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Abstract

This work discusses the significance of the energy-momentum tensor of phys-
ical fields of an elementary particle. The Noether theorem shows how this tensor
can be derived from the Lagrangian density of a given field. This work proves
that the energy-momentum tensor can also be used for a consistency test of a
field theory. The results show that the Dirac Lagrangian of a spin-1/2 mas-
sive particle yields consistent results. On the other hand, problems exist with
the present structure of quantum electrodynamics, and with quantum fields of
massive particles that are described by a second order differential equation. All
problematic results are confirmed by an independent analysis.
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1 Introduction

The following example illustrates the significance of the energy-momentum tensor as

an element of a coherent structure of a physical theory. In the 1960s, Shockley and

James presented a paradox where a stationary system of a charge and a magnet has

a non-zero electromagnetic linear momentum [1]. They coined the term ”hidden mo-

mentum” for a description of the missing momentum. Momentum is a fundamental

element of physics and the somewhat mysterious ”hidden momentum” concept indi-

cates an unsettled problem. Soon after the publication of this paradox, Coleman and

Van Vleck provided a general proof showing that the system’s total linear momentum

must be balanced [2]. Their analysis relies on general conservation properties of the

energy-momentum tensor. Later, Comay analyzed the energy-momentum tensor of

the Shockley and James system [3]. This analysis proves that an explicit mechanical

linear momentum exists in the system. In particular, if a nonvanishing pressure gradi-

ent exists along a closed loop of current then effects related to the energy-momentum

tensor yield a nonzero mechanical linear momentum. This mechanical momentum

balances the electromagnetic linear momentum, and also supports the validity of the

Coleman and Van Vleck general analysis. Thus, the Shockley and James paradox is

an example that demonstrates the crucial role of the energy-momentum tensor as an

element of theoretical physics.

This work analyzes field theories of elementary particles. Its main objective is

to show that relations between the Lagrangian density of such a field theory and its

energy-momentum tensor can be used as a tool for a consistency examination of this

theory. This is a new feature of the energy-momentum tensor, and the validity of the

results is confirmed by an independent analysis.

Greek indices run from 0 to 3, and Latin indices run from 1 to 3. Units where

h̄ = c = 1 are used. This unit system requires one dimension, and the unit of length
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[L] is used. Most expressions are written in the standard notation of relativistic

covariant quantities. The metric is diagonal and its entries are (1,-1,-1,-1). The second

section describes some fundamental principles that are used below. The third section

presents properties of the energy-momentum tensor. The fourth section discusses

electromagnetic fields. The Dirac field of a massive spin-1/2 particle is discussed in

the fifth section. Fields that are described by a second order equation are analyzed

in the sixth section. The seventh section contains a discussion of some aspects of the

results, and the last section presents a summary of this work.

2 Relevant Principles

The following principles are used in the analysis which is carried out in this work.

P.1 The variational principle and its associated Lagrangian density are regarded as

fundamental elements of the present structure of field theory. The following

quotations that are taken from textbooks support this statement. ”All field

theories used in current theories of elementary particles have Lagrangians of

this form” (see [4], p. 300). Another support of this approach states that the

variational principle is ”the foundation on which virtually all modern theories

are predicated” (see [5], p. 353).

P.2 Wigner’s analysis of the unitary representations of the inhomogeneous Lorentz

group proves that a quantum particle is characterized by mass and spin. A

massless particle has two components of helicity [6–8]. It means that a quan-

tum theory must provide a consistent expression for angular momentum. Fur-

thermore, physical particles belong to one of the following categories: massive

particles whose 4-momentum is time-like and massless particles that have a null

4-momentum, where E2 − p2 = 0.
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P.3 The correspondence between nonrelativistic quantum mechanics and classical

physics is discussed in textbooks (see [9], pp. 25-27, 137, 138; [10], pp. 19-21).

It turns out that similar relationships hold between other physical theories.

The following quotation which is found in a well-known textbook, indicates the

significance of the correspondence between quantum theories. ”First, some good

news: quantum field theory (QFT) is based on the same quantum mechanics

that was invented by Schroedinger, Heisenberg, Pauli, Born, and others in 1925-

26, and has been used ever since in atomic, molecular, nuclear and condensed

matter physics” (see [4], p. 49). A general discussion of correspondence between

physical theories is presented in the literature (see [11], pp. 1-6).

These principles provide constraints that apply to the acceptability of a physical

theory. They are denoted by P.n, where n denotes the specific principle. Other

principles that are not mentioned above are also used, and they are mentioned below

at appropriate places.

3 Properties of the Energy-Momentum Tensor

The variational principle P.1 guarantees the existence of many important properties

of physical equations. This work examines the relevance of this principle to the

construction of the energy-momentum tensor of some field theories.

Density has the dimension [L−3] and energy has the dimension [L−1]. Therefore,

energy density has the dimension [L−4]. Furthermore, density is the 0-component of

a 4-current (see [12], p. 75), and energy is the 0-component of the energy-momentum

4-vector (see [12], p. 29). Therefore, energy density is the component T 00 of a second

rank tensor T µν, whose dimension is [L−4]. This tensor is called the energy-momentum

tensor. Entries of this tensor have a physical meaning (see [12], pp. 82-85). For

example, the four entries T µ0 represent energy-momentum density, the four entries
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T 0ν represent energy 4-current, and for each i, the row T iν represents momentum

4-current.

Consider the energy-momentum tensor of an elementary massive quantum parti-

cle in its rest frame. Isotropy of space means that entries that depend on a spatial

direction must vanish. In particular, momentum-related entries and energy 3-current

entries must vanish. (This conclusion also holds for an elementary quantum particle

whose spin does not vanish. Indeed, spin is an axial vector whereas 3-momentum and

3-current are polar vectors. Hence, spin cannot affect this conclusion.) It follows that

the required tensor takes the following form

T µν =


mρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (1)

where m denotes the particle’s mass and ρ denotes its density. The tensor (1) is

symmetric in the particle’s rest frame. Hence, it is symmetric in all frames (see [13],

p. 77).

As stated above, the Wigner analysis of the inhomogeneous Lorentz group P.2

shows that a quantum particle is characterized by mass and spin. Hence, the theory’s

structure must provide a well-defined expression for angular momentum. It turns

out that a symmetric energy-momentum tensor is required for this end (see [12], pp.

82-85). This outcome also applies to fields that represent a massless particle, like the

photon, which has no rest frame.

The Noether theorem shows that a Lagrangian density L(ψ, ψ,µ), which does not

depend explicitly on space-time coordinates, yields a consistent expression for the

energy-momentum tensor. This tensor takes the form

T µν =
∂L
∂ψ,ν

gµαψ,α − gµνL (2)

(see [12], p. 83; [14], p. 310). The tensor (2) satisfies energy-momentum conservation

T µν,ν = 0. (3)
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The definition (2) is consistent with the required dimension of T µν . Indeed, in

units where h̄ = 1 the action S is dimensionless. Hence, the definition

S =

∫
L d4x, (4)

together with c = 1 prove that the dimension of the Lagrangian density and of its

energy-momentum tensor (2) is [L−4].

The correspondence principle P.3 indicates that the energy-momentum tensor of

a classical body is relevant to an analysis of the energy momentum tensor of quantum

fields. In the rest frame of a classical macroscopic body, this tensor takes the form

T µν =


ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 , (5)

where ε denotes energy density and p denotes pressure (see [12], p. 92).

The following discussion examines the energy-momentum tensor (2) that is de-

rived from the Lagrangian density of specific fields.

4 Maxwellian Fields

Textbooks on Maxwellian electrodynamics show the standard derivation of the elec-

tromagnetic energy momentum tensor. Here the Lagrangian density of free electro-

magnetic fields (see [12], p. 86; [15] p. 601)

LEM = − 1

16π
F µνFµν (6)

is used. Evidently, this expression is a Lorentz scalar which does not explicitly depend

on the space-time coordinates. The result of the calculation is the following non-

symmetric tensor (see [12], p. 86)

T µν = − 1

4π

∂Aλ
∂xµ

F νλ +
1

16π
gµνFαβF

αβ. (7)
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This non-symmetric result means that something is wrong with the derivation

of (7). Indeed, the calculation begins with the Lorentz scalar Lagrangian density

(6), which does not depend explicitly on the space-time coordinates. In this case,

the Noether theorem says that angular momentum should be conserved (see [16], pp.

18, 19). Obviously, if a theory conserves angular momentum then it must provide a

consistent expression for this quantity. However, section 3 shows that a consistent def-

inition of angular momentum requires a symmetric energy-momentum tensor. Hence,

the non-symmetric result (7) means that something is wrong with its derivation.

The following lines show the validity of this conclusion. Consider the radiation

fields of a plane electromagnetic wave. Its fields are perpendicular to the direction of

motion and to each other (see [12], p. 120; [15] p. 271). The well-known formula of

energy density of electrodynamics (see [12], p. 81; [15] p. 237)

Efields = (E2 +B2)/8π (8)

means that radiation fields carry a positive amount of energy. In the literature the

particle associated with radiation fields is called real photon.

Remembering this point, let us examine the Rutherford scattering of an electron

by another charged particle (see [17], pp. 186-191). This process is determined by

bound fields of the particles. The 4-momentum transfer qµ is the difference between

the 4-momentum of the incoming electron and that of the outgoing electron. qµ is a

spacelike 4-vector (see [17], p. 190). Therefore, the Wigner analysis of the inhomo-

geneous Lorentz group P.2 shows that no genuine particle is exchanged between the

colliding particles. This conclusion is recognized by the general community, and the

4-momentum transfer qµ is called virtual photon (see e.g. [5], p. 65). It means that

radiation fields and bound fields do not represent the same physical entity.

The following examination of the hydrogen atom bound fields proves the same

result. The electronic states of this atom are documented in textbooks. A selection
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rule for a one photon transition requires l′ = l ± 1, where l, l′ denote the initial and

the final spatial angular momentum of the atom (see [9], p. 264). Two results are

derived from this rule:

1. The photon’s angular momentum is unity. This value is documented in this

authorized report [18]. (The photon is a massless particle and its angular mo-

mentum is called helicity.)

2. The atomic angular momentum is determined by its electronic state. It means

that the electromagnetic bound fields of the atom make a null contribution to

its angular momentum.

Comparing properties of radiation fields with those of bound fields, one concludes

that the different value of angular momentum and requirement P.2 mean that these

fields are different physical objects. Furthermore, the spacelike property of the 4-

momentum transfer of a Rutherford scattering means that no genuine physical particle

is associated with bound fields.

Using this result, let us derive the energy-momentum tensor of radiation fields.

The formal form of the result is the apparently nonsymmetric tensor (7). Textbooks

show how (7) can be corrected (see [12], pp. 86, 87). Here one adds to (7) the

following term

W µν =
1

4π

∂Aµ

∂xλ
F νλ =

1

4π

∂

∂xλ
(AµF νλ), (9)

and obtains the symmetric tensor

T µν =
1

4π
(−F µλF ν

λ +
1

4
gµνFαβFαβ). (10)

A direct calculation proves that the tensor (9) vanishes for radiation fields [19]. It

means that a symmetric energy-momentum tensor is directly obtained for radiation

fields.
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It is shown above that bound fields are not regarded as independent physical

objects in standard calculations of Rutherford scattering and of atomic states. The

previous calculation of the energy-momentum tensor provides another argument that

supports the claim that electrodynamics that is based on the variational principle

yields consistent results, provided bound fields are not treated as free dynamical

variables.

5 The Dirac Fields

Let us apply the ordinary construction of the energy-momentum tensor (2) to a Dirac

field. The Lagrangian density of a free Dirac field is (see [14], p. 52; [16], p. 54)

L = ψ̄(iγν∂ν −m)ψ. (11)

Here the dimension of the expression inside the brackets is [L−1]. For this reason

the dimension of a Dirac function ψ is [L−3/2]. Using the general formula for the

energy-momentum tensor (2), one finds that the tensor of this field is

T µν = ψ̄iγνgµα∂αψ − gµνL. (12)

Let us use the definition ψ̄ ≡ ψ†γ0 and examine entries of (12). Section 3 shows

that the entry T 00 is energy density. Here the expression (12) corresponds to the

Legendre transformation which casts the mechanical Lagrangian to the Hamiltonian

(see [20], p. 131; [21], p. 337). This transformation removes terms that are propor-

tional to the first order time-derivative of the coordinates. The result is

T 00 = ψ†(−iα · ∇+ βm)ψ, (13)

where γ0γ = α. The expression inside the brackets of (13) is the Dirac Hamiltonian

of a free particle (see [22], p. 11), and ψ†ψ is the Dirac density. Hence, (13) represents

energy density, in accordance with section 3.

Let us see the form of off-diagonal entries of (12) where µ 6= ν.
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1. If µ = k > 0 and ν = 0 then γ0γ0 = 1 and (12) is

T k0 = ψ†(−i∂k)ψ. (14)

Therefore T k0 is the momentum density, in accordance with section 3.

2. If µ = 0 and ν = k > 0 then (12) is

T 0k = ψ†(iαk∂0)ψ. (15)

Here the Dirac αk is the kth component of the velocity operator (see [22], p.

11). Hence, T 0k is the energy current. The relativistic 3-momentum is p = Ev,

where E is the energy and v is the 3-velocity. It means that T ν0 = T 0ν . This

relation is consistent with the symmetry of this tensor, in accordance with

section 3.

Other components of the energy-momentum tensor of the Dirac field can be

calculated analogously. This section proves that an application of the standard con-

struction of the energy-momentum tensor (2) to the Dirac field yields quantities that

are consistent with physical requirements.

6 Fields of Second Order Quantum Equations

The [L−4] dimension of the Lagrangian density of a quantum field and a second order

quantum differential equation mean that the dimension of this field is [L−1]. For this

reason, this kind of quantum theory is intrinsically different from the Dirac theory of

a massive quantum particle, where the dimension of the field’s function is [L−3/2].

An example of a Lagrangian density of a second order quantum theory of a

massive particle is

L = gµνφ∗,µφ,ν −m2φ∗φ+OT, (16)

where OT denotes other terms. In the case of the Klein-Gordon (KG) field, OT is null

(see [4], p. 21; [16], p. 38). The Lagrangian (16) describes correctly the appropriate
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expression for the Higgs boson (see [14], p. 715). An analogous expression holds for

the electroweak W±, Z bosons (see [23], p. 518) and for the Proca theory of a massive

photon (see [15], pp. 597-601). The mass dependence of the Lagrangian density (16)

is expressed only by its second term.

Let us utilize the standard construction of the energy-momentum tensor (2) and

find an expression for energy density T 00 of these fields. The mass-dependent term

of (16) contains no derivatives. Therefore, in the corresponding energy-momentum

tensor, this term takes the same form with the opposite sign

T 00 = m2φ∗φ+ ... (17)

This expression for energy density depends quadratically on mass. Therefore, it

is inconsistent with the standard form of the energy-momentum tensor (1) as well as

with the celebrated relativistic expression E = mc2, which depend linearly on mass.

For this reason, the structure of the energy-momentum tensor of a second order

Lagrangian density demonstrates an inherent inconsistency of the associated theory.

7 Discussion

The following arguments support the validity of the problematic issues that are ob-

tained above from an analysis of the energy-momentum tensor.

It is interesting to note that the symmetric energy-momentum tensor of electro-

magnetic fields (10) can be directly obtained from a Lagrangian density, if entries of

the metric tensor gµν are regarded as the dynamical variables (see [12], pp. 290-293).

The following argument indicates that this issue does not settle the problem.

In principle, the Lagrangian density is used for a derivation of the equations of

motion of dynamical variables, called the Euler-Lagrange equations (see e.g. [4], p.

300). Other quantities can also be derived from it. In the case where gravitational

fields are regarded as dynamical variables, the symmetric energy-momentum tensor of
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electromagnetic fields (10) is obtained. By contrast, if the electromagnetic quantities

are treated as the system’s dynamical variables then the unacceptable non-symmetric

expression (7) is obtained! Hence, the following problem arises: Why contradictory

results are obtained from two legitimate procedures?

This problem indicates that something is wrong with the derivation of the incor-

rect electromagnetic energy-momentum tensor (7). Evidently, a further analysis of

this issue can only clarify the root of the problem. The discussion of section 4 shows

that there are very good reasons for the removal of bound fields from the analysis.

This action also yields a symmetric energy-momentum tensor of the electromagnetic

fields.

The following quotations support the foregoing claim that the present structure

of Maxwellian electrodynamics contains an unsettled problem. Thus, one respectable

textbook examines the electromagnetic 4-potential and states: ”The fact that A0

vanishes in all Lorentz frames shows vividly that Aµ cannot be a four vector” (see [4],

p. 251). By contrast, other respectable textbooks treat Aµ as a genuine 4-vector (see

e.g. [12], pp. 47-49; [15], pp. 572-578). These contradictory statements indicate that

an unsettled problem still exists in quantum electrodynamics (QED). For a further

discussion of this problem, see [24,25].

Let us examine the theory of KG particles that was introduced by Pauli and

Weisskopf [26]. Their Hamiltonian of an electrically charged KG particle contains

terms that depend quadratically on the electric charge and on the 4-potential as well

(see eq. (37.a) therein). This property violates Maxwellian electrodynamics, where

the interaction strength is proportional to the electric charge and depends linearly on

the 4-potential.

The Proca field is a modification of Maxwellian electrodynamics. It is an example

of a Lagrangian density that contains an additional term which is proportional to m2,

and the particle is called ”a massive photon” (see [15], pp. 597-601). This is a special
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example of the m2 discrepancy which is discussed in section 6. The m2 problem of

the Proca Lagrangian has already been pointed out in the literature [27]. It turns out

that the experimental side strongly disapproves the Proca idea of a massive photon.

Thus, the experimental upper limit of the photon mass is smaller than the electron

mass by the amazing amount of 24 orders of magnitude [18].

Unsettled theoretical problems exist with the W±, Z and the Higgs particles,

whose Lagrangian density contains a problematic term which is proportional to m2.

For example, these particles have a mass m > 0, but in spite of the fact that these

particles have been proposed more than half a century ago, textbooks still do not

show a consistent expression for their density in particular and for their 4-current in

general. By contrast, a consistent expression for density of a Dirac particle has been

found about one month after the publication of the Dirac equation [28,29].

It is interesting to note that the negative attributes of second order quantum

equations that are derived above are consistent with Dirac’s lifelong objection to

these equations (see [30], pp. 1-8).

8 Conclusions

This work points out the significance of the energy-momentum tensor of physical

fields. For example, the Shockley-James hidden momentum enigma [1] has been

settled by means of this tensor, which provides explicit expressions that show the

required momentum balance [3].

The present work indicates that this tensor can also be used for a consistency test

of field theories of elementary particles. Specific discussions prove that the present

form of the Lagrangian density of many fields contains erroneous elements. The

analysis shows that this new application of the energy-momentum tensor yields correct

results, and each problematic field theory contains other kinds of inconsistencies. A

brief summary of the results is described below.
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1. The Dirac field is problem-free. Consider the calculation of the hydrogen atom

energy levels. The amazing accuracy of this calculation is just one example that

indicates the validity of the Dirac theory. Furthermore, no serious scientist has

published critical comments on this theory.

2. The analysis of this work indicates problems with the present QED structure.

Indeed, in spite of its reputation, QED is not a problem-free theory. For ex-

ample, Dirac and Feynman are eminent QED persons, and renormalization is

an important element of the present QED structure. Here are two quotations

about this scheme which support the paper’s conclusion. P. A. M. Dirac has

described it as a procedure of an ”illogical character” [31]. Feynman stated that

renormalization is ”a dippy process” (see [32], p. 128).

3. The paper proves that problems exist with a Lagrangian density that contains

a term like m2φ∗φ. The following points illustrate this claim.

A.1 Electrically charged KG particles contain a term that is proportional to

e2. This term violates Maxwellian electrodynamics.

A.2 The Proca massive photon is strongly rejected by experiment.

A.3 Textbooks show no explicit form of the equation of motion of the W±, Z

and the Higgs particle. Moreover, textbooks contain no adequate justifi-

cation of the omission of this QFT vital element. A fortiori, no solution of

these equations is shown. By contrast, textbooks do show the Dirac and

the Maxwell equations, and show that the corresponding solutions of these

equations excellently fit the data.
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