Original Research Article

- 2 ANTIDIABETIC, ANALGESIC, ANTIOXIDANT AND ANTIMICROBIAL ACTIVITY
- 3 OF METHANOLIC EXTRACTS OF FRUITS AND SHOOTS OF BRASSICA
- 4 OLERACEA VAR. ITALICA Linn.

5 ABSTRACT

6

1

- 7 **Background:** *Brassica oleracea var* italica conjointly known as "broccoli" is a crucial ayurvedic
- 8 medication in traditional medicine mostly cultivated in Italy, France, England, California, The
- 9 Southern American States and Spain and employed in opposing cancer (prostate cancer), anti
- 10 aging, helps digestion and management of diabetes, preventing anemia, protects against
- 11 ultraviolet radiation, reducing the chance of alzheimer's disease, reducing the risk of cardiopathy
- 12 cholesterol and high blood pressure. The plant principally contains indol-3-carbinol,
- sulforaphane, diindolylmethane, selenium and glucoraphanin. Also contains great deal of vitamin
- 14 C and multiple nutrients.
- 15 **Methods:** In this study antidiabetic activity was investigated by alloxan induced diabetic model.
- Analgesic activity was manifested by using acetic acid-induced writhing. Antioxidant activity
- 17 was evaluated by DPPH scavenging method whereas antimicrobial activity screening was carried
- out by disc diffusion method
- 19 **Results:** Qualitative analysis of *Brassica oleracea var italica* extracts assured the existence of
- 20 flavonoids and tannins etc. Moreover, it contains mild antibacterial and antioxident activity
- where IC₅₀ of the extraction is $1424.30 \mu g/ml$. In addition, it also contains slightly analysis and
- 22 antidiabetic activity.
- 23 Conclusion: Our results recommend that presence of flavonoids and tannins render Brassica oleracea
- 24 var italica with therapeutic potential for oxidative stress and inflammation connected disorders. It may
- even be a possible candidate for brand spanking new antibacterial and antidiabetic agents.
- 26 **Trial registration:** For experimental clinical study on animal trial registration and permission
- 27 was issued from departmental clinical ethical review committee, department of pharmacy,
- university of Chittagong. The trail registration reference number is ERC/DP/CU/2015/0014

- 29 **Keywords:** Brassica oleracea var italica, antidiabetic, analgesic, antioxidant and antimicrobial
- 30 activity.

31

Background

- The role of medicinal plants in healing diseases is increasing because of the presence of versatile
- compounds that have the flexibility to cure a spread of diseases and serving to physicians to
- 34 influence increasing quantitative relation of ailments recently [1]. Medicinal plants contain
- 35 bioactive compounds with the ability to heal. These embrace saponins, tannins, essential oils,
- 36 flavonoids, alkaloids and other chemical compounds found as secondary metabolites in plants
- 37 [2]. Plant secondary metabolites square measure for the most part viewed as potential supply of
- 38 novel antibiotics, insecticides and herbicides. This is often attributable to their biological
- 39 significance and potential health advantages akin to antioxidant, anti-aging, anti-atherosclerotic,
- antimicrobial and anti-inflammatory activities [3]. Regular intakes of plant products wealthy in
- 41 phenolics are reportable to scale back risks of developing chronic diseases similar to cancer,
- heart diseases and diabetes [4].
- Diabetes is evolving in concert of the foremost fatal diseases endeavor humanity right behind
- 44 cancer and cardiovascular diseases. Existing databases indicate its high prevalence, morbidity
- and mortality rate [5-6]. About 4 % population worldwide is dying by this deadly malady and
- 46 this toll is probably going to swell by 5.4 % in the year 2025 [7]. Poor management of blood
- 47 glucose levels is that the key conducive issue to the associated complications and treatment of
- 48 hyperglycemia is thus, the most targets within the interference of those diabetes connected
- 49 complications [8-9]. Hyperglycemia plays a crucial role in the development and progression of
- 50 diabetic complications by various mechanisms together with exaggerated oxidative stress,
- 51 minimized nitric oxide bioavailability, glucose autoxidation and non-enzymatic protein glycation
- 52 [10]. The global exponential growth of diabetes has led to a synchronous rise within the usage of
- 53 herbal remedies to treat diabetes due to their natural origin, free accessibility and lesser side
- 54 effects [11]. It is also well renowned that oxidative stress develops once reactive oxygen-derived
- free radical production exceeds the antioxidant defense mechanism of the cell [12]. Antimicrobial
- properties are rumored a lot of times during a wide selection of plant extracts and essential oils
- 57 and natural products in a trial to discover new chemical categories of antifungal and antibacterial

- 58 drugs that might resolve strains expressing resistance to the obtainable antifungal and
- 59 antibacterial drugs [13-14]. Brassica oleracea var. italica (Roots, leaves and Fruits) is utilized
- 60 in anti cancer especially prostate cancer, Anti aging, management of diabetes, Preventing anemia
- 61 ,Protects against ultraviolet radiation, Reducing the chance of heart disease cholesterol and high
- 62 pressure [15-16].

MATERIALS AND METHODS:

64

65

69

79

63

Plant Material Collection and Identification

- 66 Fruits and shoots of Brassica oleracea var. italica were collected from Savar area district of
- 67 Dhaka and were identified by the experts and preserved in the herbarium (Acc. No:
- 68 CU/DP/PS/2015600321) department of pharmacy, University of Chittagong.

Extraction of plant material

- 70 Dried, ground Fruits and shoots of Brassica oleracea var. italica (900 g) was taken in a clean
- 71 flat bottomed glass container and soaked in 2 l of methanol. The container with its contents was
- sealed and kept for a period of 7 days accompanying occasional shaking and stirring. The whole
- 73 mixture then underwent a coarse filtration by clean, white cotton then followed by a filtration
- 74 through Whatmann filter paper. The filtrate was allowed to keep for 7 days to evaporate the
- 75 solvent. Finally a blackish crude extract was obtained.

76 Phytochemical screening

- 77 All of the crude extracts were qualitatively analyzed for the presence of different chemical
- 78 groups, such as Alkaloids, Glycosides, Tannins, Flavonoids and Saponins [17-18].

Antioxidant Activity

- 80 Antioxidant activity of the methanolic extract of *Brassica oleracea var. italica* was determined
- by DPPH free radical scavenging activity on the basis of the modified method of Gupta [19].
- 82 Stock solutions (10 mg/ml) of the plant extracts were prepared in ethanol from which serial
- 83 dilutions were carried out to obtain concentrations of 1, 5, 10, 50, 100 and 500 μg/ml. Diluted
- solutions (2 ml) were added to 2 ml of a 0.004% ethanol solution of DPPH, mixed and allowed
- 85 to stand for 30 min for reaction to occur. The absorbance was determined at 517 nm using a
- double beam UV-visible spectrophotometer and from these values corresponding percentage of

- 87 inhibitions were calculated. Then % inhibitions were plotted against log concentration and from
- 88 the graph IC₅₀ was calculated. The experiment was performed in triplicate and average
- 89 absorption was noted for each concentration. Ascorbic acid was used as positive control. Radical
- scavenging activity was expressed as the inhibition percentage (I %) and calculated as per the
- 91 following equation:
- 92 %inhibition= [(Blank absorbance Sample absorbance)/Blank absorbance] × 100
- 93 Antibacterial Activity
- 94 Antibacterial activity of the methanolic extract of *Brassica oleracea var. italica* was assessed by
- 95 the disc diffusion method according to the previously described method [20-21]. Bacteria used as
- 96 test organisms for the antibacterial activity test is listed in table 5.

97 Experimental Animals

- Young Swiss-albino mice aged 4-5 weeks old and average weight 20-25 g was employed for the
- 99 experiment. The mice were purchased from the Animal Research Branch of the International
- 100 Centre for Diarrheal Disease and Research, Bangladesh (ICDDR, B). They were kept in standard
- environmental condition (RH 55% to 60%, room temperature 25± 2oC and 12 h light/ dark
- 102 cycle) for one week for adaptation after their purchase and fed ICDDRB formulated rodent food
- and water. The experimental study was performed under the guidelines of Institutional Animal
- 104 Ethics Committee [22].

105 Chemicals and Drugs

- 106 The standard drug, Metformin hydrochloride was the generous gift samples from Beximco
- 107 Pharmaceuticals Ltd of Bangladesh. Alloxan monohydrate was purchased from Loba Chemie,
- 108 India. Carrageenan was purchased from Otto Chemika, India. Blood samples analyzed for blood
- 109 glucose content by using OK meter Match glucose test meter (Hsinchu, Taiwan). Acetic acid was
- 110 collected from laboratory of Bangladesh University. The standard drug Diclofenac-Na was
- purchased from Square Pharmaceuticals Limited of Bangladesh

112 Experimental induction of diabetes

- Experimental induction of diabetes in mice, freshly prepared solution of alloxan monohydrate in
- normal saline at a dose of 120 mg/kg body weight, were injected to mice intraperitoneally.
- Alloxan can produce fatal hypoglycemia as a result of massive pancreatic insulin release mice
- were treated with 20% glucose solution (5 10 ml) orally after 6 h. The mice were then kept for

117	the next 24 h on 5% glucose solution bottles in their cages to prevent hypoglycemia. After 1		
118	week, mice with moderate diabetes that exhibited glycosuria and hyperglycemia (i.e. blood		
119	glucose concentration >200 mg/dL) were taken for the experiment [22].		
120			
121	Experimental design for antidiabetic activity study		
122	Fifteen mice were divided in to five groups as Group I: normal rats received only distilled water		
123	during the experimental period, Group II: diabetic control rats received only distilled water		
124	during the experimental period, Group III: diabetic mice administered 500 mg/kg sample, Group		
125	IV: diabetic mice administered 250 mg/kg sample, Group V: diabetic mice administered 0.25		
126	mg/kg glibenclamide.		
127	Treatment was continued for a period of 6 hours following oral administration to the		
128	experimental animals by gastric intubation, using a force - feeding needle. Blood glucose was		
129	estimated on withdrawing blood samples were from tail vein prior to dosing (0 hour) and then 1st		
130	hour, 3rd hour and 5th hour respectively from all groups of mice. Fixed amount of rat chow and		
131	fluid was given to each rat and replenished the next [23-25].		
132	Acetic acid-induced writhing test for Analgesic activity		
133	The analgesic activity of the samples was also studied using acetic acid-induced writhing model		
134	in mice. Test samples and vehicle were administered orally 30 munities before intra-peritoneal		
135	administration of 1% acetic acid but Diclofenac-Na was administered intraperitonially 15 mins,		
136	the mice were observed for specific contraction of body referred to as "writhing" for the next 10		
137	munities [26-27].		
138	RESULT AND DISCUSSION:-		
139	Phytochemicals Screening:		
140	Phytochemical screening of methanolic extract of Brassica oleracea var italica indicates the		
141	presence of tannins and flavonoids (Table 1)		
142			
143			
144			

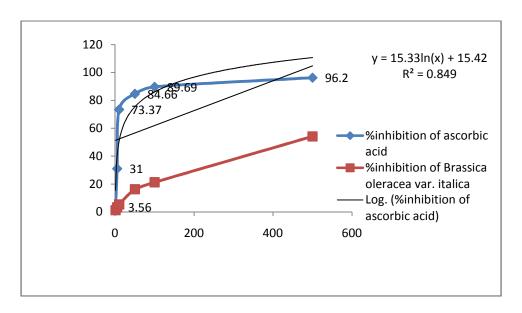
Table 1. Results of different chemical group tests of Brassica oleracea var italica

Plant Extract spin solving Spin spin square Spin solving Spin square Spin squa

+: Positive result; -: Negative result

Antioxidant activity

Antioxidant activity of *Brassica oleracea var. italica* was determined on the basis of its ability to scavenge DPPH free radicals. Methanolic extracts of leaves of *Brassica oleracea var. italica* showed potential DPPH free radical scavenging activity where the IC_{50} was **1424.30**µg/ml compared to that of ascorbic acid, used as standard, where the IC_{50} was **9.48** µg/ml results are summarized as **Table 2 and Figure 1.**


Table 2. Antioxidant activity of Brassica oleracea var. italica

	Concentratin	%	IC_{50}
Sample	$(\mu g/ml)$	inhibition	$(\mu g/ml)$
MeOH extract	1	1.2 ± 0.023	
	5	3.20 ±	
Brassica	10	5.28 ±	1424.30
oleracea var.	50	16.20 ±	
italica	100	21.23 ±	
	500	54.11 ±	
Ascorbic acid	1	3.56±0.011	9.48

5	31±0.024
10	73.37±0.03
50	84.66±0.01
100	89.69±0.02
500	96.2±0.031

Values are expressed as mean \pm S.D

Figure1: Effect of the methanolic extract of Brassica oleracea var. italica leaf antioxident

158159

156

157

160

161

162

163

164

Anti-diabetic activity

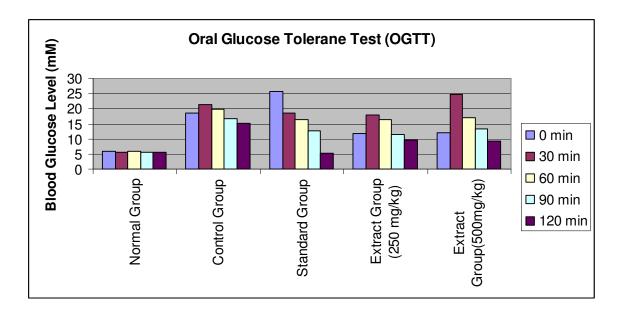

Anti-diabetic activity results are summarized as

Table-3 Effect of the methanolic extract of *Brassica oleracea* var. italica leaf on Anti-diabetic activity in diabetic mice:

Time	Normal	Control	Standard	Extract Group	Extract
	Group	Group	Group	(250 mg/kg)	Group(500mg/kg)
0 min	5.8±0.36	18.5±0.26	25.6±0.20	11.1±0.43	12.1±0.36
30 min	5.7±0.32	21.3±0.47	18.5±0.25	18.0±0.31	24.6±0.25
90 min	5.8±0.52	19.7±0.21	16.3±0.35	16.3±0.25	17.1±0.40

60min	5.7±0.25	16.6±0.27	12.8±0.45	11.3±0.27	13.3±0.28
120 min	5.7±0.22	15.2±0.45	05.2±0.33	09.5±0.56	09.3±0.58

Figure2: Effect of the methanolic extract of *Brassica oleracea var. italica* leaf on oral glucose tolerance test in diabetic mice.

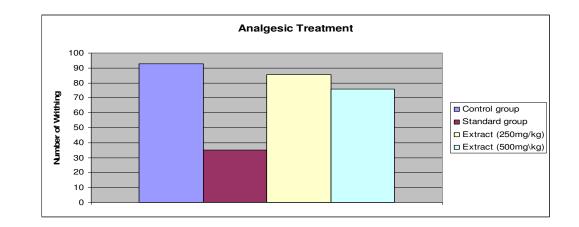
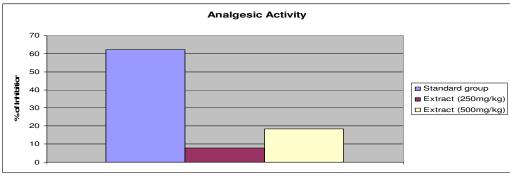

Analgesic effect of *Brassica oleracea var. italica*. extract on Acetic acid-induced writhing in mice

Table-4. of


Table-4. of the methanolic extract of *Brassica oleracea var. italica*. leaf on Acetic acid-induced writhing in mice:-

Animal Group	Writhing Counting	Percentage of
	(Mean ± SEM)	Writhing
		Inhibition
Control Group	92.75±0.66	-
Standard Group	35.00±0.38	62.26
Extract Group (250mg/kg)	85.50±0.56	07.82
Extract Group (500 mg/kg)	75.75±0.32	18.32

Figure3: Effects of the methanolic extract of *Brassica oleracea var. italica*. leaf of on acetic acid–induced writhing mice

Percent of inhibition effects of the methanolic extract of leaf *Brassica oleracea var. italica*. on acetic acid-induced writhing in mice.

Antibacterial activity

Table 5 showed the antibacterial activity of *Brassica oleracea var. italica* relative to that of the standard drug Ciprofloxacin.It showed mild antibacterial activity against *Bacillus subtilis*, *Bacillus cereus*, *Pseudomonus aeruginosa* and *E.coli* where the zone of inhibition was about 6 mm

Table 5: Antibacterial activity of Brassica oleracea var. italica

	Zone of inhibition (mm)			
	Methanol	Ciprofloxacin		
Bacteria	Extract			
		(30 μg/disk)		
	$(500 \mu g/disk)$			
Gram Positive				
Bacillus subtilis	7.02 ± 0.21	31.01 ± 0.31		
Bacillus cereus	6.11 ± 0.22	33.21 ± 0.33		
Gram Negative				
Pseudomonas aeruginosae	5.23 ± 0.25	32.06 ± 0.36		
E. coli	6.14 ± 0.23	35.04 ± 0.34		

CONCLUSION:

The present experimental research work was undertaken to determine the Anti-diabetic, analgesic, antimicrobial and antioxidant effects of the methanolic extract of *Brassica oleracea* var. italica Leaf on white albino mice (male).

The present study illustrates about the hypoglycemic effect of *Brassica oleracea var. italica* Leaf was satisfactory considerable: 500 mg/kg showed mild decrease (from 12.1 mM \pm SD to 9.3 mM \pm SD) and 250 mg/kg showed mild decrease (from 11.1 mM \pm SD to 9.5 mM \pm SD) compared to standard drug metformin (from 25.6 mM \pm SD to 05.2 mM \pm SD).

Significant analysis effect was monitored in dose 500 mg/kg of extract inhibited 17.2 % and dose 250 mg/kg of extract of *Brassica oleracea var. italica* inhibited 6.81 % of writhing movements compared to Control group where as standard drug diclofenac gave 62.26 % of inhibition.

The methanolic extract of *Brassica oleracea var. italica* has minor anti oxidant activity. The IC₅₀ of the extraction is $1424.30 \,\mu\text{g/ml}$, whereas IC₅₀ of Ascorbic Acid is $9.48 \,\mu\text{g/ml}$.

- 213 Finlly, we concluded from the current research work that the methanolic extract of *Brassica*
- 214 oleracea var italica possesses marked antidiabetic, analgesic, antioxidant and antimicrobial
- 215 potentials. The usefulness of this plant should be confirmed through further phytochemical and
- 216 toxicity analyses

217 **REFERENCES:**

- Petrovska BB. Historical review of medicinal plants' usage. Pharmacogn Rev. 2012;
 6(11):1-5.
- 220 2. Pavarini DP, Pavarinib SP, Niehuesa M, Lopesa NP. **Exogenous influences on plant** 221 secondary metabolite levels. *Ani Feed Sci Tech*. 2012; 176:5-16.
- Mulaudzi RB, Ndhlala AR, Kulkarni MG, Van Staden J. Pharmacological properties
 and protein binding capacity of phenolic extracts of some Venda medicinal plants
 used against cough and fever. J Ethnopharma. 2012; 143:185-19.
- 4. Zhu F, Cai Y, Sun M, Corke H. **Effect of phytochemical extracts on the pasting,** thermal, and gelling properties of wheat starch. *Food Chem.* 2009; 112: 919-23.
- 5. Kannel WB, McGee DL. **Diabetes and cardiovascular disease: the Framingham** study. *JAMA*. 1979; 241(19):2035-8.
- 6. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. *Diabetes Care*. 1998; 21(9):1414-1431.
- 7. Kim SH, Hynn SH, Choung SY. **Antidiabetic effect of cinnamon extract on blood** glucose in db/db mice. *J Ehthnopharma*. 2006; 104(1-2):119-123.
- 8. Stettler C, Allemann S, Juni P, Cull CA, Holman RR, Egger M et al.. Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: Meta-analysis of randomized trials. *Am Heart J.* 2006; 152(1):27-38.
- 9. Liu CT, Sheen LY, Lii CK. **Does garlic have a role as an antidiabetic agent?** *Mol Nutri Food Res.* 2007; 51(11):1353-64.
- 10. Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. *Biomed Pharmacother*. 2005; 59(7):365-73.

- 242 11. Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TPA. Indian herbs and
- herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr. 2007;
- 244 40(3):163-73.
- 12. Huang CS, Yin MC, Chiu LC. Antihyperglycemic and antioxidative potential of
- Psidium guajava fruit in streptozotocin-induced diabetic rats. Food Chem Toxicol.
- 247 2011; 49(9):2189-95.
- 13. Ali NA, Julich WD, Kusnick C, Lindequist U. Screening of Yemeni medicinal plants
- for antibacterial and cytotoxic activities. J. Ethnopharmacol. 2001; 74(2):173-9
- 250 14. Angioni A, Barra A, Coroneo V, Dessi S, Cabras P. Chemical composition, seasonal
- variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential
- oils from stem/leaves and flowers. Agric. Food Chem. 2006; 54(12):4364-70.
- 15. Santegra USA Catalog Herbal Remedies Catalog.
- 16. Source: USDA National Nutrient data base.
- 255 17. Evans WC. Trease and Evan's Text book of Pharmacognosy. 13th ed. University Press,
- 256 Cambridge;1989. pp.546.
- 18. Hossen SMM, Hossain MS, Islam J, Pinto MN, Jannat N, Ahmed F. Der Pharma
- 258 *Chemica*, 2014; 6 (3):332-338.
- 19. Gupta M, Mazumdar UK, Sivahkumar T, Vamis MLM, Karki S, Sambathkumar R,
- Manikandan L. Antioxidant and anti-inflammatory activities of Acalypha fruticosa.
- 261 Nig. J. Nat. Prod. Med. 2003; 7: 25-29.
- 20. Ahmed F, Das PK, Islam MA, Rahman KM, Rahman MM, Selim MST. Antibacterial
- activity of Cordyline terminalis. Kunth. leaves. J. Med. Sci. 2003; 3(5-6): 418-422.
- 21. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a
- standardized single disc method. *Am. J. Clin. Path.* 1966; 45 (4): 493-496.
- 22. Zimmermann M. Ethical guidelines for investigations of experimental pain in
- 267 **conscious animals.** *Pain* 1983;16(2):109-110.
- 23. Hossain MS, Islam J, Sarkar R, Hossen SMM. *IJP*, 2014; 1(7): 449-453.
- 24. Rajan M, Kishor Kumar V, Satheesh Kumar P, Thiruvenkatasubramaniyam R, Senthil
- Kumar N. Antidiabetic activity of ethanolic extract on Albizia odoratissima (l.f)
- benth in alloxan induced diabetic rats. *Int.J.Ph.Sci.* 2010; 2(3): 786-791.

- 272 25. Jithendra CH, Muralidharan P. Anti-hyperglycemic and antioxidant activity of the 273 Ayurvedic drus Nisha kathakathadhi churnam in alloxan-induced hyperglycemic 274 rats. *International Journal of Green Pharmacy*. 2009: 66-69.
- 26. Turner RA. *Screening methods in pharmacology*. New York: Academic Press; 1971. pp. 100–113.
- 27. Vogel HG. *Drug discovery and evaluation, pharmacological assay.* 2nd ed. New York:
 278 Springer; 2002. pp. 670.