1	Review Article
2	
3	
4	An Over View of Dermatophytosis in Camels
5	
6	Abstract:
7	Dermatophytosis is a fungal infection of the skin caused by dermatophytes-filamentous fungi
8	which have ability to invade the epidermis and keratinized tissues such as hair, skin or nails.
9	Trichophyton verrucosum is the most common dermatophytes species isolated from camel. The
10	disease is characterized by circumscribed crusty hairless lesion, (1-2 cm) distributed over the
11	head, neck, shoulder, limbs and flanks. Dermatophytosis can be diagnosed by direct
12	examination, fungal culture, skin biopsy and molecular diagnosis methods. This review forecast

13 more light of the different aspects of this disease.

14 Key words:

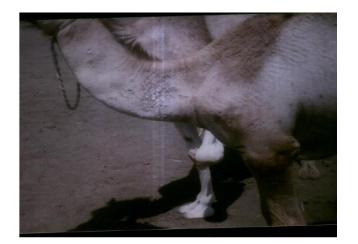
- 15 Dermatophytosis, Camel, Clinical feature, Diagnosis. Treatment
- 16 17

18 Introduction:

- 19 Camels in their natural habitat are exposed to severe stress conditions which make them
- susceptible to many diseases [1, 2]. In last decades camels were reported to be resistant to many
- disease causing agents [3, 4], now it has been realized that they are susceptible like other

22 livestock or even more, to the common disease causing pathogens [5-7].

23 Dermatophytes are among the most frequent causes of superficial skin infections in man and


24 animals, known as Dermatophytosis (ringworm). It caused by fungi of three genera

25 *Microsporum, Trichophyton and Epidermophyton.* Ecologically, dermatophytes are classified to

three groups anthropophilic (mostly associated with humans), zoophilic (associated with

- animals) and geophilic (found in the soil). Dermatophytosis in camels is the most frequent
- 28 mycosis worldwide it has public health and economic importance. There are two forms of the
- disease sporadic as well as epidemic form [8-10]. .Ringworm occurs in camels less than 3 year
- 30 age and is characterized by circumscribed crusty hairless lesion, 1-2 cm in diameter distributed

31	over the head, neck, shoulder, limbs and flanks [1]. T. verrucosum is the most common cause of
32	dermatophytosis in camels [11].
33	Epidemiology:
34	Dermatophytosis was reported to be a common disease of camels worldwide [10,12]. Different
35	prevalence rate of the disease of 48 % [13] and 43.5% [14] were reported in camels, while [15]
36	reported lower prevalence of 8.58% in camels suffering from dermatophytosis. Camels less than
37	3 year age were more susceptible to the disease than older animals [1].
38	Predisposing factors:
39	1- Age animals less than three years old always get the infection.
40	2- Breed foreign breed is more susceptible to disease
41	3- Production system for example poor and crowded houses
42	4- Close confinement
43	5- Immunosuppression (including immunosuppressive treatment)[16,17]
44	Transmission
45	
46	The transmission of dermatophytosis is usually occurs by direct contact with infected host
47	(animals or humans) or asymptomatic carriers indirect contact with contaminated fomites besides
48	contact with soil [18,19].
49 50 51 52	Clinical features:
53	Ringworm in camels is characterized by circumscribed crusty hairless lesion, 1-2 cm in diameter
54	[1] on the head, the neck and shoulders with a possible extension to the flanks and legs, leading
55	sometimes to emaciation [20] (fig.1-8).
56	

58 Fig.1: Localized lesions of ringworm on camel neck [11]

60 Fig.2: Circular lesions on the neck of camel [56]

63 Fig.3: Alopecic ringworm lesions [57]

- 65
- 66 Fig.4: A young camel calf has Crusty and hairless lesions on the shoulder.[44]

- 67
- 68 Fig.5: Acamel from Elobied areas showing generalized lesions of ringworm
- 69 giving moth-eaten appearance of wool.[11]

- 70
- 71 Fig.6: Affected camel showed white hairless patches on different parts of the body. The
- 72 lesions typically consisted of an area of alopecia.[44]

- 73
- 74 Fig.7: Epidermophyton fast spreading lesions with circular patches[29]

76 Fig.8: Epidermophyton lesions giving just burning appearance [29]

- 77
- 78

79 Mixed infection of dermatophytosis and other skin diseases:

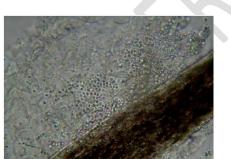
- 80 Mixed infection of dermatophytosis and *Sarcoptic scabiei* has been reported by [21, 22]. Mixed
- 81 infection of dermatophytosis caused by *M.gpyseum* and *Dermatophilus congolensis* in dairy farm
- camel was recorded by [15] fig. 9.
- 83
- 84

- 85
- Fig.9: Hair matting and crusty, hairless lésions on the flanks of a camel calf
- 87

88 Etiology:

- 89 The disease in camel is mainly caused by *Trichophyton vertucosum* [12, 14, 23, 24, 25]. *T*.
- 90 mentagrophytes has been isolated by [11]. [26-28] were able to isolate T. schoenleinii. T.
- 91 *dankaliense* was isolated by [4]. [29] has been isolated *T. equinum T. concentricum*, *T.*
- 92 tonsurans, T. violaceum, T. soudanense, T. rubrum, M. canis, M. nanum and M. ferrugineum.
- 93 *M.gpseum* has been isolated by [15, 30, 31] *Epidermophyton floccosum* has been reported by
- 94 [32]
- 95
- 96

97 Diagnosis:

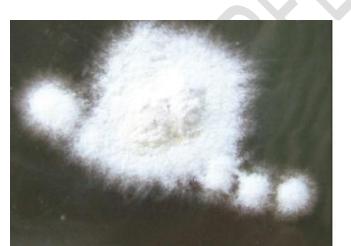

- 98 Dermatophytosis diagnosis is based on the clinical signs however in order to confirm the
- 99 diagnosis culturing and direct microscopic examination of skin scrapings from the periphery of
- the lesions should be indicated [33].

101 **Collection of samples:**

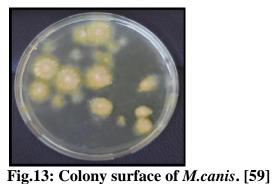
- 102 Skin scraping samples from the cattle that were suspected to be infected with dermatophytes will
- 103 be collected on the basis of gross lesion on their body. After cleaning with ethyl alcohol
- 104 70%.hair and scrapings samples should be collected with forceps or scalpel just behind the
- 105 extending margin in the infected area. Samples can be kept in polyethylene bags [25].
- 106

107 Direct examination:

- 108 Each Sample from infected camel should be divided into two portions, one portion for direct
- 109 microscopic examination and the other for culture. Fungal hyphae and/or ectothrix spores are
- 110 determined to be seen in the direct examination when they appear to make hairs or hair
- 111 fragments thicker and rough with irregular surface.
- 112 Potassium Hydroxide (KOH) 10 or 20% is used as a clearing agent because it has keratinolytic
- activity [34-36]. Infected hairs appear pale, wide and filamentous compared with normal hairs
- 114 when examined at x4 or x10 magnification, appearing. Arthrospores can be visible on high
- 115 magnification (x40).(fig.10)
- 116
- 117

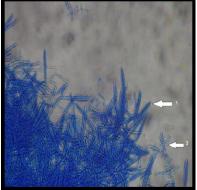

- 118
- Fig.10: KOH preparation showing hair surrounded with chain of large ectothrix spores
 X400[58]
- 121

- 122 Fungal culture:
- 124 Fungal culture is considered the 'gold standard' for diagnosis [37]. Sabouraud's dextrose agar
- 125 (SDA) containing cycloheximide, penicillin and streptomycin were used in most diagnostic
- 126 laboratories. Plates should be incubated at 25°C for 5 weeks. Dermatophytes test media (DTM) is

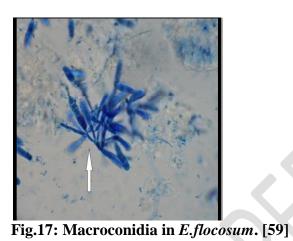

- 127 recommended as the best media for isolation of dermatophytes because the presence of the red
- 128 color indicated positive result, this can help in early identification of highly suspected cultures
- [38]. The isolates should be examined macroscopically and microscopically after staining with
- 130 lactophenol cotton blue using wet mount technique [39].(fig.11-20)
- 131 In addition to technique steps mentioned above, pigment production on corn meal agar, urease
- activity on urea agar base, growth at 37°C on SDA.(fig.21)
- 133

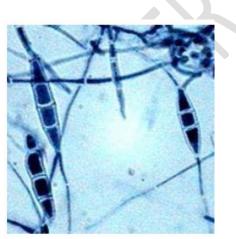
- 135 Fig.11: Colony of *T. verrucosum* on the modified SDA. [55]
- 136

- 137
- 138 Fig.12: Colony *T. mentagrophytes*: surface of colony show powder-like shape, white, loose
- 139 irregular mycelium on the edge. [58]
- 140
- 141
- 142

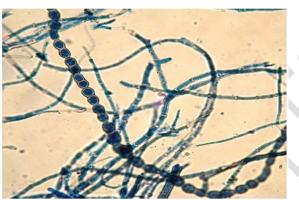


148


Fig.14: Colony of Microsporum gypseum. [60]



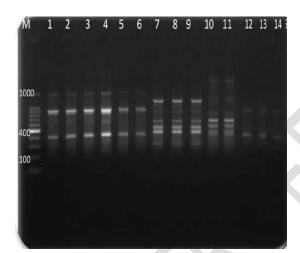
150
151 Fig.15: Colony surface of *E.flocosum*[59]



4 Fig.18: *Microsporum canis* microscopic observation in lactophenol cotton blue [61]

- Fig.19: Microsporum gypseum microscopic observation in lactophenol cotton blue [60]

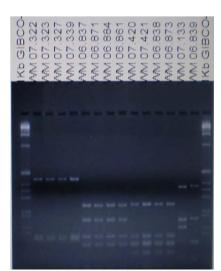
- Fig.20: Microscopic appearance of *T. verrucosum*.[52]



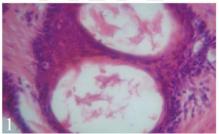
- Fig.21: Growth of *T.mentogrophytes* on urea agar after 4 days showing hydrolysis of the
- **urea.[62]**

177 Molecular diagnosis:

- 178
- 179 Diagnosis with conventional methods is time-consuming because it might take up to 4 weeks or
- 180 longer to give the final results [40]. Furthermore, morphological identification may be confusing
- due to polymorphism of dermatophytes [41]. During the last decade, a wide variety of molecular
- techniques has become available as possible alternatives for routine identification of fungi in
- 183 clinical microbiology laboratories [42, 43].
- 184 Molecular identification for *Trichophyton* species isolated from camel skin lesions was done
- using (GACA) 4 all the strains were amplified simply resulting PCR bands ranged from 2-5.
- 186 Three profiles of *Trichophyton mentagrophytes* have been detected so *T.mentagrophytes* is
- 187 known to be a species complex [44].(fig.22)

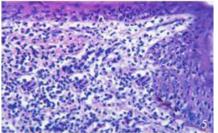

189

- 190 Fig.22: Agarose gel electrophoresis for PCR using (GACA)4. M, molecular weight marker.
- 191 Lanes (1-6) first profile of *T.mentagrophytes* Lanes (7-9) second profile of *T.mentagrophytes*.
- 192 Lanes (10&11) third profile of *T. mentagrophytes* Lanes (12-14) *T.verrucosum*. [44]

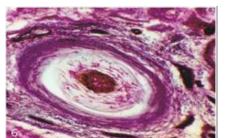

193 *Trichophyton* species isolated from camel and human were identified using restriction fragment

194 length polymorphism (RFLP), *Mva*1 was used as restriction enzyme. Five different patterns

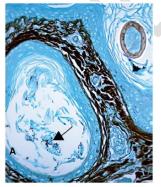
- 195 of two to four bands were obtained. None of these different species gave the same profile pattern
- 196 [45]. (fig.23)



- 198 Fig.23: RFLP profiles of *Trichophyton* spp isolates. WM 07.322, WM 07.323, WM 07.327,
- 199 WM 07.339 were T.mentagrophytes var mentagrophytes, WM06.837, WM 06.871, WM
- 200 06.884, WM 06.861 were T.mentagrophytes var interdigitale, WM 07.420, WM07.421, WM
- 201 06.838, WM 06.873 were T.tonsurans, WM 07.133 T.mentagrophytes var erinacei and WM
- 202 **06.839** was *T.rubrum*.[45]
- 203
- 204 Skin biopsy:
- 205 Specimens from infected skin should be taken and fixed in 10% formaline solution then
- 206 dehydrated, cleared and embedded in paraffin wax, sectioned at 4 µm thickness should be stained
- by haematoxylin and eosin for microscopical examination [46]. haematoxylin and eosin staining
- 208 (H&E) may or may not identify dermatophytes and special stains such as periodic acid Schiff
- 209 (PAS) and Grocott methenamine silver (GMS) are needed.
- 210 Microscopically, the hair follicles and sweat glands exhibited cystic dilatation (fig. 24) and were
- 211 lined by atrophied epithelium.


- Fig.24: Ring worm in camels, noticed destructed hair shaft, perifollculitis and cystic
- dilatation of the hair follicles (H&E X650). [46]

- Occasionally, perivascular dermatitis, and intra-epidermal pustules characterized by focal
- aggregation of neutrophils mixed with eosinophil and karyrrhectic debris were reported (fig. 25).


- Fig.25: Ring worm in camels, noticed intra epidermal pustules and acanthosis (H&E X400). [46]

- The branched fungal hyphae were seen when sections stained with PAS (fig.26)

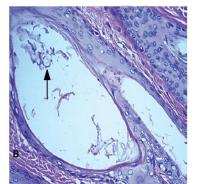


Fig.26: Ring worm in camels, noticed tricophyton hyphae positive for PAS-reaction (H&E X400). [46]

- The surface as well as intrafollicular hairs was colonised by large numbers of refractile or
- slightly basophilic arthrospores and hyphae. These were coloured bright magenta with periodic
- acid-Schiff stain and black with Gomori's methenamine silver stain. The Keratin-filled follicles
- ruptured leading to prominent furunculosis [22]. (fig.27,28)

- Fig.27: Refractile arthrospores and hyphae appear: bright magenta with Periodic Acid-
- Schiff stain [22].

Fig.28: Refractile arthrospores and hyphae appear black with Gomori's Methenamine Silver stain [22].

239

240 **Treatment:**

- 241 Optimal therapy of dermatophytosis requires a combination of topical antifungal therapy,
- 242 concurrent systemic antifungal therapy and environmental decontamination. The treatment
- should be continued until two consecutive negative cultures (at weekly or bi-weekly intervals)
- are obtained [47]. Topical treatments speed resolution of clinical lesions and may help prevent
- 245 zoonotic contagion. Systemic therapies that have prolonged residual activity in the skin and hair
- 246 provide the most effective treatments.

247 **Topical Therapy:**

- 248 1- 2% solution of tincture iodine [23].
- 249 2- 10% iodine ointment daily for three weeks [48].
- 250 3- Enilconazole Wash or spray with diluted emulsion (2000 ppm) four times at 3–4-day
 251 intervals [49].
- 252
- 253

255

256

254 Systemic Therapy:

1- Griseofulvin10 mg/kg body weight for 7 days in mild infections; in severe cases 2–3 weeks [49].

257 Environmental decontamination:

- Dermatophytes can remain viable in infected soil for many years [50-52], so 10% hypochlorite solution can be used as disinfectant [53].
- 260
- 261
- ____
- 262

263	Vaccination:
264	Live attenuated vaccine is used for prophylaxis and therapy for dermatophytosis caused by
265	T.verrucosum and T.mentagrophytes every five years [54].
266 267	Conclusion:
268	Dermatophytoses are the most common fungal infections in camels. Many studies were done
269	considering different aspects of the disease (eg. epidemiology, clinical presentation and
270	diagnosis, treatment, prevention, and control).Infected camel with dermatphytes can be a source
271	of infection to human this can lead to public health problem.
272 273 274	References: 1- Agab H. Epidemiology of camel diseases in eastern Sudan with emphasis on brucellosis,
275	1993;M.V.Sc Thesis University of Khartoum. Khartoum, Sudan.
276	2- Abbas B, Saint-Martin G, Planchenauct D. Constraints to camel production in eastern
277	Sudan: a survey of pastoralists conception. Sudan J of Vet Sci and Anim Husb. 1993;32
278	(1):31–41.
279	3- Zaki R. Brucella infection among ewes, camels and pigs in Egypt. J of Comparative
280	Pathol; 1984 58:145–51.
281	
282	4- Dalling T, Robertson A, Boddie G, Spruell J. Diseases of camels. In: The International
283	Encyclopedia of Veterinary Medicine. Edinburgh, U.K.; W. Green and Son. 1988; 585.
284	5- Wilson RT. The Camel. Longman, New York, ISBN 0-582-77512-4.1984
285	6- Abbas B, Tilley P. Pastoral management for protecting ecological balance in Halaib
286	District, Red Sea Province, Sudan. Nomadic Peoples. 1990; 29: 77–86.
287	7- Abbas B, Agab H. A review of camel brucellosis. Preventive Vet Med; 2002;55:47–56
288	8- Rajpal PS, Gill GS, Mohan MH, Thami TG. Tinea capitis due to <i>Trichophyton</i> <i>verrucosum</i> . Indian J. Dermatol.2005; 50: 42-43.
289	9- Ming PX, Ti YL, Bulmer GS. Outbreak of <i>Trichophyton vertucosum</i> in China
290	transmitted from cows to humans. Mycopathol. 2006; 161: 225-28.
291	
292	10-Wernery U, Kaaden, O R. Infectious Diseases of Camelids. Blackwell Science, Parlin 2002
293 294	Berlin,2002 11-Wisal AG, Salim MO. Isolation and identification of Dermatophytes from infected
295	Camels. Sudan J Vet Res.2010; 25:49–53.

296	12- Kuttin ES, Alhanaty E, Feldman M, Chaimovits M, Müller J. Dermatophytosis of camels.
297	J Med Vet Mycol. 1986; 24:341–44.
298	13- Mahmoud AL. Dermatophytes and other associated fungi isolated from ringworm lesions
299	of camels. Folia Microbiol(Praha). 1993;38:505–08.
300	14-Fadlelmula A, Agab H, Le Horgne JM, Abbas B, Abdalla AE. First isolation of
301	Trichophyton verrucosum as the aetiology of ringworm in the Sudanese camels (Camelus
302	dromedarius). Revue d, Elevage Et De Medicine Veterinaire Des Pays Tropicaux. 1994;
303	47:184–87.
304	15-Gitao CG, Agab H, Khalifalla AG. An outbreak of a mixed infection of Dermatophilus
305	congolensis and Microsporum gypseum in camels (Camelus dromedaríus) in Saudi
306	Arabia Revue Scientifique Et Technique De L'Office International Des Epizooties. 1998;
307	17:749–55.
308	16- Al-Rubiay KK. Dermatoepidemiology: A household survey among two urban areas in
309	Basra city, Iraq. Int J Dermatol. 2006; 4:1-4
310	17-Tuteja F C, Dahiya SS, Narnaware SD. Prevalence of bacterial and fungal diseases in
311	dromedary camels in the Rajsthan state of India. Vet Practitioner. 2015; 16 (1):28-32.
312	18- Smith BP. Large animal internal medicine. Diseases of horse, cattle, sheep and goats. 4th
313	ed. St. Louis (MO): Mosby-Elsevier. 2002.
314	19- Cafarchia C, Figueredo LA, Otranto D. Fungal diseases of horses. Vet Microbiol. 2013;
315	167:215–34.
316	20- Chermette R, Ferreiro L. Guillot J. Dermatophytoses in Animals. Mycopathol. 2008;
317	166:385-405.
318	21- Abdurahman SH O, Bornstain S. Diseases of camel (Camelus dromedaries) in Somalia
319	and prospects for better health. Nomadic people. 1991;29:104-12
320	22- Al-Salihi KA, AbdHatem A, Ekman E. Pathological studies of mixed dermatomycosis
321	and mange infection in camels accompanied with chronic granulomatous hidradenitis. J
322	of Camel Pract and Res. 2014; 20 (2):1-7.
323	23-Pal M, Lee CW. Trichophyton verrucosum infection in a camel and its handler. Korean J
324	of Vet Clinical Med. 2000; 17: 293-294.

325 24- Ghoke S, Jadhav KM, Pal M. Dermatophytosis in Indian dromendary (*Camelus* 326 dromendarius) caused by Trichophyton verrucosum. J of Camel Pract and Res. 2006; 13: 327 59-60. 25- Pal M. First mycological investigation of dermatophytosis in camels due to Trichophyton 328 verrucosum in Ethiopia J. Mycopathol. Res. 2016; 54(1): 89-92. 329 26- Al-Rawashed OF, Al-Ani FK, Sharrif IA, Al-Qudah KM, Al-Hami Y, Frank N. A survey 330 331 of camel (Camelus dromedaries) diseases in Jordon.J Zoo Wild Med. 2000;31(3):335-8. 27- Chatterjee A, Chakraborty P, Chattopadhyay D, Sengupta DW. Isolation of Trichophyton 332 schoenleinii from a camel. Indian J Anim Hlth.1978; 17: 79-81. 333 28- Al-Ani FK., Bassam LS, Al-Salhi KA. Epidemiological study of dermatophytosis due to 334 Trichophyton schoenleinii in camels in Iraq Bull Anim Hlth Prod Afr. 1995;43: 87-92. 335 336 29- Tuteja Fa C, Patil NV, Narnaware S D, Dahiya SS. Camel dermal mycoses caused by 337 dermatophytes. J of Camel Pract and Res. 2013; 20 (2):157-65. 338 30-Boever WJ, Rush DM. *Microsporum gypseum* infection in a dromedary camel. Vet Med 339 340 Small Anim Clin. 1975; 70(10):1190-2. 31- Mancianti F, Papini R Cavicchio P Dermatophytosis by Microsporum gypseum in a 341 camel (Camelus bactrianus)]. Annali della Facolta di Medicina Veterinaria di Pisa. 342 1988;42: 233-37. 343 344 32- Tuteja Fa C, Patil NV, Narnaware SD, Govindasamy N. Primarily human pathogenic fungi causing dermatophytosis in camel. J of Camel Pract and Res. 2013; 20(2): 151-55 345 346 33-Markus R, Huzaira M, Anderson R, et al. A better potassium hydroxide preparation? In vivo diagnosis of tinea with confocal microscopy. Arch Dermatol. 2001;137(8): 1076-8. 347 348 34-Lacaz CS, Porto E, Martins JEC, Heins- Vaccari EM, Melo TN. Tratado de Micologia Médica, 9th ed. Prefácio: Bertrand Dupont. São Paulo: Sarvier. 2002;44(5):297-298 349 350 35- Sidirm J. Micologia médica à luz de autores contemporâneos. Rio de Janeiro: Guanabara Koogan; 2004. 351 352 36-Pérez J, Carrasco L. Diagnóstico histopatológico de micosisenpatología veterinária. 353 Revista Iberoamericana de Micologia. 2000;17:18-22. 37- Moriello KA. Diagnostic techniques for dermatophytosis. ClinTechniques in Small Anim 354 355 Pract. 2001;16:219–24

356	38-Moriello K. Feline dermatophytosis Aspects pertinent to disease management in single
357	and multiple cat situations. J of Feline Medicine and Surgery. 2014;16: 419–31.
358	39- Ilhana Z, Karacab M, Ismail Hakki Ekina IH, Solmazc H, Akkanb AH, Tutuncud M.
359	Detection of seasonal asymptomatic dermatophytes in Van cats. Brazilian J of Microbial.
360	2016;47:225–30.
361	40- Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8:240-59.
362	41- Gupta AK, Ryder JE, Summerbell RC. Onychomycosis: Classification and diagnosis. J
363	Drugs Dermatol. 2004;3:51–56.
364	42- Arabatzis M, Xylouri E, Frangiadaki I, Tzimogianni A, Milioni A, Arsenis G, Velegraki
365	A. Rapid detection of Arthroderma vanbreuseghemii in rabbit skin specimens by PCR-
366	RFLP. Vet Dermatol. 2006;17:322–26.
367	43- Arabatzis M, Bruijnesteijn van Coppenraet LE, Kuijper EJ, de Hoog GS, Lavrijsen AP,
368	Templeton K, van der Raaij-Helmer EM, Velegraki A, Graser Y, Summerbell RC.
369	Diagnosis of common dermatophyte infections by a novel multiplex real-time polymerase
370	chain reaction detection identification scheme. Br J Dermatol. 2007; 157:681-89.
371	44-Enany, M. E., khafagy, A. R., Madiha S. Ibrahim1, Marwa M. Azab and ² Dalia T.
372	Hamad1 Identification of dermatophytes isolated from ringworm lesions of camels.
373	SCVMJ, XVIII (1) 2013:1-12
374	45-Wisal GA, Meyer W, Salim MO. Molecular Identification of Trichophyton Spp. by PCR-
375	RFLP. Sudan J Vet Res. 2017; 32: 31–33
376	
377	46- Abo El Foutah E, Abd El Wahab G, Mekawyb S, Abdalla M S. Some pathological and
378	mycological studies on ringworm in camels a locality in Sharkia governorate. Benha Vet
379	Med J. 2012; 23(1): 26-33
380	47 Chargeste D. Familie I. Cuillet I. Democraphyteses in animals. Museusthal
381	47- Chermette R, Ferreiro L, Guillot J. Dermatophytoses in animals. Mycopathol.
382	2008;166:385-405.
383	48- Almuzaini A M,. Osman SA, Saeed EMA. An outbreak of dermatophytosis in camels
384	(<i>Camelus dromedaríus</i>) at Qassim Region, Central of Saudi Arabia, J of Applied Anim
385	Res.2016; 44(1): 126–29
386	49-Rochette F, Engelen M, Bossche V. Antifungal agents of use in animal health - Practical
387	applications J Vet Pharmacol. Therap. 2003; 26:31–53.

388	50-Haggag Y, Draz A, Samaha H. Soil as a reservoir of certain dermatophytes and other
389	fungi to man and animals. Alexandria J Vet Sci. 1999; 15:1–9.
390	51-Nashwa KO. Zoonotic aspect of Trichophyton mentagrophytes in rabbit farms. Beni-Suef
391	Vet Med J.2001; 11:49–56.
392	52-Efuntoye MO, Fashanu SO. Fungi isolated from skins and pens of healthy animals in
393	Nigeria. Mycopathol. 2002; 153:21–23.
394	53-Rycroft AN, McLay C. Disinfection in the control of small animal ringworm due to
395	Microsporum canis. Vet Rec. 1991;129: 239–241.
396	54- Ovchinnikov R, Manoyan M, Panin NA. Vaccines against dermatophytosis in animals.
397	Russian expirience. 2014.1-33 DOI: 10.13140/2.1.3053.9205
398	55- Hussain MH. Survey on Dermatophytosis in Iraqi camels. Msc Al-Qadissiya Univ.
399	56- KISA J Z. Clinical and pathological investigations on camel skin diseases in some camel
400	rich districts of Northern Kenyan. ENYAN. MSc in clinical studies university of Nairobi.
401	1992
402	57-El-Ged AM, Khalid AM, Abd El-Tawab AA, Abd El-Baset E. A rapid biological
403	molecular method for identification and differentiation between T. equinum isolated from
404	dermatophytic horses. Benha Vet Med J. 2011; I:70-75
405	58-Zeng X, Zheng Q, Chi X. A case of Trichophyton mentagrophytes infection in rabbits
406	accompanied by farm staff infection in China. KafKas Univ Vet Fak Derg. 2017;
407	23(3):497-501.
408	59- Habeb KA, Maikhan HK,. Rachid SK. Molecular identification of dermatophytes among
409	clinical isolates. Asian J of Natural and Applied Sci.2016; 5(2):108-18
410	60- Mattei AS, Beber MA, Madrid IM. Dermatophytosis in small animals. Microbiol Infect
411	Dis. 2014; 2(3):1-6.
412 413	61- Sánchez TAC, Perla García PAE, Cristian Ismael López Zamora CIL, Martínez MA,
414	Valencia VP, Orozco AL. Use of Propolis for topical treatment of dermatophytosis in
415	Dog. Open J of Vet Med. 2014; 4: 239-245.
416	62-Issa NA, Zandana IK. Isolation of Trichophyton mentogrophytes var mentogrophytes
417	from naturally infected laboratory albino rats: Experimental infection and treatment in
418	rabbits. Iraqi J of Vet Sciences. 2009; 23:29-34.
	-