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ABSTRACT

We focused on a series of coumarin derivatives in this work. The method of Density
Functional Theory (DFT) of quantum chemistry has been used at B3LYP / 6-31G (d, p) level
in order to identify molecular descriptors which are useful for this study. The analysis of the
statistical indicators allowed to obtain a QSAR model based on quantum descriptors and
anti-cancer activity against breast cancer (MCF-7) that were accredited for good statistical
performance. For the model, the statistical indicators were: correlation coefficient R2 = 0.904,
standard deviation S = 0.102, Fischer test coefficient F = 18.779 and correlation coefficient of
cross validation = 0.894. This model has shown that the quantum descriptors namely the
dipole moment, the energetic gap, the distance d(c-c) and the dihedral angle D(o=c-c-h) are
at the origin of the anticancer activity of these coumarinic compounds. The validation of this
model has been done according to Eriksson et al.'s acceptance criteria for the training set
and according to Tropsha et al.'s five criteria for the validation set. The last used tool of
validation is the ratio of theoretical and experimental activities values of the validation set
which must tend towards the unit.
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1. INTRODUCTION

Cancer is the second biggest killer after cardiovascular diseases. Forty percent of cancer deaths can
be avoided by prevention [1]. It is estimated that the global burden of cancer has risen to 18.1 million
new cases and 9.6 million deaths in 2018. One out of five men and one out of six women worldwide
will develop cancer in their lifetime. It should be noted that 1 out of 8 men and 1 out of 11 women die
from this disease. Globally, an estimation of 43.8 million of people will live with a cancer diagnosis in
the next five years [2]. Regarding women, breast cancer is placed in second position after uterus’ one.
In addition to medical treatments with products that have many undesirable and often destructive side
effects, it has been wise to find more effective natural or synthetic molecules to fight against cancer
and its side effects.
Coumarins have become unavoidable thanks to their various therapeutic properties such as anti-
cancer, anti-tumor, anti-HIV and many others [3]. Coumarin was extracted for the first time in 1820
from the tonka bean (Dipteryx odorata Willd., Fabaceae). The word coumarin is the deformation of the
name coumarou [4]. The coumarin molecule has 9 carbon atoms and 2 oxygen atoms. It is a member
of the benzopyrone family. Benzopyrone molecules are formed by the junction of a benzene and a
pyrone rings. This family is subdivided into two sub-families, namely benzo-α-pyrones and benzo-γ-
pyrones. Coumarins come from the family of benzo-α-pyrones while flavonoids come from the family
of benzo-γ-pyrones [5].
Studied molecules in this work are obtained from coumarin core and all the molecules are obtained by
the substitution in C4 position through the thio-methyl linker. Coumarin core and the studied molecules
are presented in Figure 1 below.
The study of Quantitative Structure Activity Relationship (QSAR) is one of the best methods to design
new therapeutic agents. It allows to correlate quantitatively the mathematical models of the structures
of the compounds and their biological activity. QSAR is a highly solicited technique because it helps to
reduce the number of experiments that are sometimes long, dangerous and expensive in terms of time
and finance [6-9]. The present manuscript is written in order to implement a QSAR model in the
treatment of breast cancer in women. All this contributes to the reduction of medicines’ production
costs [10-11] and contributes to the protection of the environment. This QSAR approach has its origins
in the studies carried out, on the one hand by HanschL [12] and on the other hand by Free and Wilson



[13]. Indeed, Hansch has established models relating biological activity with the hydrophobic,
electronic and steric properties of molecules. In general, the QSAR model is based on the fifth (1/5) of
the initial database. The general aim of this work is to develop reliable model to explain and predict the
anti-cancer activity MCF-7 from a series of twenty (20) coumarin derivatives (Figure 1). These
compounds were synthesized and tested by Morsy et al. [14] for their biological activities.
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Figure 1: Molecular structures of coumarin core and the studied coumarin derivatives

2. MATERIALS AND METHODS

2.1. Data Source

A test for cytotoxic activity against human breast cancer cell line (MCF-7) using MTT (Methyl Thiazolyl
Tetrazolium) assay according to the method of Mosmann allows to obtain experimental values [15].
The twenty (20) studied molecules have median Inhibitory Concentration (IC50) ranging from 6.9 to
83.8 μg / mL. IC50 means the median concentration of molecules determined experimentally to inhibit
50% of cancer cells in a population of cancer cells [16]. Biological data are generally expressed as the
opposite of the decimal logarithm of activity (− log ( )). The purpose of this transformation is to
obtain better mathematical values when structures are biologically active [17,18]. The anticancer
activity will be expressed by the anticancer potential pIC50 defined by equation (1):= ( ∗ ) ( )
Where M is the molecular molar mass of the compound expressed in g / mol and IC50, the median
Inhibitory Concentration expressed in μg/mL.

2.2. Computational Methods

The correlations between the values of the biological activities of the studied molecules and their
molecular structures were obtained by quantum chemistry calculations carried out using the software
Gaussian 09 and its interface GaussView 5.0 [19]. The DFT method is generally known to generate a
variety of molecular properties [20-23] [16] [24-25] in QSAR studies. These generated properties
increase the predictability of QSAR models while reducing computational time and cost implications in
the design of new drugs [26,27]. The theory level B3LYP / 6-31G (d, p) was used to determine the
molecular descriptors. The modeling was done using the linear regression method implemented in
Excel spread sheet [28] and XLSTAT version 2014 [29].



2.3. Quantum Descriptors

The dipolar moment μD, the energy gap ΔEGap, the distance d(c-c) (distance between the two carbon
atoms that join the benzenic and pyronic rings) and the dihedral angle D (O=C-C-H) formed by the
oxygen hybridized sp2, carbons atoms C2-C3 and hydrogen bonded to C3 carbon atom were
determined in the framework of the development of a QSAR model. These descriptors are all obtained
from the optimized structures of the different molecules. The dipole moment (μD) indicates the state of
molecule’s stability in water. That means a compound with high dipole moment will have a low
solubility in organic solvents and high solubility in water [6]. The energy gap (ΔEGap) gives information
about the reactivity of a molecule because the lower the energy Gap, the more reactive the molecule
is and has very low kinetics [30]. The energy gap is established from the following relation:∆ = − ( )
The geometric descriptors such as d(C-C) bond length expressed in Armstrong (Å) and the dihedral
angle D(O=C-C-H) expressed in degree are used (Figure 2). The dihedral angle reflects the
coplanarity of the atoms involved in its formation. When it tends towards zero then the atoms that form
the dihedral angle are coplanar.

Figure 2: Used geometric descriptors of the coumarin ring: d (C-C) and D (O=C-C-H)

For all the studied descriptors, the analysis of the bivariate data, that is to say the calculation of the
coefficient of the partial correlation between each pair of the set of descriptors, is less than 0.95 (the
absolute value aij< 0.95), which means that these different descriptors are independent from each
other [31-36].

2.4. Forecasting Power of a QSAR Model

The judgment of a model’s quality is based on various statistical analysis criteria including the
coefficient of determination R2, the standard deviation S, the correlation coefficients of the cross
validation Q2

CV and Fischer test F. The quantities R2, S and F relate to the adjustment of calculated
and experimental values. They describe the ability to foretell in the boundaries of the model and permit
to estimate the accuracy of the calculated values on the training set [37-39]. Concerning the cross-
validation coefficient Q2

CV, it gives information on the predictive power of the model. This forecasting
power is qualified to be "internal" because it is calculated from the structures used to build this model.

The correlation coefficient R² tells how the theoretical values are spread around the experimental
ones. The quality of the modeling is better when the points are close to the adjustment line [40]. The
adjustment of points to this line can be obtained by the coefficient of determination defined below

= 1 − ∑ , − ,∑ , − , (3)
Where:, : The experimental value of the anticancer activity, : The theoretical value of the studied activity, : The mean or average value of the experimental values of the anticancer activity

The more the value of R² will be close to 1, the more theoretical and experimental values will be
correlated (close to each other).



Moreover, the variance σ2 is determined by the relation (4):

= = ∑ , − ,− − 1 (4)
Where k is the number of independent parameters (descriptors), n is the number of compounds
(molecules) in the training set or learning set, and n-k-1 is the degree of freedom.

The standard deviation S is another used statistical tool which indicates the reliability and the accuracy
of a model:

= ∑ , − ,− − 1 (5)
The level of statistical significance of the model is obtained through Fisher test F coefficient that is the
appropriateness of the descriptors’ choice constituting the model given in relation (6) below.

= ∑ , − ,∑ , − , ∗ − − 1 (6)
The coefficient of determination of the cross validation Q2

CV allows to evaluate the accuracy of the
prediction on the training set. It is calculated using the following relation:

= ∑ , − , − ∑ , − ,∑ , − , (7)
The performance of a mathematical model, according to Eriksson et al. [41,42] is characterized by a
value of Q2

cv> 0.5 for a satisfactory model when for the excellent model Q2
cv> 0.9. According to them,

for a given training set, a model will perform well if the following acceptance criterion R2- Q2
cv<0.3 is

met. In addition, the foretelling power of a model can be obtained from the value of the pMICtheo / pMICexp

ratio for the validation set. The model is acceptable when the values of the ratio of theoretical and
experimental activity are very close to unity. In addition, the predictive power of a model can be
obtained from the five Tropsha criteria [43-44]. If at least three (3) of them are satisfied, then the model
will be considered effective in predicting the studied activity. These criteria are determined from the
validation set and are listed below:

1) > 0.7 , 2) > 0.6 , 3) | − | ≤ 0.3 ,

4) < 0.1 and 0.85 ≤ ≤ 1.15, 5) < 0,1 and 0.85 ≤ ′ ≤ 1.15



3. RESULTS AND DISCUSSION

3.1. QSAR Models

Table 1 gathers the thirteen (13) molecules of the training set and the seven (07) molecules of the
validation set. Moreover, the values of the partial correlation coefficients aij of descriptors are also
indicated in Table 2.

Table 1: Descriptor values

Training Series

IC50(μg/mL) pIC50 μ(D) ∆ (eV) d(C-C) (oA) D(O=C-C-H) (o)
1 47.7 1.321 6.600 4.346 1.407 -0.380
2 63.5 1.197 6.563 4.317 1.407 -0.415
5 29.7 1.527 5.233 4.339 1.407 -0.374
7 83.8 1.077 8.494 3.944 1.391 1.353
9 40.5 1.393 7.184 3.935 1.391 1.252

10 58.7 1.231 7.130 3.938 1.390 1.364
11 21.1 1.676 4.508 4.252 1.407 0.415
12 39.7 1.401 8.193 3.654 1.407 0.121
13 16 1.796 5.232 4.310 1.407 -0.258
14 33.6 1.474 5.575 3.964 1.394 1.522
17 19.8 1.703 5.644 3.960 1.394 1.324
18 6.9 2.161 4.285 4.062 1.407 0.088
20 10.9 1.963 5.648 4.205 1.407 -1.421

Validation series

3 22.1 1.656 9.363 3.718 1.407 -0.970
4 69.2 1.160 5.200 4.334 1.407 -0.575
6 13.2 1.879 8.598 3.944 1.390 1.380
8 9 2.046 10.687 3.263 1.391 1.172

15 51 1.292 5.602 3.969 1.207 1.363
16 81.5 1.089 7.684 3.185 1.394 1.208
19 49 1.310 5.071 4.124 1.408 -1.719

Table 2: Descriptor Correlation Matrix

Variables μ(Debye) ∆ (eV) d(C-C) (Ao) D(O=C-C-H) (o) pIC50
μ(Debye) 1.000∆ (eV) -0.557 1.000

d(C-C) (Ao) -0.466 0.547 1.000
D(O=C-C-H) (o) 0.305 -0.610 -0.876 1.000

pIC50 -0.788 0.193 0.470 -0.403 1.000



The partial correlation coefficients aij contained in Table 2 between the pairs of descriptors (μ, ΔEGap),
(μ, d (C-C)), (μ, d (O = C-C-H)), (ΔEGap, d (C-C)) , (ΔEGap, D (O=C-C-H)) and (d (C-C), d (O=C-C-H))
are all less than 0.95 (aij<0.95), which means that the descriptors used in this model are independent
from each other.

3.2. QSAR Model’s validation

It should be noted that the negative or positive sign of a descriptor’s coefficient in the model’s equation
reflects the effect of proportionality between the evolution of the biological activity and the concerned
parameter. Thus, the negative sign indicates that the descriptor and the biological activity evolve
inversely while the positive sign reflects the opposite effect. The statistical indicators obtained for
QSAR model of the anticancer activity are given in Table 3.

The equation and the obtained statistical indicators are presented below in Table 3:

= 31.79-0.27*µD -1.09*∆ - 17.14*d(C-C) – 0.30*D (O=C-C-H)

Table 3: Statistical indicators determined from the training set

Statistical Indicators of Multilinear Regression Model

Number of compounds n 13
Coefficient of correlation of the R2 regression line 0.904

Standard deviation S 0.102
Validation of Fischer F 18.779

Coefficient of correlation of cross validation Qcv 0.894
Confidence level α > 95%

Negative signs of dipole moment (μD), energy Gap (ΔEGap), distance d(C-C) and dihedral angle D(O = CCH)

indicate that anticancer activity will be improved for low values of these quantum descriptors.

The significance of the model is expressed by the correlation coefficient of the cross validation Q2
CV =

0.894> 0.5. Moreover, this model is acceptable with R2-Q2
CV = 0.01< 0.3.

The regression line between the experimental and theoretical anticancer activities of the training set
(blue dots) and the validation set (red dots) is shown in Figure 3.

Figure 3: Model regression line



Furthermore, the external validation of the model was performed with the compounds of the validation
set (3, 4, 6, 8, 15, 16, 19). These molecules which are used for external validation meet the five criteria
of Tropsha.

Verification of Tropsha Criteria

= 0.858> 0.7 Q2
CVtest= 0.834> 0.6 | − | = 0.000 ≤ 0.3= 0.000 < 0.1 and 0.85 ≤ k = 1.000 ≤ 1.15 ;

= 0.000 < 0,1 and 0.85 ≤ k′ = 0.858 ≤ 1.15
Besides, the low value of the standard error S = 0.102 attests that foretold values and experimental
ones are very similar (Figure 4). This information is confirmed by the graph below which shows a
similar evolution of these data given by the multilinear model pIC50 of anticancer activity of coumarin
derivatives, despite some recorded differences.

Figure 4: Relationship between predictive and experimental data.

This model is therefore acceptable for the prediction of the anticancer activity of the series of studied
compounds. In addition, the fact that the five (5) Tropsha criteria are verified corroborates the
predictive power of the model.

3.3. Analysis of Descriptors Contribution in the Model

The study of the relative contribution of the descriptors in the prediction of the anticancer activity of the
compounds was carried out using the software XLSTAT version 2014 [28]. The different contributions
are shown in Figure 5.
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Figure 5: Contribution of the different constituents of the model

The descriptor priority order is given as follows:

(μD)> D (O = C-C-H)> (ΔE_Gap)> d (C-C). Therefore, the dipole moment μD is assumed to be the first
descriptor in the prediction of anticancer activity because it has the highest contribution.

4. CONCLUSION

The dipole moment μD, the energy gap ΔEGap, the distance d(c-c) and the dihedral angle D(o=cch)
allowed us to predict the anticancer activity of coumarin derivatives. This study showed the existence
of a strong correlation between the calculated and experimental values of the anticancer potentials.
The obtained QSAR model allows us to predict the activity of the best analogs called "lead". This
proposed model reveals that the dipole moment is the paramount descriptor for improving anticancer
activity. This work is a compass for designing new, more active molecules. The significance of this
model was verified using a test set comprising seven (07) molecules. The work presented here will
therefore play an important role in understanding the relationship between physico-chemical
parameters of the structure and biological activity. The study of this QSAR model could help us to
select the appropriate substituent to design new, more efficient compounds with improved biological
activity.
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