A Novel Stress Indicating RP-HPLC Method Development and Validation for the Simultaneous Estimation of Velpatasvir and Sofosbuvir in bulk and its Tablet Dosage Form

6

7 Abstract

- 8 Aim: The objective of the study was simplest, accurate, precise and robust reversed phase high
- 9 performance liquid chromatographic (RP-HPLC) method was developed for the estimation of
- 10 Velpatasvir (VEL) and Sofosbuvir (SOF) in the bulk and its tablet dosage form.
- 11 Study Design: The Quantitative and Qualitative estimation and designed forced degradation
- 12 study of Velpatasvir & Sofosbuvir by RP-HPLC.
- 13 Place and Duration of Study: The study was carried at Santhiram College of Pharmacy and time
- taken 4 months.
- 15 Method : The method was attained by used Waters(5µm, C18 250 x 4.6 mm) column with
- 16 mobile phase consists of 0.5 mM disodium hydrogen phosphate buffer pH adjusted to 6.5, with
- 17 Orthophosphoric acid and Methanol in the ratio of 78:22 v/v, a flow rate of 1.0 mL/min and
- 18 ultraviolet detection at 285 nm.
- 19 Results: The method was validated as per ICH guidelines with different parameters, the mean
- retention times of VEL and SOF were found to be 2.8 & 4.7 min respectively. The resolution
- 21 between VEL and SOF was found to be 10.66. The Correlation coefficients for calibration curves
- within the detection range of 32.5 97.5 and $125 375 \,\mu$ g/mL were 0.999 for VEL and SOF
- respectively. The LOD and LOQ for VEL and SOF were found to be $0.0068-0.029 \ \mu g/mL$ and
- 24 $0.104-0.342 \mu \text{g/mL}$ respectively.
- 25 Conclusion: The results were indicated that the developed method was used for the routine
- analysis of VEL & SOF combined form in bulk and its commercial formulation. To the best of
- 27 our knowledge, there was no method of RP-HPLC for the determination of VEL alone or in
- combination with SOF molecule.
- 29

31 32

30 Keywords:- Velpatasvir, Sofosbuvir, HPLC, commercial formulations.

1. Introduction

- Hepatitis C virus (HCV) infection is a major public health challenge nowadays. It has been
 estimated that the global prevalence of HCV infection is around 2%, with 170 million persons
 chronically infected with the virus and 3 to 4 million persons newly infected each year. ^{1, 2}
- 37 It is a pathogen that is already responsible for a significant proportion of liver disease in various 38 regions of India.³
- 39 Velpatasvir (VEL) is a novel HCV nonstructural Protein 5A (NS5A) inhibitor that was
- 40 developed in combination with other drugs, which are directly acting antiviral for the treatment 41 of HCV infections.⁴ The IUPAC name for velpatasvir is Methyl $\{(1R)-2-((2S,4S)-2-(5-\{2-(2S,4S)-2-(5-\{2-(2S,4S)-2-(5-\{2-(2S,4S)-2-(5-\{2-(2S,4S)-2-(5-\{2-(2S,4S)-2-(5-\{2-(2S,4S)-2-(5-\{2-(2S,4S)-2-(5-\{2-(2S,4S)-2-(5-\{2-(2S,4S)-2-(5-\{2-(2S,4S)-2-(5-\{2-(2S,4S)-2-(5-\{2-(2S,4S)-2-(5-\{2-(2S,4S)-2-(5-\{2-(2S,4S)-2-(5-(2S,4S)$
- 41 of the v infections. The for the name for verplassin is weinight $((1R)^{-2}-((2S,+S))^{-2}-(5-(2S,+S))^{-2}-((1R)^{-2}-((2S,+S))^{-2}-((1R$
- 43 1,11 dihydro(2) benzopyrano (4',3':6,7) naphtha (1,2-d) imidazol-9-yl}-1H -imidazol -2-yl) -4-

- 44 (methoxy methyl) pyrrolidin-1-yl)-2-oxo-1-phenylethyl} carbamate. It is a white to off-white 45 powder, slightly soluble in water. It has a molecular formula of $C_{49}H_{54}N_8O_8$.⁵
- 46 Sofosbuvir SOF is a nucleotide pro-drug that effectively inhibits 1-6 HCV RNA replicons in
- 47 vitro and has proved to have a high sustained virologic response (SVR) rates.^{5,6} Sofosbuvir is a
- 48 prodrug of 2'-deoxy-2'-fluoro-2'-C-methyluridine monophosphate that is phosphorylated intra
- 49 cellularly to the active triphosphate form.⁷ Chemically it is (S)-Isopropyl 2-((S)-
- 50 (((2R,3R,4R,5R)-5- (2,4- dioxo- 3,4-di hydro pyrimidine-1 (2H)-yl) -4- fluoro-3- hydroxy-4-
- 51 methyl tetrahydrofuran-2-yr)methoxy)(phenoxy)phosphorylamino)propanoate. It is a white to
- 52 off-white crystalline powder, found to be slightly soluble in water and freely soluble in alcohol
- and acetone. It has a molecular formula of $C_{22}H_{29}FN_3O_9P$.⁸ Chemical structures of VEL and SOF
- 54 were shown in figure 1 and 2 respectively.
- 55

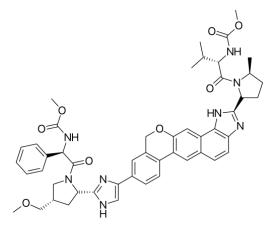
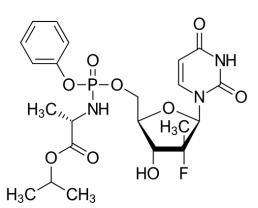



Figure 1: Chemical structure of velpatasvir

61

- 62
- 63 64

Figure 2: Chemical structure of Sofosbuvir

The combined dosage form (Tablet – Velpanat, Natco Pharma) consists of 100 mg of VEL and
 400 mg of SOF was indicated for the treatment of chronic hepatitis C virus (HCV) infection in
 adults.^{4, 6} LC-MS/MS method has been reported for the estimation of SOF with Ledipasvir in

68 human plasma.⁹ Two UPLC-MS/MS methods have been reported for determination of SOF¹⁰

and in a combination of Ledipasvir (11,12) in human plasma for determination of bioequivalence

- studies. Few RP-HPLC methods have been reported for the estimation of SOF alone $^{12, 13}$ or with
- a combination of other drugs like Ledipasvir $^{14, 15}$ and Simeprevir used in the combination for the
- 72 treatment of HCV infection.¹⁶
- 73

74 **2. EXPERIMENTAL**

75 **2.1 Reagents**

All the chemicals and reagents were of analytical grade. Water was redistilled and filtered with a
membrane filter. Methanol – HPLC grade (Merck, India), Ortho phosphoric acid and disodium
hydrogen phosphate (SD fine chem, India) were used to prepare mobile phase. Pharmaceutical
grade standard drugs viz., Velpatasvir and Sofosbuvir were kindly gifted by Natco Pharma Ltd,
Hyderabad, India. The combined tablet formulation contains 100 mg of Velpatasvir and 400 mg

of Sofosbuvir (Velpanat, Natco) purchased from local market of Nellore.

82 **2.2 Chromatographic Conditions**

83 The method was developed by using HPLC system consisted of an LC Waters (Waters, Milford,

84 MA, USA) using a Water's C_{18} 250 x 4.6 mm, $5\mu m$ column, a quaternary gradient system (600

Controller), in line degasser (Waters, model AF). The system was equipped with a photodiode array detector (Waters, 2998 model) and auto sampler (Waters, model 717 plus). Data were

processed using Empower Pro software (Waters, Milford, MA, USA). The Isocratic mobile

- phase consists of a mixture of 0.5 mM disodium hydrogen phosphate buffer pH adjusted to 6.5,
- with Ortho phosphoric acid and Methanol in the ratio of 78:22% v/v was used throughout the analysis. The mobile phase was pumped at a flow rate of 1.0 mL/min. UV detection wavelength
- for analytes was 285 nm. The column temperature was kept ambient and the injection volume
- 92 was 10µL.
- 93

94 2.3 Solution Preparation

95 2.3.1 Standard stock solution preparation

96 10 mg of VEL and SOF each was weighed accurately and transferred to individual 10 ml 97 volumetric flasks. Dissolved and diluted with methanol to get a concentration of 1000 µg/ml

97 volumetric flasks. Dissolved and diluted with methanol to get a concentration of 1000 μ g/ml.

98 2.3.2 Working standard Solution

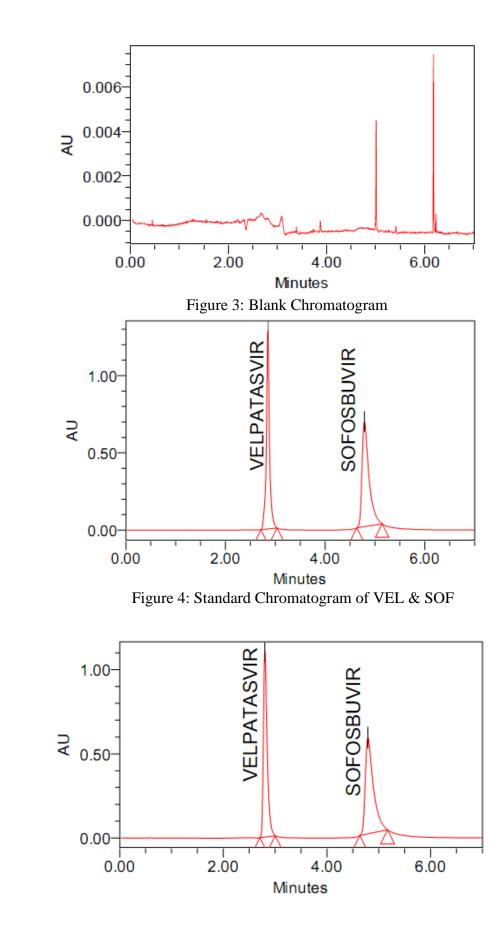
- 1.625 mL of VEL and 6.25 mL of SOF standard stock solutions were accurately measured and
 transferred to a 25 mL volumetric flask, mixed well and diluted to final volume with a diluent, so
- as get the final concentrations of 65 μ g/mL of VEL and 250 μ g/mL of SOF.
- 102 **2.3.3 Sample solution preparation (Assay)**
- 103 Twenty tablets were weighed and finely powdered. The average weight of tablets was
- 104 determined. A portion of powder was weighed equivalent to 10 mg of VEL and transferred to a
- 105 10 mL volumetric flask. 10 mL of methanol was added to disintegrate tablets completely by
- using ultra sonicator for 10 min and solution concentration was $1000 \ \mu g/mL$.
- 107 **2.3.4 Working sample solution**

108 The solution was further diluted to get final concentrations of 65 μ g/mL of VEL and 250 μ g/mL 109 of SOF. This solution was filtered through 0.45 μ m membrane filter. The 10 μ L of this solution 110 was injected into HPLC system.

111

112 **2.4 Method Validation**

113


The method was validated according to ICH guidelines for the estimation of velpatasvir and 114 sofosbuvir. The following validation parameters are enveloped precision, accuracy, linearity, 115 limit of detection & limit of quantification, robustness and forced degradation studies. The 116 standard solution was prepared at six concentrations ranging from 32.5- 97.5µg/mL for VEL and 117 118 125-375 µg/mL for SOF solutions were prepared for linearity. The regression of the curve was obtained by peak area vs concentration. The method sensitivity was measured by the limit of 119 detection and limit of quantification. The limit of detection and limit of quantification were 120 determined by signal to noise ratio 3:1& 10:1. The precision of the method was assessed by 121 122 measured six times standard solution of VEL & SOF and measured the area of all six injections in the HPLC chromatographic system. The accuracy of the method was determined by standard 123 addition and recovery method. The accuracy of the method was evaluated in triplicate at three 124 concentration levels, i.e. 50%, 100% and 150% of target test concentration and the percentages 125 of recoveries were calculated. The robustness of the method was manifested by deliberate 126 127 changes in experimental conditions. The changes made in the chromatographic conditions like flow rate by ± 0.2 mL/min, mobile phase composition of organic phase change ± 3 and the 128 column temperature ±5 °C. The drugs were subjected to different stress conditions like acid 129 (refluxed 0.1N HCl for 1 hr at 80°C), base (refluxed 0.1N NaOH for 4 hrs at 80°C), H₂O₂(stored 130 3% H₂O₂ room temp for 2 hrs) light and water near UV \geq 200 FOR 10 days) forced degradation 131

studies were conducted on the VEL & SOF.

133 **3. RESULTS AND DISCUSSION**

134 **3.1 Method development and optimization of chromatographic conditions**

During the optimization of the method, different columns (Inertsil C8, 250 mm×4.6 mm, 5 µm; 135 Zorbax C18 250 mm×4.6 mm, 5 µm; Symmetry C18 250 mm×4.6 mm, 5 µm) and two organic 136 solvents (acetonitrile and methanol) were tested. The chromatographic conditions were also 137 optimized by using different buffers like phosphate, acetate and citrate for mobile phase 138 preparation. After a series of screening experiments, it was concluded that phosphate buffers 139 gave better peak shapes than their acetate and citrate counterparts. With acetonitrile as solvent 140 both the peaks shows less theoretical plates and more retention time compared to methanol. The 141 chromatographic separation was achieved on a Waters C18, 250 mm×4.6 mm, 5µm column, by 142 using a mixture of 0.5 mM disodium hydrogen phosphate buffer pH adjusted to 6.5, with Ortho 143 phosphoric acid and Methanol in the ratio of 78:22 v/v, as the mobile phase. The temperature 144 was maintained ambient to facilitate mass exchange with the corresponding decrease of peak 145 broadening and increase in sensibility. The flow rate kept was 1.0 mL/min to achieve adequate 146 retention time of two peaks 2.80 min and 4.78 min for VLE and SOF respectively. Figure 3, 4 147 and 5 shows blank, standard and sample chromatograms. The Table1 shows the optimized 148 149 chromatographic conditions.

Figure 5: Sample Chromatogram of VEL & SOF

157 158

- 159 Table 1: Optimized HPLC conditions for simultaneous estimation of Velpatasvir and Sofosbuvir
- 160

S. No	Parameter	Description/Value
1.	Stationary Phase	Water's C18 (250X4.6X5)
2	Mobile Phase	0.5 mM Disodium Phosphate buffer (pH 6.5, adjusted with OPA) and MeOH in the ratio of 78:22 v/v
3	Flow rate	1 mL/min
4	Detection Wavelength (Isosbestic Point)	285nm
5	Detector	Photo diode array
6	Injection	Autosampler -Waters, model 717 plus
7	Injection volume	10 µl
8	Column Temperature	Ambient
9	Run time	6 mins
10	Diluent	Methanol
11	Rt's	Velpatasvir: 2.806 min Sofosbuvir: 4.780 min

161

162 **3.2 Method validation**

163 When a method has been optimized it must be validated before practical use. By following ICH 164 guidelines for analytical method validation, Q2 (R1), the validation characteristics were

165 addressed.¹⁷

166 **3.3 System Suitability**

167 The system suitability test ensures the validity of the analytical procedure as well as confirms the 168 resolution between different peaks of interest. All critical parameters tested met the acceptance

169 criteria on all days. As shown in the chromatograms (figure 4 & 5), two analytes were eluted by

forming symmetrical single peaks well separated from each other and from excipients. Table 2

- 171 shows the System Suitability results.
- 172

Table 2:	System suitability resul	ts

S.No	Parameters	Res	Limits	
5.110	1 ar anneter s	Velpatasvir	Sofosbuvir	Linits
1	RSD of peak area	0.20	0.86	$<\!\!2 n \ge 6$
2	Retention times	2.849	4.786	-
3	RSD of retention time	0.56	0.89	<2 n \ge 5
4	USP plate count	13196	6255	>2000
5	USP tailing factor	1.06	1.75	T<2
6	USP resolution	-	10.66	R >2

173

174 **3.4 Linearity**

175 For the construction of calibration curves, five calibration standard solutions were prepared over

176 the concentration range of $32.5 - 97.5 \ \mu g/ml$ for VEL and $125.0 - 375 \ \mu g/mL$ for SOF. The

results, summarized in Table 3, showed a good correlation between analytes peak area and concentration with r > 0.999 (n = 5). Linearity curve was shown in figure 6 and 7.

Table 3: Linearity results of VEL & SOF

	Linearity	Velpatasvir		Sofosbuvir		
S. No	Level	Concentration (µg/mL)	Peak Area	Concentration (µg/mL)	Peak Area	
1	50	32.5	2813066	125	3077228	
2	75	48.75	4253268	187.5	4629475	
3	100	65	5613521	250	6143585	
4	125	81.25	7052657	312.5	7688257	
5	150	97.5	8406053	375	9285177	
Slope		86064		24759		
Intercept		3356	8	25128		
\mathbb{R}^2		0.999	9	0.9999		

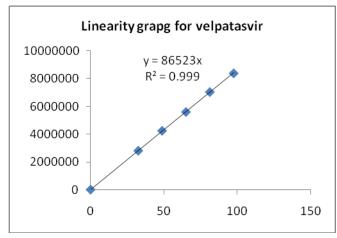
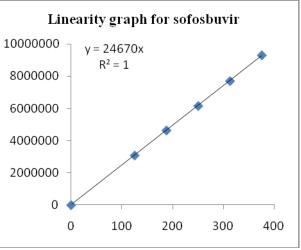
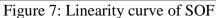




Figure 6: Linearity curve of VEL

196 **3.5 Precision**

197 The assay was investigated with respect to repeatability and intra-day precision. The 198 repeatability of the system (while keeping the operating conditions identical) was examined by 199 injecting analyte solution with 6 replicate injections. The RSD values varied from 0.47 to 0.86% 200 Showed, that the inter-day precision of the method was satisfactory. Table 4 shows the precision 201 results.

202

Table 4: Results of Method Precision Velpatasvir Sofosbuvir S. No % Assay % Assay Peak Area **Peak Area** 5516391 100.55 6556728 100.84 1 2 100.58 100.44 5518106 6531198 99.59 3 5518136 100.58 6475888 4 101.26 6429678 98.88 5555471 5 101.43 6412642 98.62 5565122 101.53 5570645 6481227 99.67 6 5540645.17 100.99 6481226.83 99.67 Average SD 25775.38 0.47 55834.05 0.86 %RSD 0.47 0.47 0.86 0.86

203

204 **3.6 Accuracy**

To govern the accuracy of the proposed method, recovery studies have been performed, known amount of pure drug sample solution at three different concentration levels, ie, 50%,100%,150% was calculated. Accuracy was calculated as a percentage of recovery. The accuracy results tabulated as 5.

- 209
- 210

Table 5: Accuracy results of VEL & SOF

Parameters	Peak Area	Amount added(µg)	Amount recovered (µg)	% of recovery	% mean recovery
Velpatasvir					
50%	2807301	32.33	32.58	100.79	100.79
100%	5644767	64.66	65.52	101.33	101.33
150%	8332433	96.99	97.26	99.72	99.72
Sofosbuvir			•	•	
50%	276869	32.33	32.14	99.41	99.41
100%	5548876	64.66	64.41	99.61	99.61
150%	8506216	96.99	98.74	101.80	101.80

211

212 **3.7** Limit of detection (LOD) and Limit of quantification (LOQ)

213 The Limit of detection and limit of quantification were considered as the signal- to- noise ratio

3:1 and 10:1 respectively. The limit of detection and limit of quantitation to be determined

215 $0.0068 \ \mu g/ml \& 0.029 \ \mu g/ml$ for VEL and $0.104 \ \mu g/ml \& 0.347 \ \mu g/ml$ for SOF respectively.

216 **3.8 Robustness**

The robustness of the method was unaffected when small, deliberate changes like, flow rate change, mobile phase composition, column temperature was performed and compared with 219 normal conditions at 100% test concentration. The method was found to be robust for the said

220 conditions. Results were tabulated in table 6.

221 222

S. No	Condition		Velpatasvir			Sofosbuvir		
5. NO	Parameter	Condition	RT	Peak Area	% Assay	RT	Peak Area	% Assay
1		0.8 ml/min	<mark>2.39</mark>	<mark>5476665</mark>	99.82	<mark>4.04</mark>	<mark>6410579</mark>	<mark>98.59</mark>
2	Flow	1 ml/min	2.85	5570645	101.53	4.79	6481226	99.67
3		1.2 ml/min	<mark>3.52</mark>	<mark>5526688</mark>	100.73	<mark>5.90</mark>	<mark>6564947</mark>	<mark>100.96</mark>
4		25 °C	<mark>2.84</mark>	<mark>5498542</mark>	100.22	<mark>4.76</mark>	6447497	99.16
5	Temp	30 °C	2.85	5570645	101.53	4.79	6481226	99.67
6		35 °C	<mark>2.85</mark>	<mark>5589293</mark>	100.87	<mark>4.80</mark>	6547497	101.47
7		B:M 78:19 v/v	<mark>2.68</mark>	<mark>5498542</mark>	100.22	4.22	6452436	99.23
8	Mobile Phase	B:M 78:22 v/v	2.85	5570645	101.53	4.79	6481226	99.67
9		B:M 78:25 v/v	<mark>2.86</mark>	<mark>5586765</mark>	101.83	5.26	6533379	100.48

Table 6: Results of Robustness

223

224 **3.9 Analysis of tablet formulation**

The proposed method was applied for the analysis of velpatasvir and sofosbuvir in tablet dosage

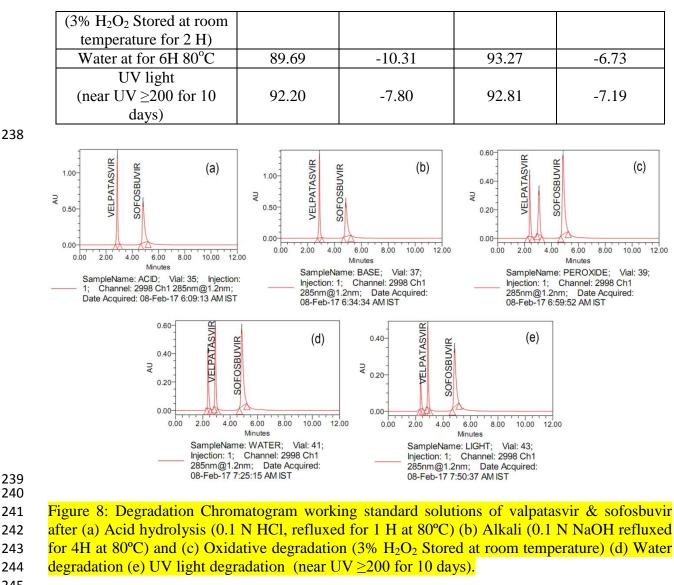
forms, the results were found to be between 99.67-100.99%, the results summarized in table 7.

227 228

Table 7:	Assay resu	lts of VEL	and SOF
----------	------------	------------	---------

Drug	Labelled amount mg/tab	Peak Area	<mark>% Assay</mark>	
Velpatasvir	100	<u>5570645</u>	<mark>100.99</mark>	
<mark>Sofosbuvir</mark>	<mark>400</mark>	6481226	<mark>99.67</mark>	

229


230

231 **3.10 Forced degradation and stability indicating studies**

Non-interference of blank and degradants, the developed HPLC method proves the capability stability indicating a method for the analysis of VEL and SOF. Purity angle was less than the purity threshold and hence the proposed method was the specific and revealed its stabilityindicating power. The results were summarized in Table 8. Figure 8 (a-e) shows chromatograms of different stress degradation conditions.

Table 8: Degradation studies of VEL & SOF

Stress conditions	% Assay of the active moiety					
Stress conditions	Velpatasvir	% degradation	Sofosbuvir	% degradation		
Acid (0.1 N HCl, refluxed for 1 H at 80°C)	92.68	-7.32	92.06	-7.94		
Base (0.1 N NaOH refluxed for 4H at 80°C)	92.68	-7.32	92.98	-7.02		
H_2O_2	93.05	-6.95	92.71	-7.29		

SOF. Two drugs were subjected to various stress conditions like acid (0.1 N HCl, refluxed for 1 H at 80°C), base (0.1 N NaOH refluxed for 4H at 80°C), peroxide (3% H_2O_2 Stored at room temperature for 2H), water for 6H 80°C and light (near UV ≥200 for 10 days) stability studies were conducted on these samples. Hence the proposed method was the specific and revealed its stability-indicating power.

252 **4.** Conclusion

A simple, specific, precise and accurate isocratic HPLC-UV method was developed for the estimation of velpatasvir and Sofosbuvir in their pharmaceutical formulation. The two compounds were subjected to forced degradation applying several stress conditions. The proposed method was successfully separated two compounds with degradants, estimate the pharmaceutical active contents. The Proposed method was specific and stability-indicating power. Hence the developed method can be adapted to regular quality control analysis.

260		
261	CONS	ENT
262	It is no	t applicable
263		
264	ETHI	CAL APPROVAL
265	It is no	t applicable
266		
267	Refere	ences:
268		
269	1.	Shepard C W, Finelli L and Alter M J, Global epidemiology of hepatitis C virus
270		infection; Lancet Infect. Dis. 2005;5:558–567.
271	2.	Lawitz E, Freilich B, Link J, et al. A phase 1, randomized, dose-ranging study of GS-
272		5816, a once-daily NS5A inhibitor, in patients with genotype 1-4 hepatitis C virus. J
273		Viral Hepat. 2015;22:1011–1019.
274	3.	Ashis Mukhopadhya, 2008, Hepatitis C in India, Indian Academic of Sciences J. Biosci.
275		2008;33 (4):465–473.
276	4.	Mogalian E, German P, Kearney BP, et al. Use of Multiple Probes to Assess Transporter-
277		and Cytochrome P450-Mediated Drug-Drug Interaction Potential of the Pangenotypic
278		HCV NS5A Inhibitor Velpatasvir. Clin Pharmacokinetic.2016;55:605-613.
279	5.	Younossi ZM, Stepanova M, Feld J, et al. Sofosbuvir/velpatasvir improves patient-
280		reported outcomes in HCV patients: Results from ASTRAL-1 placebo-controlled trial. J
281		Hepatol.2016;65:33-39.
282	6.	Feld JJ, Jacobson IM, Hézode C, et al. Sofosbuvir and Velpatasvir for HCV Genotype 1,
283		2, 4, 5, and 6 Infection. N Engl J Med.2015;373:2599-2607.
284	7.	Goodman, L.S and Gilman, A.G., The Pharmacological Basis of Therapeutics, 9th Edn.
285		By Hardman, J.G., Limbard, L.E., Editors in chief, McGraw – Hill, 1996.
286	8.	Elkady, Ehab F, Aboelwafa, Ahmed A., A Rapid and Optimized LC-MS/MS Method for
287		the Simultaneous Extraction and Determination of Sofosbuvir and Ledipasvir in Human
288	-	Plasma. Journal of AOAC International.2016;99(8):1252-1259.
289	9.	Rezk MR, Basalious EB, Amin ME., Novel and sensitive UPLC-MS/MS method for
290		quantification of sofosbuvir in human plasma: application to a bioequivalence study.
291	10	Biomed Chromatogram. $2016;30(9):1354-1362$.
292	10.	Pan C, Chen Y, Chen W, Zhou G, Jin L, Zheng Y, Lin W, Pan Z., Simultaneous
293		determination of ledipasvir, sofosbuvir and its metabolite in rat plasma by UPLC-
294		MS/MS and its application to a pharmacokinetic study, Journal of Chromatography B.
295		2016;1008(1):255–259.
296	11.	Ravikumar Vejendla, C.V.S. Subramanyam, G. Veerabhadram., Estimation and
297		Validation of Sofosbuvir in Bulk and Tablet Dosage Form by RP-HPLC, Int J Pharm.
298	10	2016;6(2):121-127.
299	12.	Mohan vikas, Satyanarayana T, Vinod Kumar D, Mounika E, Sri Latha M, Anusha R, Sathish Y., Development and valiation of new RP-HPLC method for the determination of
300		
301	10	Sofosbuvir in pure form. J Global Trends Pharm Sci.2016;7(1):3013-3015.
302	<mark>13.</mark>	Mohamed El-Kassem M Hassouna, Maha Mohammed Abdelrahman and Mahmoud
303		Abdelfatah Mohamed., Assay and dissolution methods development and validation for simultaneous determination of Sofosbuvir and Ledipasvir by RP-HPLC Method in tablet
304 205		
305		dosage forms. J Forensic Sci & Criminal Inves.2017;1(3):1-11.

- 306 14. Bakht Zaman, Faisal Siddique, Waseem Hassan., RP-HPLC Method for Simultaneous
 307 Determination of Sofosbuvir and Ledipasvir in tablet dosage form and its application to
 308 in vitro dissolution studies. Chromatographia.2016;79(23):1605–1613.
- 309 15. B.Raj Kumar, Dr. K. V.Subrahmanyam., A New Validated RP-HPLC Method for the
 310 simultaneous determination of simeprevir and sofosbuvir in pharmaceutical dosage form.
 311 Indo American Journal of Pharmaceutical Research.2016;6(2):4508-4520.
- 312 16. ICH-Q2(R1) Validation of Analytical Procedures: Text and Methodology International
 313 Conference on Harmonization of Technical Requirements for Registration of
 314 Pharmaceuticals for Human Use, Geneva, Switzerland, 1996.