1	Original Research Article
2	
3	A Novel Stress Indicating RP-HPLC Method Development and
4	Validation for the Simultaneous Estimation of Velpatasvir and
5	Sofosbuvir in bulk and its Tablet Dosage Form
6	
7	Abstract
, 8	Aim: The objective of the study was simplest, accurate, precise and robust reversed phase high
9	performance chromatographic (RP-HPLC) method was developed for the estimation of
10	Velpatasvir (VEL) and Sofosbuvir (SOF) in the bulk and its tablet dosage form.
11	Study Design: The Quantitative and Qualitative estimation and designed forced degradation
12	study of Velpatasvir & Sofosbuvir by RP-HPLC.
13	Place and Duration of Study: The study was carried at Santhiram College of Pharmacy and time
14	taken 4 months.
15	Method : The method was attained by used Waters(5µ, C18 250 x 2.6 mm) column with
16	mobile phase consists of 0.5 mM disodium hydrogen phosphate buffer pH adjusted to 6.5, with
17	Ortho phosphoric acid and Methanol in the ratio of 78:22 v/v, a flow rate of 1.0 mL/min and
18	ultraviolet detection at 258 nm.
19	Results: The method was validated as per ICH guidelines with different parameters, the mean
20	retention times of VEL and SOF were found to be 2.8 & 4.7 min respectively. The resolution
21	between VEL and SOF was found to be 10.66. The Correlation coefficients for calibration curves
22	within the detection range of 32.5 - 97.5 and 125 - 375 $\hat{A}\mu g/mL$ were 0.999 for VEL and SOF
23	respectively. The LOD and LOQ for VEL and SOF were found to be 0.0068-0.104 ŵg/mL and
24	0.029-0.342 µg/mL respectively.
25	Conclusion: The results were indicated that the developed method was used for the routine
26	analysis of VEL & SOF combined form in bulk and its commercial formulation. To the best of
27	our knowledge there was no method on RP-HPLC for the determination of VEL alone or in
28	combination with SOF molecule.
29	Konsente Valuataguin Safashuvin UDI C. commonial formulations
30	Keywords:- Velpatasvir, Sofosbuvir, HPLC, commercial formulations.
31 32	1. Introduction
32 33	
33 34	Hepatitis C virus (HCV) infection is a major public health challenge now a days. It has been
35	estimated that the global prevalence of HCV infection is around 2%, with 170 million persons
36	chronically infected with the virus and 3 to 4 million persons newly infected each year. 1,2
37	It is a pathogen that is already responsible for a significant proportion of liver disease in various
38	regions of India. ³

- Velpatasvir (VEL) is a novel HCV nonstructural Protein 5A (NS5A) inhibitor that was 39 40
- developed in combination with other drugs, which are directly acting antiviral for the treatment of HCV infections.⁴ The IUPAC name for velpatasvir is Methyl $\{(1R)-2-((2S,4S)-2-(5-\{2-(2S,4S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-(5-(2S,5S)-2-($ 41
- ((2S,5S) -1-{(2S)-2 -((methoxycarbonyl) amino)-3- methyl butanoyl} -5-methyl pyrrolidin-2-yl)-1,11 dihydro(2) benzopyrano (4',3':6,7) naphtha (1,2-d) imidazol-9-yl}-1H –imidazol -2-yl) -4-42
- 43

44 (methoxy methyl) pyrrolidin-1-yl)-2-oxo-1-phenylethyl} carbamate. It is a white to off-white 45 powder, slightly soluble in water. It has a molecular formula of $C_{49}H_{54}N_8O_8$.⁵

Sofosbuvir SOF is a nucleotide pro-drug that effectively inhibits 1-6 HCV RNA replicons in vitro and has proved to have a high sustained virologic response (SVR) rates.^{5,6} Sofosbuvir is a

48 prodrug of 2'-deoxy-2'-fluoro-2'-C-methyluridine mono phosphate that is phosphorylated intra

49 cellularly to the active triphosphate form.⁷ Chemically it is (S)-Isopropyl 2-((S)-

50 (((2R,3R,4R,5R)-5- (2,4- dioxo- 3,4-di hydro pyrimidin-1 (2H)-yl) -4- fluoro-3- hydroxy-4-

- 51 methyl tetrahydrofuran-2-yl)methoxy)(phenoxy)phosphorylamino)propanoate. It is a white to
- 52 off-white crystalline powder, found to be slightly soluble in water and freely soluble in alcohol
- and acetone. It has a molecular formula of $C_{22}H_{29}FN_3O_9P$.⁸ Chemical structures of VEL and SOF
- 54 were shown in figure 1 and 2 respectively.
- 55

56

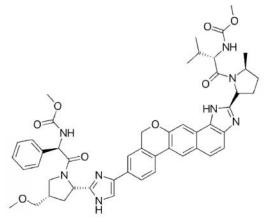
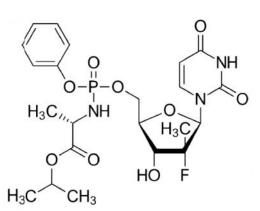



Figure 1: Chemical structure of velpatasvir

- 61
- 62
- 63 64

Figure 2: Chemical structure of Sofosbuvir

The combined dosage form (Tablet – Velpanat, Natco Pharma) consists of 100 mg of VEL and
 400 mg of SOF was indicated for the treatment of chronic hepatitis C virus (HCV) infection in
 adults.^{4, 6} LC-MS/MS method has been reported for the estimation of SOF with Ledipasvir in

human plasma.⁹ Two UPLC-MS/MS methods have been reported for determination of SOF¹⁰
 and in combination of Ledipasvir (11,12) in human plasma for determination of bioequivalence
 studies. Few RP-HPLC methods has been reported for the estimation of SOF alone ^{12, 13} or with
 combination of other drugs like Ledipasvir ^{14, 15} and Simeprevir used in the combination for the
 treatment of HCV infection.¹⁶

73

74 **2. EXPERIMENTAL**

75 2.1 Reagents

All the chemicals and reagents were of analytical grade. Water was redistilled and filtered with a
membrane filter. Methanol – HPLC grade (Merck, India), Ortho phosphoric acid and disodium
hydrogen phosphate (SD finechem, India) were used to prepare mobile phase. Pharmaceutical
grade standard drugs viz., Velpatasvir and Sofosbuvir were kindly gifted by Natco Pharma Ltd,
Hyderabad, India. The combined tablet formulation contains 100 mg of Velpatasvir and 400mg
of Sofosbuvir (Velpanat, Natco) purchased from local market of Nellore.

82 **2.2** Chromatographic Conditions

The method was developed by using HPLC system consisted of a LC Waters (Waters, Milford, 83 MA, USA) using a Water's C₁₈ 250 x 4.6 mm, 5µ column, a quaternary gradient system (600 84 Controller), in line degasser (Waters, model AF). The system was equipped with a photodiode 85 array detector (Water, 2998 model) and auto sampler (Waters, model 717 plus). Data was 86 processed using Empower Pro software (Waters, Milford, MA, USA). The Isocratic mobile 87 phase consist of a mixture of 0.5 mM disodium hydrogen phosphate buffer pH adjusted to 6.5, 88 with Ortho phosphoric acid and Methanol in the ratio of 78:22% v/v was used throughout the 89 analysis. The mobile phase was pumped at a flow rate of 1.0 mL/min. UV detection wavelength 90 91 for analytes was 285 nm. Column temperature was kept ambient and injection volume was 10µL.

92

93 **2.3 Solution Preparation**

94 2.3.1 Standard stock solution preparation

95 10 mg of VEL and SOF each was weighed accurately and transferred to individual 10 ml 96 volumetric flasks. Dissolved and diluted with methanol to get a concentration of $1000 \,\mu$ g/ml.

97 2.3.2 Working standard Solution

98 1.625 mL of VEL and 6.25 mL of SOF standard stock solutions were accurately measured and 99 transferred to a 25 mL volumetric flask, mixed well and diluted to final volume with diluent, so 100 as get the final concentrations of 65 μ g/mL of VEL and 250 μ g/mL of SOF.

101 **2.3.3** Sample solution preparation (Assay)

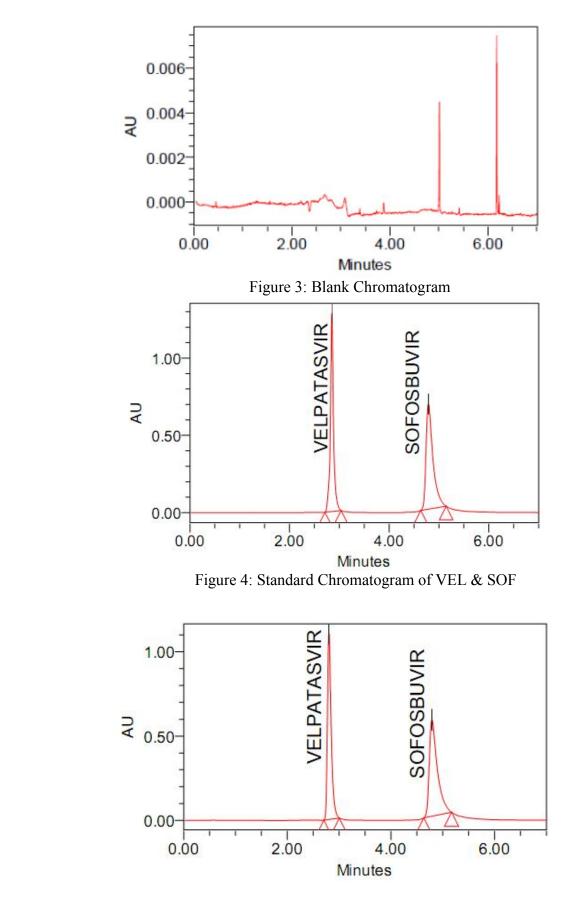
- 102 Twenty tablets were weighed and finely powdered. The average weight of tablets was
- determined. A portion of powder equivalent to 98.96 mg of VEL was weighed and transferred to
- a 10 mL volumetric flask. 10 mL of methanol was added to disintegrate tablets completely by
- using ultra sonicated for 10 min.
- 106 **2.3.4 Working sample solution**

107 1.625 mL was further diluted to get final concentrations of 65 μ g/mL of VEL and 250 μ g/mL of 108 SOF. This solution was filtered through 0.45 μ m membrane filter. The 10 μ L of this solution was 109 injected in to HPLC system.

110

111 **2.4 Method Validation**

112


The method was validated according to ICH guidelines for the estimation of velpatasvir and 113 sofosbuvir. The following validation parameters are enveloped precision, accuracy, linearity, 114 limit of detection & limit of quantification, robustness and force degradation studies. The 115 standard solution was prepared at six concentrations ranging from 32.5- 97.5µg/mL for VEL and 116 125-375 µg/mL for SOF solutions were prepared for linearity. The reggration of the curve was 117 obtained by peak area vs concentration. The method sensitivity was measured by limit of 118 detection and limit of quantification. The limit of detection and limit of quantification were 119 determined by signal to noise ratio 3:1& 10:1. The precision of the method was assessed by 120 measured six times standard solution of VEL & SOF and measured the area of all six injections 121 in the HPLC chromatographic system. The accuracy of the method was determined by standard 122 addition and recovery method. The accuracy of the method was evaluated in triplicate at three 123 concentration levels, i.e. 50%, 100% and 150% of target test concentration and the percentages 124 of recoveries were calculated. The robustness of the method was manifested by deliberate 125 126 changes in experimental conditions. The changes made in the chromatographic conditions like flow rate by ± 0.1 mL/min, mobile phase composition change ± 3 and the column temperature ± 5 127 °C. The drugs were subjected to different stress conditions like acid (refluxed 0.1N HCL for 1 hr 128 at 80°C), base (refluxed 0.1N NaOH for 4 hrs at 80°C), H₂O₂(stored 3% H₂O₂ room temp for 2 129 hrs) light and water near UV \geq 200 FOR 10 days) forced degradation studies were conducted on 130

131 the VEL & SOF.

132 **3. RESULTS AND DISCUSSION**

133 **3.1 Method development and optimization of chromatographic conditions**

During the optimization of the method, different columns (Inertsil C8, 250 mm×4.6 mm, 5 µm; 134 Zorbax C18 250 mm×4.6 mm, 5 µm; Symmetry C18 250 mm×4.6 mm, 5 µm) and two organic 135 solvents (acetonitrile and methanol) were tested. The chromatographic conditions were also 136 optimized by using different buffers like phosphate, acetate and citrate for mobile phase 137 preparation. After a series of screening experiments, it was concluded that phosphate buffers 138 gave better peak shapes than their acetate and citrate counterparts. With acetonitrile as solvent 139 both the peaks shows less theoretical plates and more retention time compared to methanol. The 140 chromatographic separation was achieved on a Waters C18, 250 mm×4.6 mm, 5µm column, by 141 using a mixture of 0.5 mM disodium hydrogen phosphate buffer pH adjusted to 6.5, with Ortho 142 phosphoric acid and Methanol in the ratio of 78:22 v/v, as mobile phase. Temperature was 143 maintained ambient to facilitate mass exchange with the corresponding decrease of peak 144 broadening and increase in sensibility. The flow rate kept was 1.0 mL/min to achieve adequate 145 retention time of two peaks 2.80 min and 4.78 for VLE and SOF respectively. Figure 3, 4 and 5 146 shows blank, standard and sample chromatograms. The Table1 shows the optimized 147 148 chromatographic conditions.

Figure 5: Sample Chromatogram of VEL & SOF

156 157

158 Table 1: Optimized HPLC conditions for simultaneous estimation of Velpatasvir and Sofosbuvir

159

S. No	Parameter	Description/Value
1.	Stationary Phase	Water's C18 (250X4.6X5)
2	Mobile Phase	0.5 mM Disodium Phosphate buffer (pH 6.5, adjusted with OPA) and MeOH in the ratio of 78:22 v/v
3	Flow rate	1 mL/min
4	Detection Wavelength (Isosbestic Point)	285nm
5	Detector	Photo diode array
6	Injection	Autosampler -Waters, model 717 plus
7	Injection volume	10 µl
8	Column Temperature	Ambient
9	Run time	6 mins
10	Diluent	Methanol
11	Rt's	Velpatasvir: 2.806 min Sofosbuvir: 4.780 min

160

161 **3.2 Method validation**

When a method has been optimized it must be validated before practical use. By following ICH guidelines for analytical method validation, Q2 (R1), the validation characteristics were

164 addressed.¹⁷

165 **3.3 System Suitability**

166 The system suitability test ensures the validity of the analytical procedure as well as confirms the 167 resolution between different peaks of interest. All critical parameters tested met the acceptance

167 resolution between different peaks of interest. An efficial parameters tested met the acceptance 168 criteria on all days. As shown in the chromatograms (figure 4 & 5), two analytes were eluted by

forming symmetrical single peaks well separated from each other and from excipients. Table 2

- 170 shows the System Suitability results.
- 171

Table 2:	System suit	tability results

S.No	Parameters	Res	Limits	
5.110	1 al ameter 5	Velpatasvir	Sofosbuvir	Linnes
1	RSD of peak area	0.20	0.86	$< 2 n \ge 6$
2	Retention times	2.849	4.786	-
3	RSD of retention time	0.56	0.89	<2 $n \ge 5$
4	USP plate count	13196	6255	>2000
5	USP tailing factor	1.06	1.75	T<2
6	USP resolution	-	10.66	R >2

172

173 **3.4 Linearity**

174 For the construction of calibration curves, five calibration standard solutions were prepared over

the concentration range of $32.5 - 97.5 \ \mu g/ml$ for VEL and $125.0 - 375 \ \mu g/mL$ for SOF. The

results, summarized in Table 3, showed a good correlation between analytes peak area and concentration with r > 0.999 (n = 5). Linearity curve was shown in figure 6 and 7.

Table 3: Linearity results of VEL & SOF

	Linearity	Velpata	svir	Sofosbuvir		
S. No	Level	Concentration (µg/mL)	Peak Area	Concentration (µg/mL)	Peak Area	
1	50	32.5	2813066	125	3077228	
2	75	48.75	4253268	187.5	4629475	
3	100	65	5613521	250	6143585	
4	125	81.25	7052657	312.5 7688		
5	150	97.5	8406053	375 92851		
Slope		86064		24759		
Intercept		33568		25128		
	R ²	0.999	9	0.9999		

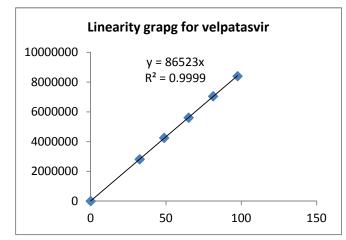
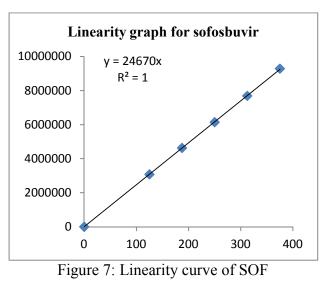



Figure 6: Linearity curve of VEL

195 **3.5 Precision**

The assay was investigated with respect to repeatability and inter-day precision. The repeatability of the system (while keeping the operating conditions identical) was examined by injecting analyte solution with 6 replicate injections. The RSD values varied from 0.47 to 0.86% Showed, that the inter-day precision of the method was satisfactory. Table 4 shows the precision results.

201

Table 4: Results of Method Precision

S. No	Velpata	asvir	Sofosbuvir		
5. NO	Peak Area	% Assay	Peak Area	% Assay	
1	5516391	100.55	6556728	100.84	
2	5518106	100.58	6531198	100.44	
3	5518136	100.58	6475888	99.59	
4	5555471	101.26	6429678	98.88	
5	5565122	101.43	6412642	98.62	
6	5570645	101.53	6481227	99.67	
Average	5540645.17	100.99	6481226.83	99.67	
SD	25775.38	0.47	55834.05	0.86	
%RSD	0.47	0.47	0.86	0.86	

202

203 **3.6 Accuracy**

To govern the accuracy of the proposed method, recovery studies has been performed, known amount of pure drug sample solution at three different concentration levels, ie, 50%,100%,150% was calculated. Accuracy was calculated as percentage of recovery. The accuracy results tabulated as 5.

- 208
- 209

Table 5: Accuracy results of VEL & SOF

Parameters	Peak Area	Amount added(µg)	Amount recovered (μg)	% of recovery	% mean recovery
Velpatasvir					
50%	2807301	32.33	32.58	100.79	100.79
100%	5644767	64.66	65.52	101.33	101.33
150%	8332433	96.99	97.26	99.72	99.72
Sofosbuvir	· ·				
50%	276869	32.33	32.14	99.41	99.41
100%	5548876	64.66	64.41	99.61	99.61
150%	8506216	96.99	98.74	101.80	101.80

210

211 **3.7** Limit of detection (LOD) and Limit of quantification (LOQ)

212 The Limit of detection and limit of quantification were considered as the signal- to- noise ratio

213 3:1 and 10:1 respectively. The limit of detection and limit of quantitation to be determined

 $0.0068 \mu g/ml \& 0.029 \mu g/ml$ for VEL and $0.104 \mu g/ml \& 0.347 \mu g/ml$ for SOF respectively.

215 **3.8 Robustness**

The robustness of the method was unaffected when small, deliberate changes like, flow rate change, mobile phase composition, column temperature were performed at 100% test

218 concentration. The method was found to be robust for the said conditions. Results were tabulated

219 in table 6.

220

221

	Table 6: Results of Robustness							
S. No		Condition		Velpatasvir		Sofosbuvir		
5.110	Parameter	Condition	RT	Peak Area	% Assay	RT	Peak Area	% Assay
1	_	0.8 ml/min	3.52	5476665	99.82	5.90	6564947	100.96
2	Flow	1 ml/min	2.85	5570645	101.53	4.79	6481226	99.67
3		1.2 ml/min	2.39	5526688	100.73	4.04	6410579	98.59
4		25 °C	2.85	5498542	100.22	4.80	6647497	102.23
5	Temp	30 °C	2.85	5570645	101.53	4.79	6481226	99.67
6		35 °C	2.84	5449293	99.32	4.76	6597781	101.47
7		B:M 75:19 v/v	2.81	5498542	100.22	4.22	6452436	99.23
8	Mobile Phase	B:M 78:22 v/v	2.85	5570645	101.53	4.79	6481226	99.67
9		B:M 81:25 v/v	2.68	5556765	101.28	5.26	6643379	102.17

222

3.9 Analysis of tablet formulation 223

The proposed method was applied for the analysis of velpatasvir and sofosbuvir in tablet dosage 224

forms, the results were found to be between 99.67-100.99%, the results summarized in table 7. 225

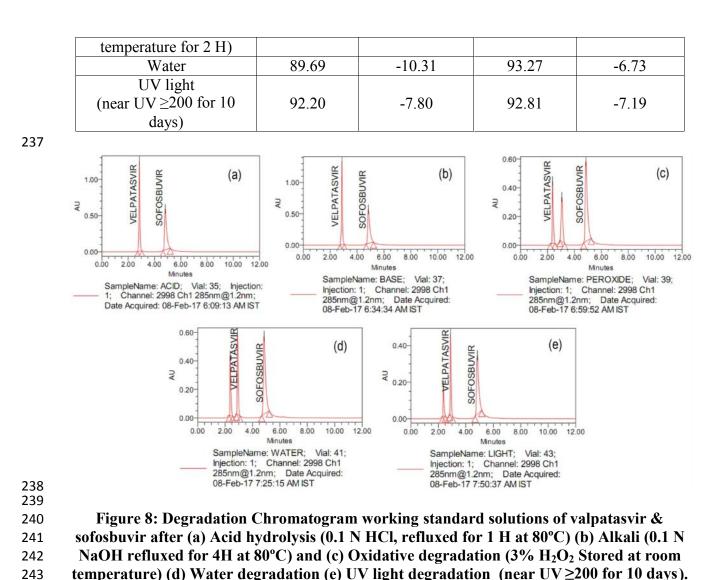
226

227

Table 7: Assay results of VEL and SOF

Drug	Labled amount mg/tab	Amount found mg/tab	% Assay
Velpatasvir	100	99.01	100.99
Sofosbuvir	400	401.32	99.67

228


229

3.10 Forced degradation and stability indicating studies 230

Non interference of blank and degradants, the developed HPLC method proves the capability 231 232 stability indicating method for the analysis of VEL and SOF. Purity angle was less than the purity threshold and hence the proposed method was the specific and revealed its stability-233 indicating power. The results were summarized in Table 8. Figure 8 (a-e) shows chromatograms 234 of different stress degradation conditions. 235

Table 8: Degradation studies of VEL & SOF

Stress conditions	% Assay of active moiety					
Stress conditions	Velpatasvir	% degradation	Sofosbuvir	% degradation		
Acid (0.1 N HCl, refluxed for 1 H at 80°C)	92.68	-7.32	92.06	-7.94		
Base (0.1 N NaOH refluxed for 4H at 80°C)	92.68	-7.32	92.98	-7.02		
H_2O_2 (3% H_2O_2 Stored at room	93.05	-6.95	92.71	-7.29		

- 243
- 244

245

SOF. Two drugs were subjected to various stress conditions like acid (0.1 N HCl, refluxed for 1 246 H at 80°C), base (0.1 N NaOH refluxed for 4H at 80°C), peroxide (3% H₂O₂ Stored at room 247 temperature for 2H), water and light (near UV \geq 200 for 10 days) stability studies were conducted 248 on these samples. Hence the proposed method was the specific and revealed its stability-249 indicating power. 250

4. Conclusion 251

A simple, specific, precised and accurate isocratic HPLC-UV method was developed for the 252 estimation of velpatasvir and Sofosbuvir in their pharmaceutical formulation. The two 253 compounds were subjected to forced degradation applying several stress conditions. The 254 proposed method was successfully separated two compounds with degradants, estimate the 255 pharmaceutical active contents. The Proposed method was specific and stability-indicating 256 power. Hence the developed method can be adapted to regular quality control analysis. 257

258

260	CONS	SENT					
261	It is not applicable						
262							
263	ETHI	CAL APPROVAL					
264	It is no	ot applicable					
265							
266	Refere	ences:					
267							
268	1.	Shepard C W, Finelli L and Alter M J, Global epidemiology of hepatitis C virus infection;					
269		Lancet Infect. Dis. 2005;5:558–567.					
270	2.	Lawitz E, Freilich B, Link J, et al. A phase 1, randomized, dose-ranging study of GS-					
271		5816, a once-daily NS5A inhibitor, in patients with genotype 1-4 hepatitis C virus. J					
272		Viral Hepat. 2015; 22:1011-1019.					
273	3.	Ashis Mukhopadhya, 2008, Hepatitis C in India, Indian Academic of Sciences J. Biosci.					
274		(2008);33(4):465–473.					
275	4.	Mogalian E, German P, Kearney BP, et al. Use of Multiple Probes to Assess Transporter-					
276		and Cytochrome P450-Mediated Drug-Drug Interaction Potential of the Pangenotypic					
277		HCV NS5A Inhibitor Velpatasvir. Clin Pharmacokinetic. 2016; 55:605-13.					
278	5.	Younossi ZM, Stepanova M, Feld J, et al. Sofosbuvir/velpatasvir improves patient-					
279		reported outcomes in HCV patients: Results from ASTRAL-1 placebo-controlled trial. J					
280	_	Hepatol. 2016; 65:33-39.					
281	6.	Feld JJ, Jacobson IM, Hézode C, et al. Sofosbuvir and Velpatasvir for HCV Genotype 1,					
282	_	2, 4, 5, and 6 Infection. N Engl J Med. 2015; 373:2599-607.					
283	7.	Goodman, L.S and Gilman, A.G., The Pharmacological Basis of Therapeutics, 9th Edn.					
284		By Hardman, J.G., Limbard, L.E., Editors in chief, McGraw – Hill, 1996.					
285	8.	· 1					
286		determination of Sofosbuvir in pure form, World J of Pharmacy and Pharmaceutical					
287	0	Sciences. 2016;5(5):775 – 781. Elledy Eheb F. Abaelyofa Abmed A. A. Banid and Optimized LC MS/MS Method for					
288 289	9.	Elkady, Ehab F, Aboelwafa, Ahmed A A Rapid and Optimized LC-MS/MS Method for the Simultaneous Extraction and Determination of Sofosbuvir and Ledipasvir in Human					
289		Plasma. Journal of AOAC International. 2016;99(8):1252-1259.					
290 291	10	Rezk MR, Basalious EB, Amin ME, Novel and sensitive UPLC-MS/MS method for					
291	10.	quantification of sofosbuvir in human plasma: application to a bioequivalence study.					
293		Biomed Chromatogram. 2016; 30(9):1354-62.					
294	11	Chenwei Pan et. al., Simultaneous determination of ledipasvir, sofosbuvir and its					
295	11.	metabolite in rat plasma by UPLC–MS/MS and its application to a pharmacokinetic					
296		study, Journal of Chromatography B. 2016;1008(1):255–259.					
297	12	Estimation and Validation of Sofosbuvir in Bulk and Tablet Dosage Form by RP-HPLC					
298		Ravikumar Vejendla, C.V.S. Subramanyam, G. Veerabhadram, Int J Pharm. 2016;6(2):					
299		121-127.					
300	13.	Mohan vikas et. al., Development and valiation of new RP-HPLC method for the					
301	_2.	determination of Sofosbuvir in pure form. J Global Trends Pharm Sci. 2016;7(1):3013-					
302		3015.					
303	14.	Mohamed El-Kassem M Hassouna, Maha Mohammed Abdelrahman and Mahmoud					
304		Abdelfatah Mohamed. Assay and dissolution methods development and validation for					

305	simultaneous determination of Sofosbuvir and Ledipasvir by RP-HPLC Method in tablet
306	dosage forms. J Forensic Sci & Criminal Inves .2017;1(3).
307	15. Bakht Zaman, Faisal Siddique, Waseem Hassan. RP-HPLC Method for Simultaneous
308	Determination of Sofosbuvir and Ledipasvir in tablet dosage form and its application to
309	in vitro dissolution studies. Chromatographia. (2016); 79(23):1605-1613.
310	16. B. Raj Kumar, Dr. K. V.Subrahmanyam A New Validated RP-HPLC Method for the
311	simultaneous determination of simeprevir and sofosbuvir in pharmaceutical dosage form.
312	Indo American Journal of Pharmaceutical Research. 2016; 6(2):4508-4520.
313	17. ICH-Q2B Validation of Analytical Procedures: Methodology International Conference on
314	Harmonization of Technical Requirements for Registration of Pharmaceuticals for

Human Use, Geneva, Switzerland, 1996.