815-9.
- 601 64. Lu Z, Dantzer WR, Hopmans EC, Prisk V, Cunnick JE, Murphy PA, Hendrich S. Reaction with
 602 fructose detoxifies fumonisin B1 while stimulating liver-associated natural killer cell activity in rats.
 603 Journal of agricultural and food chemistry. 1997 Mar 17;45(3):803-9.
- 604 65. Leibetseder J. Decontamination and detoxification of mycotoxins. InBiology of Growing Animals 605 2006 Jan 1 (Vol. 4, pp. 439-465). Elsevier.
- 606 66. Beekrum S, Govinden R, Padayachee T, Odhav B. Naturally occurring phenols: a detoxification strategy for fumonisin B1. Food Additives & Contaminants. 2003 May 1;20(5):490-3.
- 608 67. Lemke SL, Ottinger SE, Ake CL, Mayura K, Phillips TD. Deamination of fumonisin B1 and 609 biological assessment of reaction product toxicity. Chemical research in toxicology. 2001 Jan 610 15;14(1):11-5.
- 611 68. Shetty PH, Bhat RV. A physical method for segregation of fumonisin-contaminated maize. Food 612 Chemistry. 1999 Aug 1;66(3):371-4.
- 613 69. McKenzie KS, Sarr AB, Mayura K, Bailey RH, Miller DR, Rogers TD, Norred WP, Voss KA, 614 Plattner RD, Kubena LF, Phillips TD. Oxidative degradation and detoxification of mycotoxins using a 615 novel source of ozone. Food and Chemical Toxicology. 1997 Aug 1;35(8):807-20.

70. Placinta CM, D'mello JP, Macdonald AM. A review of worldwide contamination of cereal grains
and animal feed with Fusarium mycotoxins. Animal feed science and technology. 1999 Mar 31;78(12):21-37.

- 71. Li FQ, Yoshizawa T, Kawamura O, Luo XY, Li YW. Aflatoxins and fumonisins in corn from the
 high-incidence area for human hepatocellular carcinoma in Guangxi, China. Journal of agricultural
 and food chemistry. 2001 Aug 20;49(8):4122-6.
- 72. Tseng TC, Liu CY. Occurrence of fumonisin B1 in maize imported into Taiwan. International
 journal of food microbiology. 2001 Apr 11;65(1-2):23-6.
- 73. Julian AM, Wareing PW, Phillips SI, Medlock VF, MacDonald MV, Luis E. Fungal contamination
 and selected mycotoxins in pre-and post-harvest maize in Honduras. Mycopathologia. 1995 Jan
 1;129(1):5-16.
- 74. Sydenham EW, Marasas WF, Shephard GS, Thiel PG, Hirooka EY. Fumonisin concentrations in
 Brazilian feeds associated with field outbreaks of confirmed and suspected animal mycotoxicoses.
 Journal of Agricultural and Food Chemistry. 1992 Jun;40(6):994-7.
- 75. Hirooka EY, Yamaguchi MM, Aoyama S, Sugiura Y. The natural occurrence of fumonisins in
 Brazilian corn kernels. Food Additives & Contaminants. 1996 Feb 1;13(2):173-83.
- 632 76. Wild CP, Daudt AW, Castegnaro M. The molecular epidemiology of mycotoxin-related disease.
 633 Mycotoxins and phycotoxins-developments in chemistry, toxicology and food safety. 1998:213-32.
- 77. Vargas EA, Preis RA, Castro L, Silva CM. Co-occurrence of aflatoxins B 1, B 2, G 1, G 2,
 zearalenone and fumonisin B 1 in Brazilian corn. Food Additives & Contaminants. 2001 Nov
 1;18(11):981-6.
- 78. Mallmann CA, Santurio JM, Almeida CA, Dilkin P. Fumonisin B1 levels in cereals and feeds from
 southern Brazil. Arquivos do Instituto Biológico. 2001 Jan;68(1):41-5.
- 79. Van Der Westhuizen L, Shephard GS, Scussel VM, Costa LL, Vismer HF, Rheeder JP, Marasas
 WF. Fumonisin contamination and Fusarium incidence in corn from Santa Catarina, Brazil. Journal of
 agricultural and food chemistry. 2003 Aug 27;51(18):5574-8.
- 80. Pineiro MS, Silva GE, Scott PM, Lawrence GA, Stack ME. Fumonisin levels in Uruguayan corn
 products. Journal of AOAC International. 1997;80(4):825-8.
- 644 81. Medina-Martínez MS, Martínez AJ. Mold occurrence and aflatoxin B1 and fumonisin B1 645 determination in corn samples in Venezuela. Journal of agricultural and food chemistry. 2000 Jul 646 17;48(7):2833-6.
- 647 82. Broggi LE, Pacin AM, Gasparovic A, Sacchi C, Rothermel A, Gallay A, Resnik S. Natural 648 occurrence of aflatoxins, deoxynivalenol, fumonisins and zearalenone in maize from Entre Rios 649 Province, Argentina. Mycotoxin Research. 2007 Jun 1;23(2):59.
- 83. Yoshizawa T, Yamashita A, Luo Y. Fumonisin occurrence in corn from high-and low-risk areas for
 human esophageal cancer in China. Applied and Environmental Microbiology. 1994 May
 1;60(5):1626-9.
- 84. Ueno Y, lijima K, Wang SD, Sugiura Y, Sekijima M, Tanaka T, Chen C, Yu SZ. Fumonisins as a
 possible contributory risk factor for primary liver cancer: a 3-year study of corn harvested in Haimen,
 China, by HPLC and ELISA. Food and chemical toxicology. 1997 Dec 1;35(12):1143-50.
- 656 85. Gao HP, Yoshizawa T. Further study on Fusarium mycotoxins in corn and wheat from a high-risk 657 area for human esophageal cancer in China. JSM Mycotoxins. 1997 Jun 30;1997(45):51-5.
- 658 86. Gong HZ, Ji R, Li YX, Zhang HY, Li B, Zhao Y, Sun L, Yu F, Yang J. Occurrence of fumonisin B 1 659 in corn from the main corn-producing areas of China. Mycopathologia. 2009 Jan 1;167(1):31-6.

- 87. Shi H, Li S, Bai Y, Prates LL, Lei Y, Yu P. Mycotoxin contamination of food and feed in China:
 Occurrence, detection techniques, toxicological effects and advances in mitigation technologies. Food
 Control. 2018 Sep 1;91:202-15.
- 663 88. Zhang H, Nagashima H, Goto T. Natural occurrence of mycotoxins in corn, samples from high and 664 low risk areas for human esophageal cancer in China. JSM Mycotoxins. 1997 Jan 31;1997(44):29-35.
- 89. Ueno Y, Aoyama S, Sugiura Y, Wang DS, Lee US, Hirooka EY, Hara S, Karki T, Chen G, Yu SZ.
 A limited survey of fumonisins in corn and corn-based products in Asian countries. Mycotoxin
 Research. 1993 Mar 1;9(1):27-34.
- 90. Shephard GS, Marasas WF, Leggott NL, Yazdanpanah H, Rahimian H, Safavi N. Natural
 occurrence of fumonisins in corn from Iran. Journal of Agricultural and Food Chemistry. 2000 May
 15;48(5):1860-4.
- 91. Bryden WL, Ravindran G, Amba MT, Gill RJ, Burgess LW. Mycotoxin contamination of maize
 grown in Australia, the Philippines and Vietnam. InNinth International IUPAC Symposium on
 Mycotoxins and Phycotoxins, Rome 1996 May (pp. 27-31).
- 674 92. Yoshizawa T, Yamashita A, Chokethaworn N. Occurrence of fumonisins and aflatoxins in corn 675 from Thailand. Food Additives & Contaminants. 1996 Feb 1;13(2):163-8.
- 93. Rheeder JP, Sydenham EW, Marasas WF, Thiel PG, Shephard GS, Schlechter M, Stockenström
 S, Cronje DE, Viljoen JH. Ear-rot fungi and mycotoxins in South African corn of the 1989 crop
 exported to Taiwan. Mycopathologia. 1994 Jul 1;127(1):35-41.
- 94. Shetty PH, Bhat RV. Natural occurrence of fumonisin B1 and its co-occurrence with aflatoxin B1 in
 Indian sorghum, maize, and poultry feeds. Journal of agricultural and food chemistry. 1997 Jun
 16;45(6):2170-3.
- 682 95. Jindal N, Mahipal SK, Rottinghaus GE. Occurrence of fumonisin B 1 in maize and poultry feeds in 683 Haryana, India. Mycopathologia. 1999 Oct 1;148(1):37-40.
- 96. Doko MB, Rapior S, Visconti A, Schjoth JE. Incidence and levels of fumonisin contamination in
 maize genotypes grown in Europe and Africa. Journal of Agricultural and Food Chemistry. 1995
 Feb;43(2):429-34.
- 687 97. Pleadin J, Perši N, Mitak M, Zadravec M, Sokolović M, Vulić A, Jaki V, Brstilo M. The natural 688 occurrence of T-2 toxin and fumonisins in maize samples in Croatia. Bulletin of environmental 689 contamination and toxicology. 2012 Jun 1;88(6):863-6.
- 98. Sanchis V, Abadias M, Oncins L, Sala N, Viñas I, Canela R. Fumonisins B1 and B2 and toxigenic
 Fusarium strains in feeds from the Spanish market. International Journal of Food Microbiology. 1995
 Sep 1;27(1):37-44.
- 693 99. Arino A, Juan T, Estopanan G, Gonzalez-Cabo JF. Natural occurrence of Fusarium species,
 694 fumonisin production by toxigenic strains, and concentrations of fumonisins B1 and B2 in conventional
 695 and organic maize grown in Spain. Journal of Food Protection. 2007 Jan;70(1):151-6.
- 696 100. Castellá G, Bragulat MR, Cabañes FJ. Mycoflora and fumonisin-producing strains ofFusarium
 697 moniliforme in mixed poultry feeds and component raw material. Mycopathologia. 1996 Mar
 698 1;133(3):181-4.
- 699 101. Castella G, Bragulat MR, Cabañes FJ. Surveillance of fumonisins in maize-based feeds and 700 cereals from Spain. Journal of agricultural and food chemistry. 1999 Nov 15;47(11):4707-10.
- 102. Castellá G, Bragulat MR, Cabanes FJ. Fumonisin production by Fusarium species isolated from
 cereals and feeds in Spain. Journal of food protection. 1999 Jul;62(7):811-3.

- 103. Malmauret L, Parent-Massin D, Hardy JL, Verger P. Contaminants in organic and conventional
 foodstuffs in France. Food Additives & Contaminants. 2002 Jun 1;19(6):524-32.
- 104. Lew H, Adler A, Edinger W. Moniliformin and the European corn borer (Ostrinia nubilalis).
 Mycotoxin Research. 1991 Mar 1;7(1):71-6.

105. Patel S, Hazel CM, Winterton AG, Gleadle AE. Surveillance of fumonisins in UK maize-based
 foods and other cereals. Food Additives & Contaminants. 1997 Feb 1;14(2):187-91.

106. Preis RA, Vargas EA. A method for determining fumonisin B1 in corn using immunoaffinity
column clean-up and thin layer chromatography/densitometry. Food Additives & Contaminants. 2000
Jun 1;17(6):463-8.

- 712 107. Zinedine A, Soriano JM, Molto JC, Manes J. Review on the toxicity, occurrence, metabolism,
 713 detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food and chemical
 714 toxicology. 2007 Jan 1;45(1):1-8.
- 108. Stockenström S, Sydenham EW, Shephard GS. Fumonsin B1, B2, and B3 content of commercial
 unprocessed maize imported into South Africa from Argentina and the USA during 1992. Food
 Additives & Contaminants. 1998 Aug 1;15(6):676-80.
- T18 109. Dutton MF, Westlake K. Occurrence of mycotoxins in cereals and animal feedstuffs in Natal,
 South Africa. Journal-Association of Official Analytical Chemists. 1985;68(5):839-42.
- 110. Rheeder JP, Marasas WF, Thiel PG, Sydenham EW, Shephard GS, Van Schalkwyk DJ.
 Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkei.

111. Sydenham EW, Gelderblom WC, Thiel PG, Marasas WF. Evidence for the natural occurrence of
 fumonisin B1, a mycotoxin produced by Fusarium moniliforme, in corn. Journal of Agricultural and
 Food Chemistry. 1990 Jan;38(1):285-90.

- 112. Sydenham EW, Thiel PG, Marasas WF, Shephard GS, Van Schalkwyk DJ, Koch KR. Natural
 occurrence of some Fusarium mycotoxins in corn from low and high esophageal cancer prevalence
 areas of the Transkei, Southern Africa. Journal of Agricultural and Food Chemistry. 1990
 Oct;38(10):1900-3.
- 113. Fandohan P, Gnonlonfin B, Hell K, Marasas WF, Wingfield MJ. Natural occurrence of Fusarium
 and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa.
 International Journal of Food Microbiology. 2005 Mar 15;99(2):173-83.
- 114. Getachew A, Chala A, Hofgaard IS, Brurberg MB, Sulyok M, Tronsmo AM. Multimycotoxin and
 fungal analysis of maize grains from south and southwestern Ethiopia. Food Additives &
 Contaminants: Part B. 2018 Jan 2;11(1):64-74.
- 115. Kpodo K, Thrane U, Hald B. Fusaria and fumonisins in maize from Ghana and their cooccurrence with aflatoxins. International journal of food microbiology. 2000 Nov 1;61(2-3):147-57.
- Tito. Zinedine A, Brera C, Elakhdari S, Catano C, Debegnach F, Angelini S, De Santis B, Faid M,
 Benlemlih M, Minardi V, Miraglia M. Natural occurrence of mycotoxins in cereals and spices
 commercialized in Morocco. Food control. 2006 Nov 1;17(11):868-74.
- 117. Soriano JM, Dragacci S. Occurrence of fumonisins in foods. Food Research International. 2004
 Jan 1;37(10):985-1000.
- 118. Creppy EE. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicology
 letters. 2002 Feb 28;127(1-3):19-28.
- 119. Coffey R, Cummins E, Ward S. Exposure assessment of mycotoxins in dairy milk. Food Control.
 2009 Mar 1;20(3):239-49.

- 120. Van Egmond HP. Rationale for regulatory programmes for mycotoxins in human foods andanimal feeds. Food Additives & Contaminants. 1993 Jan 1;10(1):29-36.
- 748 121. AC04318739 A, editor. Worldwide regulations for mycotoxins in food and feed in 2003. FAO;2004.
- 750 122. Abdallah MF, Girgin G, Baydar T. Occurrence, prevention and limitation of mycotoxins in feeds.
 751 Anim. Nutr. Feed Technol. 2015 Sep 1;15:471-90.

UNDERPETRATION