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Abstract

We present a generalization of the �rst-order formalism used to de-
scribe the dynamics of a classical system. The generalization is then
applied to the �rst-order action that describes General Relativity. As a
result we obtain equations that can be interpreted as describing quantum
gravity in the momentum representation.
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1 Introduction

As is well-known, Quantum Mechanics can be formulated in the con�guration
(or position) representation or in the momentum representation. This situation
emerges from the two possible representations of the fundamental commutators
in a quantum theory. To illustrate this, consider the simple example of the
quantization of a one-dimensional system with a con�guration variable q and
a canonically conjugate momentum variable p. The corresponding quantum
operators q̂ and p̂ must provide a representation of the fundamental commutator

[q̂; p̂] = q̂p̂� p̂q̂ = ih (1)

where h is Planck´s constant h divided by 2�. The usual way to represent the
commutator (1) is to choose the operators

q̂ = q p̂ = �ih d
dq

(2)

In this representation the quantum wave function will be a function of q, that
is  =  (q), and we will be in the con�guration representation.
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The other possibility of representing the commutator (1) is to choose the
operators

q̂ = ih
d

dp
p̂ = p (3)

In this representation the quantum wave function will be a function of p, that
is  =  (p), and we will be in the momentum representation.
From a naive perspective, the operators (3) can be obtained from the op-

erators (2) simply by substituting the letter q by p and the letter p by �q in
equations (2). However, in a deeper conceptual level, these two possibilities
are related to the quantum mechanical wave-particle duality. The con�guration
representation is related to the particle aspect. Because of the De Broglie´s rela-
tion � = h=p, the momentum representation is related to the wave aspect. The
quantum wave-particle duality has a trace in classical mechanics in the form
of a Hamiltonian duality. This duality interchanges position and momentum
and leaves invariant the de�nition of the Poisson bracket. In this paper we will
use this classical Hamiltonian duality to perform a �rst step towards the con-
struction of a formulation of Loop Quantum Gravity (LQG) in the momentum
representation.
At present time, a quantum theory for the gravitational interaction, based

on the canonical quantization of General Relativity (GR) is under development.
It is called Loop Quantum Gravity. This theory has already produced new
interesting results, such as the quantization of the area and volume of a space-

time region in terms of the Planck length LP =
q

~G
c3 = 1; 62 � 10�35m. But

with no present available way to test the theory against experimental results,
the validity of LQG still remains an open question [1,2,3].
The motivation of this paper is to present an initial development that can

be used to support the validity of LQG. This initial development is an indica-
tion that, as Quantum Mechanics, Loop Quantum Gravity can be equivalently
formulated in the con�guration or in the momentum representation. A moment
of re�ection leads us to the conclusion that, in spite of being only an initial
development what is presented in this paper, it has a considerable importance
because it can be used as a starting point for an entirely new line of research in
Loop Quantum Gravity.
This paper is organized as follows. In section two we derive the two simple

classical equations that allow transitions to LQG in the con�guration and in
the momentum representations. We also present a brief discussion about the
consistency of our approach. In section three we review the basic equations of
LQG in the con�guration representation. In section four we present the basic
equations of a quantum theory that can be interpreted as LQG in the momentum
representation. Concluding remarks appear in section �ve.
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2 The �rst-order formalism and the transition
to quantum mechanics

The �rst-order formalism is in the interface between Lagrangian mechanics and
Hamiltonian mechanics. According to Dirac [6], a Hamiltonian formalism is a
�rst approximation to a corresponding quantum theory. Since, as we mentioned
in the introduction, quantum mechanics can be formulated in the con�guration
or in the momentum representations, following Dirac´s idea, we need two �rst-
order formalisms, one for each representation of quantum mechanics.

2.1 The �rst-order formalism for the con�guration space
formulation of quantum mechanics

The �rst-order formalism which can be considered as the classical limit of a
con�guration space formulation of quantum mechanics is the usual �rst-order
formalism. It is based on the action functional

S =

Z t2

t1

dt[p _q �H(q; p)] (4)

where t is the time variable and H(q; p) is the Hamiltonian. A dot denotes
derivatives with respect to t. Varying action (4) we �nd

�S =

Z t2

t1

dt[�@H
@q

�q + p� _q + ( _q � @H

@p
)�p] (5)

Integrating by parts the second term we haveZ t2

t1

dtp� _q = p�q jt2t1 �
Z t2

t1

dt _p�q

Inserting this result into the variation (5) we are left with a variation and a
surface term

�S =

Z t2

t1

dt[�( _p+ @H

@q
)�q + ( _q � @H

@p
)�p] + p�q jt2t1

The above variation of the action vanishes if Hamilton´s equations

_q =
@H

@p
_p = �@H

@q
(6)

are satis�ed. In this case the variation �S reduces to the surface term

�S = p�q jt2t1
Now we require that �q(t1) = 0 and leave �q arbitrary at t = t2. We therefore
see that, as a function of the �nal point of the trajectory, action (4) satis�es

p =
�S

�q
(7)
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As we shall see below, an equation analogous to equation (7) plays a central
role in the formalism leading to LQG in the con�guration representation.

2.2 The �rst-order formalism for the momentum space
formulation of quantum mechanics

We now introduce a �rst-order formalism which can be considered as the classical
limit of a momentum space formulation of quantum mechanics. This formalism
can be constructed using the Hamiltonian duality transformation

q ! p p! �q (8)

which leaves invariant the formal structure of the Hamilton´s equations (6) and
the de�nition of the Poisson bracket

fA;Bg = @A

@q

@B

@p
� @A

@p

@B

@q

which de�nes the algebraic structure in the phase space (q; p).
Applying the duality transformation (8) to action (4) we obtain the new

action

S =

Z t2

t1

dt[�q _p� ~H(q; p)] (9)

Varying action (9) we have

�S =

Z t2

t1

dt[�( _p+ @ ~H

@q
)�q � @ ~H

@p
�p� q� _p] (10)

Integrating by parts the last term gives

�
Z t2

t1

dtq� _p = �q�p jt2t1 +
Z t2

t1

dt _q�p

Inserting this result into the variation (10) we �nd that

�S =

Z t2

t1

dt[�( _p+ @ ~H

@q
)�q + ( _q � @ ~H

@p
)�p]� q�p jt2t1 (11)

Now, we see that, when Hamilton´s equations

_q =
@ ~H

@p
_p = �@

~H

@q

are valid, the variation (11) reduces to the surface term

�S = �q�p jt2t1
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We now impose that �p(t1) = 0 and leave �p arbitrary at t = t2. We now �nd
that, as a function of the end point, action (9) satis�es

�q = �S

�p
(12)

Equation (12) is the central equation in this paper. We will describe below how
equation (12) allows the construction of a formalism that can be interpreted as
describing Loop Quantum Gravity in the momentum representation.

2.3 The transition to quantum mechanics

It is important to stress that the �rst-order formalism of section 2.2 was intro-
duced only to be used as the classical limit of a momentum space formulation of
quantum mechanics. Since the wave-particle duality disappears at the classical
level, the classical Hamilton equations for the variables q and p derived from
the Hamiltonian ~H(q; p) will in general appear to be inconsistent. However,
when we turn to quantum mechanics, the Schrödinger equation obtained from
the quantum operator corresponding to ~H(q; p) will be consistent.
The simplest example of the above situation is a free non-relativistic particle,

described by the Hamiltonian

H =
p2

2m

The Hamilton equations for this system are

_q =
@H

@p
=

p

m
_p = �@H

@q
= 0

These equations tell us that the free particle moves in the position space and
remains at a �xed point in the momentum space. Quantization of this system
using the operators (2) leads to the Schrödinger equation

�h2 @
2 (q; t)

@q2
= ih

@ (q; t)

@t

Now, from the duality transformation (8), we obtain the Hamiltonian

~H =
q2

2m

As we saw in section (2.2), the Hamilton equations remain valid for this Hamil-
tonian. These equations now give

_q =
@ ~H

@p
= 0 _p = �@

~H

@q
= � q

m

which look counter-intuitive for us because the free particle now remains at a
�xed point in the position space and moves in the momentum space. However,
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the existence of this dual situation is a consequence of the classical Hamiltonian
duality, which we interpret as a residue of the quantum wave-particle duality.
Quantization of this system using the operators (3) leads to the Schrödinger
equation

�h2 @
2 (p; t)

@p2
= ih

@ (p; t)

@t

which is perfectly consistent.
Obviously this illustrative example of a free non-relativistic particle should

be looked at with some care. This is because a free particle is an idealized
physical system. All particles are subjected to some kind of interaction due to
the fact that they are part of the universe. In the following sections we study
this same situation in the more realistic case of General Relativity.

3 Loop Quantum Gravity

In this section we review the basic equations that de�ne LQG in the con�gura-
tion representation.
In 1986 Ashtekar [4,5] introduced a new set of variables to describe General

Relativity. In this new set of variables GR can be described by the �rst-order
action ( for details on this construction see ref. [1] )

S =
1

8�iG

Z
d4x(Eai _A

i
a � �iDaE

a
i � �aF iabEbi � �F

ij
abE

a
i E

b
j ) (13)

where
DaV

i = @aV
i + �ijkA

j
aV

k

is the covariant derivative on the tangent space T (�) of a compact three-
dimensional manifold � without boundaries.

F iab = @aA
i
b � @bAia + �ijkAjaAkb

is the curvature of � and F ijab = �ijk F
k
ab. The variables �

i, �a and � are Lagrange
multipliers without dynamics.
Indices i; j; ::: = 1; 2; 3 are internal SU(2) indices and a; b = 1; 2; 3 are space

indices. Comparing action (13) with action (4) we see that
a) the con�guration variable is Aia(~x)
b) the canonical momentum is Eai (~x)
c) the total [6] Hamiltonian density is given by HT = �iDaE

a
i + �

aF iabE
b
i +

�F ijabE
a
i E

b
j

Varying action (13) in relation to the variables �i; �a and � we obtain the
�rst-class [6] constraints

DaE
a
i = 0 (14)

F iabE
b
i = 0 (15)

F ijabE
a
i E

b
j = 0 (16)
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Equation (14) is the requirement of invariance of the theory under internal
SU(2) transformations. Equation (15) is the requirement of invariance of the
theory under space di¤eomorphisms. Equation (16) is the canonical Hamil-
tonian. Equations (14), (15) and (16) together are equivalent to the Einstein
equations in vacuum [1].
Now, using the analog of equation (7), that is

Eai =
�S

�Aia

we can make a transition to the Hamilton-Jacobi formalism as an intermediate
step to the quantum theory. Equations (14), (15) and (16) then become [1]

Da
�S

�Aia
= 0 (17)

F iab
�S

�Aib
= 0 (18)

F ijab
�S

�Aia

�S

�Ajb
= 0 (19)

The transition to LQG in the con�guration space is then obtained by substitut-
ing the classical action S by the wave functional 	(A) in equations (17), (18)
and (19). The �nal result is

Da
�

�Aia
	(A) = 0 (20)

F iab
�

�Aib
	(A) = 0 (21)

F ijab
�

�Aia

�

�Ajb
	(A) = 0 (22)

Equations (20), (21) and (22) are the basic quantum equations of LQG [1].

4 Loop QuantumGravity in the momentum rep-
resentation

In this section we derive the basic equations that we interpret to de�ne LQG in
the momentum representation. First we apply the duality transformation

Aia ! Eai Eai ! �Aia (23)

to the �rst-order action (13) for GR. We obtain the action

S =
1

8�iG

Z
d4x(�Aia _Eai � �iraAia � �bRabi Aia �Rabij AiaA

j
b) (24)
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The covariant derivative ra is now de�ned on the cotangent space T �(�) and
is given by

raV i = @aV i + �ijkEaj V
k

and the curvature Rabi in momentum space is given by

Rabi = @aEbi � @bEai + �
jk
i E

a
jE

b
k

with Rabij = �ijkR
ab
k . It is important to mention here that we should not interpret

action (24) as describing a real classical physical system. Rather, it should be
interpreted as a formal action describing the classical limit of a real quantum
physical system.
The equations of motion for the variables �i, �a and � give the �rst-class

[6] constraints
raAia = 0 (25)

Rabi A
i
b = 0 (26)

Rabij A
i
aA

j
b = 0 (27)

The next step towards the quantum theory is to use the general equation (12)
we derived in section two. In the present case equation (12) becomes

Aia = �
�S

�Eai
(28)

Substituting equation (28) into equations (25), (26) and (27) we obtain the
Hamilton-Jacobi equations

ra �S
�Eai

= 0 (29)

Rabi
�S

�Ebi
= 0 (30)

Rabij
�S

�Eai

�S

�Ebj
= 0 (31)

Finally, the transition to the quantum theory is completed by substituting the
classical action S by the wave functional 	(E) in momentum space. This gives

ra �

�Eai
	(E) = 0 (32)

Rabi
�

�Ebi
	(E) = 0 (33)

Rabij
�

�Eai

�

�Ebj
	(E) = 0 (34)

We interpret equations (32), (33) and (34) as the basic quantum equations of
Loop Quantum Gravity in the momentum representation.
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5 Results and discussion

In this paper, motivated by Dirac´s idea that a Hamiltonian formalism is a �rst
approximation to a corresponding quantum theory, we presented a generaliza-
tion of the �rst-order formalism used to describe the dynamics of a classical
system. This generalization is based on the Hamiltonian duality, which in-
terchanges the con�guration and the momentum variables of phase space. The
Hamiltonian duality leaves invariant the formal structure of the Poisson bracket,
which de�nes the algebraic structure of phase space. It also leaves invariant
the formal structure of Hamilton´s equations. As we saw in this paper, the
generalization of the �rst-order formalism we presented also leaves Hamilton´s
equations invariant. Our generalization was then used to derive a new equa-
tion (equation (12)) that allows a possible extension of the Hamilton-Jacobi
formalism.
After a review of the basic equations that de�ne Loop Quantum Gravity,

the results described above were applied to the �rst-order action that describes
General Relativity. For simplicity we considered only the case of a compact
manifold. This eliminates the discussion of boundary terms. A new dual ac-
tion, which should be interpreted as a formal action describing the classical
limit of quantum General Relativity in the momentum representation, was then
obtained.
As an intermediate step towards the quantum theory we used our new equa-

tion (12) to construct the Hamilton-Jacobi formalism for the dual action (24).
Finally, using standard quantization techniques, we obtained quantum equations
that can be interpreted as de�ning Loop Quantum Gravity in the momentum
representation. These �nal quantum equations justify the interpretation of ac-
tion (24) as describing the classical limit of quantum General Relativity in the
momentum representation, in agreement with Dirac´s original idea mentioned
above.

6 Conclusion

The conclusion of this paper is that the quantum theory for the gravitational
interaction, based on the canonical quantization of General Relativity, can be
formulated in the con�guration or in the momentum representation. We think
that this conclusion gives further support for the validity of Loop Quantum
Gravity. In addition, this conclusion opens a new line of research in LQG.
This new line of research is already well de�ned. It should start with a search
for a possible geometrical meaning for the dual action (24) using the tools of
di¤erential geometry. A second step should be the use of the Poisson bracket
in the (Aia; E

a
i ) phase space to investigate the algebra de�ned by constraints

(32), (33) and (34). After this one should try to elucidate the particular quan-
tum dynamic features of the momentum representation and how these quantum
dynamic features are related to the presently known ones in the con�guration
representation. A reasonable conjecture is that all these quantum dynamic fea-
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tures will be related via some type of gravitational wave-particle duality.
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