1	ORIGINAL RESEARCH ARTICLE	Formatted: Font: 10 pt
2 3	COMPONENTS OF TREE BIOMASS IN AN INTEGRATED CROP-LIVESTOCK-FOREST SYSTEM	Formatted: Font: (Default) Arial, 10 pt
4	۵۱۵۱۲۳۸۲ ۸	Formatted: Font: 10 pt
5	ABSTRACT	Formatted: Font: (Default) Arial, 10 pt
5		Formatted: Font: 10 pt
6	Aims: This study performed the adjustment of volumetric models, and determined the	Formatted: Font: (Default) Arial, 10 pt
7	biomass of Eucalyptus grandis x Eucalyptus urophylla hybrid cultivated in a crop-livestock-	
8	forest integration system (CLF)	Formatted: Font: (Default) Arial, 10 pt
9	Study design: The experimental area consists of a crop-livestock-forest integration system	
10	where trees are hybrids clones of seven year old Eucalyptus grandis x Eucalyptus urophylla,	Formatted: Font: (Default) Arial, 10 pt
11	Place and duration of study: This work was carried out at Fazenda Santa Brígida,	
12	Ipameri, Goiás (Brazil)	Formatted: Font: (Default) Arial, 10 pt
13	Methodology: A forest inventory of the area was carried out in October 2015 when the tree	
14	component was fully developed. Diameter at breast height (DBH) (at 1.30 m) and total	
15	height (H) of trees were measured in the field and categorized according to 4 classes.	
16	Afterwards, 12 trees were felled, which were cubed and compartmentalized to determine the	
17	volume and biomass of their components. The volumetric models developed by Schumacher	
18	& Hall and Ogaya were applied to obtain determination coefficients	Formatted: Font: (Default) Arial, 10 pt
19	Results: The average DBH was 18.28 cm and the average H was 23.47 m. The highest	
20	volumes of wood were observed in the diametric classes that presented the largest number	
21	of individuals, however in the class of higher DBH an average individual volume of 0.36 \ensuremath{m}^3	
22	of wood was observed. The total biomass of <i>Eucalyptus</i> was 56.64 Mg ha ⁻¹ , being 83.70%	
23	wood, 6.52% in branches, 6.37% in bark and 3.40% in leaves	Formatted: Font: (Default) Arial, 10 pt
24	Conclusion: The volumetric models developed by Schumacher and Hall as well as Ogaya	
25	were found to be applicable for estimating the volume of wood in CLF systems, where both	
26	showed a determination coefficient of 0.866	Formatted: Font: (Default) Arial, 10 pt
27	Keywords: compartmentalization; eucalyptus; CLFS; volume, modeling	Formatted: Font: (Default) Arial, 10 pt
28		

29	1. INTRODUCTION	Formatted: Font: 10 pt
30	Crop-livestock-forest (CLF) integration has been proposed as an economically	Formatted: Font: (Default) Arial, 10 pt
31	viable production technology for the recovery and renovation of degraded areas in the	
32	Cerrados, a vast tropical savanna ecoregion of Brazil [1], The main habitat types of the	Formatted: Font: (Default) Arial, 10 pt
33	Cerrado include: forest savanna, wooded savanna, park savanna, and gramineous-woody	
34	savanna,. Ssavanna wetlands and gallery forests are also included.	Formatted: Font: (Default) Arial, 10 pt
35	In addition to the formation or recovery of pastures, this technique_CLF favors	
36	the production of grain cultivars along with the exploitation of tree biomass production, either	
37	simultaneously, sequentially, or rotationally [2]. The intensification of the production has	
38	several benefits to the producer and the environment, such as: improving the physical,	
39	chemical, and biological conditions of the soil, increasing the cycling and efficiency for the	
40	use of nutrients, reducing production costs of agriculture and livestock, opening new areas	
41	for production, as well as diversifying and stabilizing the income of the producer [3]. The	
42	included tree component biomass promotes benefits ranging from soil protection to	
43	availability of nutrients and organic matter in the soil by the deposition of leaves and tree	
44	branches [4,5]	Formatted: Font: (Default) Arial, 10 pt
45	Eucalyptus has been presented as a good option in the integrated CLF due to	
46	its rustic nature, rapid growth, great utilization, and economic value in the market, being an	
47	alternative for farmers interested in wood production [6]. The rapid growth of the eucalyptus	
48	in Brazil can be explained by the large investment of the companies in order to achieve the	
49	demand of the silvicultural products. The high productivity of stands planted by the Brazilian	
50	forest companies is recognized worldwide, due to the higher average productivity the	
51	minimum time required until harvesting, continuous investment in research on genetic	
52	improvement and silvicultural. The preservation and maintenance of native forests to	
53	preserve the biodiversity, makes planted forests even more important for preservation,	
54	because they have high productivity in a short period of time, avoid exploration of natural	
55	forests. These plantations, besides providing different products, also help with carbon	

56	sequestration, while also maintaining animal biodiversity [7,8].	Formatted: Font: (Default) Arial, 10 pt
57	In the integration of CLF, one of the challenges lies in the careful planning of	
58	the system in defining short, medium, and long-term actions. The competition for light	
59	between forest species and agricultural and pastoral crops requires special attention, as this	
60	directly influences the productivity of the system. However, this competition can be reduced	
61	by selecting genetic material, adapting the planting arrangement of the tree component, and	
62	silvicultural treatments, which, in addition to adding value to the wood, also allows for greater	
63	light entry into the integration system that contributes to the maintenance or increase in the	
64	productivity of the other components, as pasture and agricultural culture [9,2],	Formatted: Font: (Default) Arial, 10 pt
65	The configuration of tree component arrangements may influence plant height,	
66	diameter of breast height (DBH), and volume of wood. Clemente [10] verified that integrated	
67	systems with single and double row arrangements provided higher volumes of wood. In their	
68	study, Oliveira et al. [11] verified higher volumes of Eucalyptus wood in integrated systems	
69	with forages, than in monoculture	Formatted: Font: (Default) Arial, 10 pt
70	The balanced relationship between the integrated CLF components is important	
71	for the expression of the productive potential of the species involved. In the case of tree	
72	species, especially the fast-growing ones such as Eucalyptus, accumulation and biomass	
73	production are influenced by age of trees, among other factors. In the juvenile phase,	
74	accumulation is higher in the canopy components, whereas a greater increase of biomass in	
75	the trunk component is perceived over time [12],	Formatted: Font: (Default) Arial, 10 pt
76	However, this work had the aim of adjusting volumetric models and determining	
77	the biomass of the Eucalyptus grandis x Eucalyptus urophylla hybrid cultivated in an	
78	integrated crop-livestock-forest (CLF) system in Ipameri / Goiás (Brazil),	Formatted: Font: (Default) Arial, 10 pt
79		
80	2. MATERIALS AND METHODS	Formatted: Font: 10 pt
	This study was carried out at Fazenda Santa Brígida in the municipality of	Formatted: Font: (Default) Arial, 10 pt
	Ipameri – Goiás (Brazil), located at 17° 39'22" south latitude and longitude west of 48°	

12'22", and at an altitude of 800 m a.s.l. [11]. According to the classification of Köppen-Geiger [13], the climate of the region is Aw (tropical savannah with dry season in winter), and the average temperature of the region varies between 22 and 23°C. The mean annual rainfall is between 1200 and 1400 mm, having a wet period of seven months from October to April, and the remaining five months characterize the dry season,

According to Embrapa [14], the soil of the experimental area is classified as red latosol, being naturally acidic and with low base saturation with good drainage and sand-clay texture.

The experimental area consists of an integrated crop-livestock-forest system that tends towards the east-west direction. Tree planting was carried out with clones of the hybrid Eucalyptus grandis x Eucalyptus urophylla (GG 100) in 2008 in an area of approximately four hectares (ha). The trees were arranged in double rows (1 m x 1 m x 26 m), occupying 1.4 ha of the total area of the system [11].

81 Before establishment of the seedlings, soil acidity was corrected with the use of 82 two tons per hectare of dolomitic limestone and one ton of gypsum. At planting, the base 83 fertilization used was 400 kg ha⁻¹ of yoorin thermophosphate and 180 grams (g ha⁻¹) of NPK 84 formulation 06-30-30, supplemented with 0.4 g ha⁻¹ of zinc, 0.2 g ha⁻¹ copper, and 0.2 g ha⁻¹ 85 boron. The half of this composition was incorporated into the bottom of the planting pit, and 86 the remainder was distributed 20 days after planting in two lateral holes located 10 cm from 87 the seedlings,

88 15 Fifteen months after of planting, a pruning was performed, and at 30 89 months, the third cover fertilization was applied using NPK formulation 00 - 00 - 36 with the 90 addition of 0.2 g ha⁻¹ of copper and 0.6 g ha⁻¹ of boron per plant, provided in continuous fillet 91 in the crown projection, Formatted: Font: (Default) Arial, 10 pt 92 2.1 Determination of Eucalyptus biomass

93 94

The forest inventory of the area was carried out in October 2015 when the tree

Formatted: Font: (Default) Arial, 10 pt

Formatted: Font: 10 pt Formatted: Font: (Default) Arial, 10 pt

95	component was fully developed, seven years after planting. DBH (dDiameter at breast
96	height (DBH) at 1.30 m above soil level) and H (total height (H) of the trees) were measured
97	in the field with the aid of a caliper and the use of a clinometer. For the of DBH and H
98	measurements, a systematic sampling was carried out with regular intervals on every sixth
99	tree line in which measurements were made on the two individuals that composed it
100	Based on the data obtained from the forest inventory, the trees were distributed
101	in four classes of diameters (Table 1). Subsequently, three individuals were felled for
102	sampling in each diameter class, considering the lower, middle, and upper limits, totaling 12
103	trees

Formatted: Font: (Default) Arial, 10 pt

Formatted: Font: (Default) Arial, 10 pt

<u></u>	
Formatted: Font: Italic	
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt
Formatted: Font: (Default) Arial, 10	pt

104

Table 1. Diametric distribution (cm) of Eucalyptus in the integrated CLF system Class interval Class center Number of sampled individuals 9 1-14 11.5 16 16.5 14.1 – 19 59 21.5 19.1 - 124 80 24.1 - 129 26.5 6

105

106 After the trees were felled, they were subjected to rigorous sampling, according 107 to the method developed by Smalian and described by Finger [15]. The height points for 108 taking diameters with and without bark were: 0.10 m, 0.30 m, 1.30 m, 2.30 m, and so on, at 109 one meter intervals up to full height. 110 After measuring the diameters, the trunk was sectioned into 1 m long logs to 111 the point where the diameter was seven centimeters (commercial diameter). From there, up 112 to a diameter of three centimeters was considered as tip of the trees, and the remaining 113 portions to the apex were considered branches. For the determination of the dry weight of 114 wood, the methodology developed by Schumacher [16] was used, in which three samples 115 were taken along the trunk. The total height of the tree was divided into three sections, and

116	the midpoint of each third of the tree was taken to compose the sample. Each sampling point	
117	was composed of the complete disc of the tree cylinder that had a thickness of ten	
118	centimeters	Formatted: Font: (Default) Arial, 10 pt
119	After sectioning, the logs were weighed both with and without bark to determine	
120	the wet weight of the wood and bark. The tree canopy, in turn, was divided into two	
121	components: leaves and branches. These components were also weighed in the field and	
122	properly sampled to determine the dry weight in the laboratory, as well as to determine wood	
123	biomass (WB), branch biomass (BB), and leaf biomass (LB),	Formatted: Font: (Default) Arial, 10 pt
124	The biomass samples were sent to the Forest Ecology Laboratory (ECOFLOR)	
125	of the Federal University of Goiás. They were placed in a force air circulation oven at $65\cup{C}$	Formatted: Font: (Default) Arial, Superscript
126	for drying until the weight of the samples remained stable to obtain the dry mass of the	
127	components with a precision digital scale (0.01 g).	
128	•	Formatted: Font: (Default) Arial, 10 pt
129	2.2 Data analysis	Formatted: Font: 10 pt
130	In order to relate the DBHs and biomass components of each tree, linear	Formatted: Font: (Default) Arial, 10 pt
131	regressions were performed for each component: wood, bark, branches, and leaves. For the	
132	volumetric models, the DBH and the total height of the tree were considered the	
133	independent variables, and the total volumes and the trunk with the bark were dependent	
134	variables. Four volumetric models, one single-entry and three double-entry, were chosen	
135	because they were the most used for the quantification of the production in forest stands and	
136	have not yet been tested in integrated CLF systems. The models tested are described in	
137	Table 2.	
138		
139		
	Table 2. Volumetric models tested	Formatted: Font: (Default) Arial, 10 pt
	Author Type Model	Formatted: Font: (Default) Arial, 10 pt
	·	Formatted: Font: (Default) Arial, 10 pt
		Formatted: Font: (Default) Arial, 10 pt

Husch	Single entry	$V = \beta_0 + \beta_1 DAP$		Formatted: Font: (Default) Arial, 10 pt
Ogaya	Double entry	$V=DAP^{2}(\beta_{0}+\beta_{1}H)$		Formatted: Font: (Default) Arial, 10 pt
				Formatted: Font: (Default) Arial, 10 pt
Schumacher & Hall (log)	Double entry	$V = \beta_0 + \beta_1 Ln(DAP) + \beta_2 Ln(H)$		Formatted: Font: (Default) Arial, 10 pt
Spurr (log)	Double entry	$V = \beta_0 + \beta_1 \ln(DAP^2H)$		Formatted: Font: (Default) Arial, 10 pt
				Formatted: Font: (Default) Arial, 10 pt
DBH= diameter at breast he	eight; H = total heigh	ht; β_0 = value of the height estimated wh	en 🐈 👯	Formatted: Font: (Default) Arial, 10 pt
the diameter is zero; β ₁ =	slope of the line, v	which corresponds to the value of the fi	rst	Formatted: Font: (Default) Arial, 10 pt
			111	Formatted: Font: (Default) Arial, 10 pt
derivative; β_2 = rate of chan	ige in volume (m ³) a	as height (m) variation occurs with consta	ant 🔥	Formatted: Font: (Default) Arial, 10 pt
DBH (cm); β_3 = coefficient of	f the multivariate more	del	Ň	Formatted: Font: (Default) Arial, 10 pt
			· · · · · · · · · · · · · · · · · · ·	Formatted: Font: (Default) Arial, 10 pt

The volumetric models were adjusted and evaluated by means of adjustment and precision statistics, following the importance proposed by Draper and Smith [17]: graphical analysis of the residues; estimate of the standard error in percentage (Syx%) that indicates the proximity between the estimated values and those observed and the closer to zero the model and the determination coefficient (R2) that shows how much the dependent variables are explained by the independents and, in this case, the closer to a better model,

140	· · · · · · · · · · · · · · · · · · ·	·
141	3. RESULTS AND DISCUSSION	5.5
142		
143	3.1 Determination of eucalyptus biomass	·
144	The integrated crop-livestock-forest (CLF) system evaluated presents a	
145	density of 303 trees per hectare. This occupied 33.65% of the area designated to the system	
146	and an average production of 0.18 m ³ of wood per tree, totaling a volume of wood without	
147	bark of 54.80 m^3 ha in the studied system. The remaining 66.35% were destined to other	
148	economic activities within the integration, such as agricultural and forage production. $_$	
149	After performing the forest inventory, the diameter distribution was analyzed,	
150	and four diameter classes were obtained. It is notable that the height, density, and volume of	
151	wood without bark were higher in class III, being 30.33 m, 151 trees ha ⁻¹ , and 40.06 m ³ ha ⁻¹ ,	

Formatted: Font: (Default) Arial, 10 pt
Formatted: Font: (Default) Arial, 10 pt

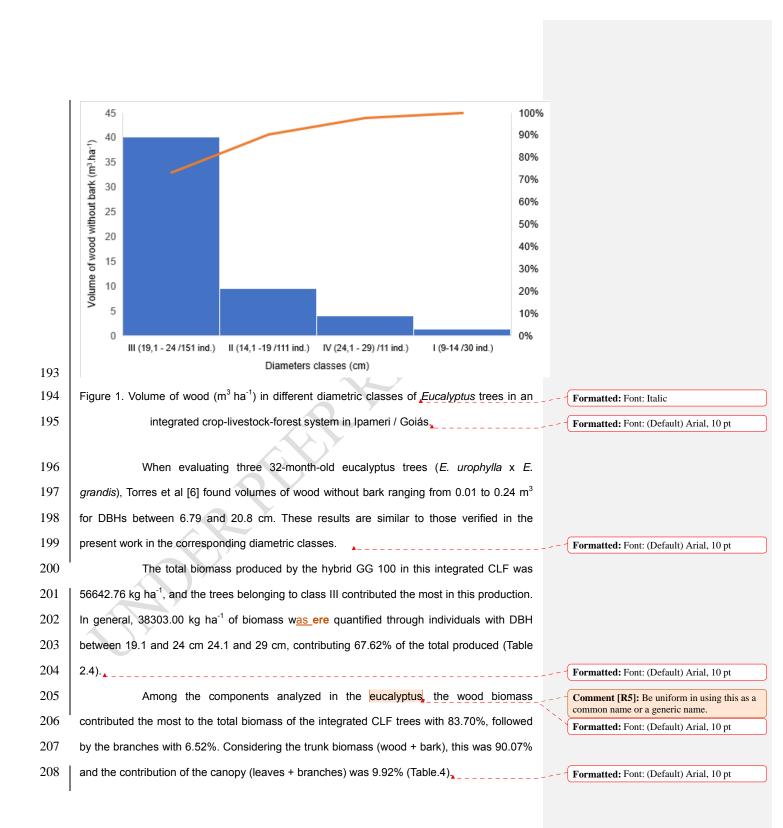
Formatted: Font: (Default) Arial, 10 pt	
Formatted: Font: (Default) Arial, 10 pt	
Formatted: Font: 10 pt	
Formatted: Font: (Default) Arial, 10 pt	_
Formatted: Font: 10 pt	
Formatted: Font: (Default) Arial, 10 pt	_

Formatted: Font: (Default) Arial, 10 pt

152	respectively (Table 3). Through the dendrometric characteristics of this integrated CLF
153	system, it is possible to verify a trend in relation to the height behavior of the plants and their
154	DBHs, being that the DBH tends to increase as the height linear increases . This is contrary
155	to the expected behavior in more homogeneous forest stands where trees with higher
156	heights and smaller diameters are observed. More than the standard can be seen in other
157	eucalyptus studies, depending on the clone and the management used in the area, as well
158	as Miguel et al [18] observes in homogeneous plantation of E. urograndis in Niquelandia,
159	GO and Lemos-Junior et al [19] in CFL with same specie <u>s</u> in Cachoeira Dourada, GO.

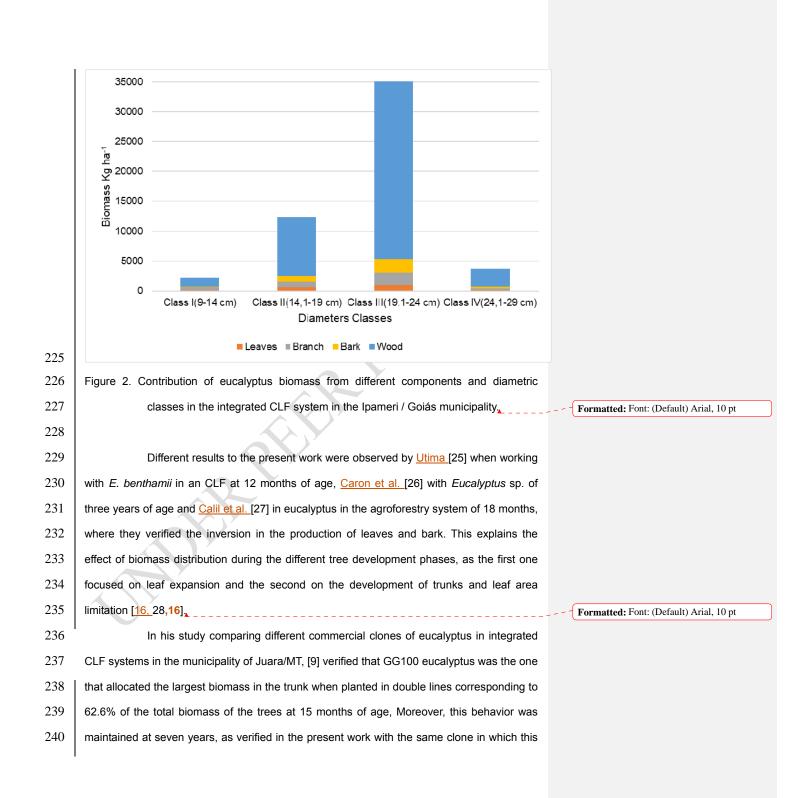
Table 3. Dendrometric characteristics of *Eucalyptus grandis* x *Eucalyptus urophylla* grown in
the integrated CLF system at Fazenda Santa Brígida in the municipality of Ipameri / Goiás /
2015.

					1 a 41
Diameters Classes	Mean height	mean DBH	Density(tree.	Volume of	wood
(cm)	(m)	(<u>cm)</u>	ha ⁻¹)	without bark ((m ³ .ha ^{,1})
l (9-14)	12.58	10.45	30	1.25	110
II (14,1-19)	20.73	14.53	111	9.45	
III(19,1-24)	30.33	21.57	151	40.06	
IV(24,1-29)	30.22	26.55	11	4.04	
Total	23.47	18.28	303	54.80	

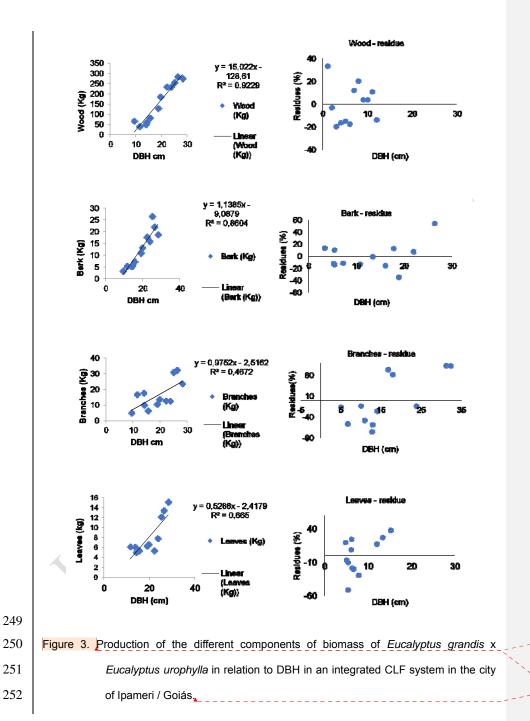

164

160

Generally, resource availability tends to be higher in stands with less density of less trees, reflecting higher growth in broader plantations [20]. This fact can be observed in this study because in spite of the densification of the trees in the planting lines, the spacing between the eucalyptus ridges provides greater light availability in this integrated CLF system. This causes the effect observed in the height as demonstrated by Miguel et al [18] in homogeneous plantation of *E. urograndis* in Niquelandia, GO, DBH and wood volume as demonstrated by Lemos-Junior et al [19] in CFL with same species in Cachoeira Dourada,


Comment [R1]: This sentence	is not cle [1]
Formatted	[2]
Formatted	[3]
Comment [R2]:	
Comment [R3R2]: Why there	is change [4]
Formatted	[6]
Comment [R4]: Provide the en	rror valu [10]
Formatted	[5]
Formatted	[[7]
Formatted	[8]
Formatted	[9]
Formatted	[[11]
Formatted	[[12]
Formatted	[13]
Formatted	[14]
Formatted	[15]
Formatted	[16]
Formatted	[[17]
Formatted	[18]
Formatted	[19]
Formatted	[20]
Formatted	[21]
Formatted	[22]
Formatted	[23]
Formatted	[24]
Formatted	[25]
Formatted	[26]
Formatted	[27]
Formatted	[28]
Formatted	[29]
Formatted	[30]
Formatted	[31]
Formatted	[32]
Formatted	[33]
Formatted	[34]
Formatted	[[35]
Formatted	[36]
Formatted	[37]
Formatted	[38]
Formatted	[[39]

172	GO, that can be attributed more to the lesser effect of resource competition than to	
173	continuous plantings where the height and DBH ratio are inversely related. Different spacing	
174	and thinning regimes late in the life of the stand presented the highest values of basal area	
175	production. The choice of the best thinning regime for <i>Eucalyptus</i> clonal material will vary	Formatted: Font: Italic
176	according to the plantation objective [21].	
177	The maximum and minimum diameter found in this integrated CLF ranged from	
178	9.4 to 28.25 cm, and the highest tree density were located in classes II and III, which	
179	consequently contributed with a higher volume of wood within the CLF system (Figure 1). In	
180	its study with Eucalyptus clones GG100 (E. grandis x E. urophylla) of 4.5 years, Cerdeira	Formatted: Font: Italic
181	[22] observed a diametric variation between 5.0 and 17.1 cm. Cerdeira [22] also reported	Formatted: Font: (Default) Arial, 10 pt
182	that the classes of greater diameter were those that presented the greater number of	
183	individuals, a DBH variation close to that of the present study, but the central classes were	
184	those with the highest number of individuals. Thus, we highlight that CLF present higher	
185	production of trees with higher diameter class, being relevant for the production of wood with	
186	noble purpose and greater value added by planted individuals,	Formatted: Font: (Default) Arial, 10 pt
187	Although Class IV presents the highest average wood volume per tree of 0.36	
188	m ³ , its contribution to the system is around 10%, among the individuals of lower number	
189	present in this class. However, classes III and II were the ones that concentrated the largest	
190	number of individuals, being responsible for 86.4% of the wood produced in this area of the	
191	integrated CLF with an average volume of 0.26 and 0.08 m^3 , respectively, per individual	
192	within the classes.	Formatted: Font: (Default) Arial, 10 pt

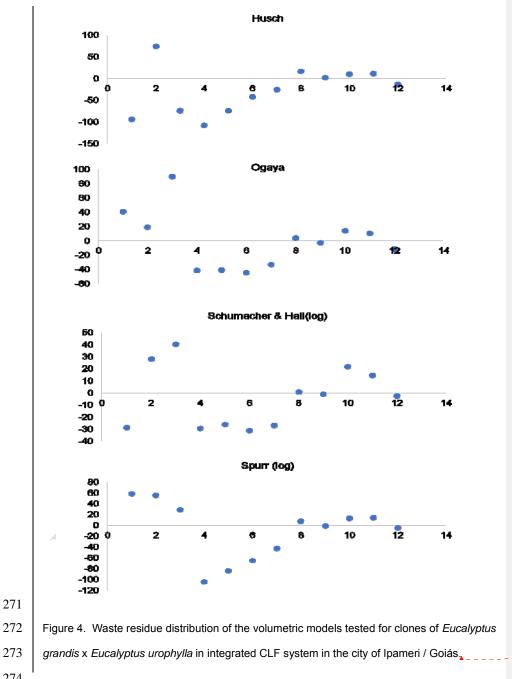


209						$\begin{pmatrix} \eta' & \eta' \\ \eta & \eta' & \eta' \\ \eta & \eta' & \eta' \end{pmatrix}$
210	Table 4. Eucalyptu	s wood biomas	s (WB), bark b	iomass (KB),	branch biomass	(BB), and leaf
211	bioma	ss (LF) with sev	en years of in	tegrated CLF	cultivation in Ipa	meri / Goiás.
-	Class	Class I	Class II	Class III	Class IV	Total_of
		(9-14 cm)	(14.1-19	(19.1-24	(24.1-29 cm)	components
			cm)	<u>cm)</u>		
-	LB (kg ha ⁻¹)	169.80	615.93	992.19	149.23	1927.15 (3.40)*
	KB (kg ha⁻¹) <mark>,</mark>	393.60	1008.29	1974.81	318.41	3695.11 (6.52)
	BB (kg ha⁻¹) <mark>,</mark>	139.31	859.96	2363.32	245.73	3608.32 (6.37)
	WB (kg ha ⁻¹)	1540.81	9918.34	32972.68	2980.35	47412.18 (83 70)
	Total Biomass	2243.52	12402.52	38303.00	3693.72	56642.76
		(3.96)	(21.90)	(67.62)	(6.52)	
212	* Values in parenth	eses refer to th	e percentage	of component	contribution in r	elation to total
213	biomass,					\
214	Evalua	ating biomass o	components in	eucalyptus s	tands with differ	ent ages, [16]
215	verified a trunk biomass around 80.3% for plantations with 8 years, a result that is consistent					
216	with the present stu	udy				\
217	In the	present work, it	was verified t	hat the order	of contribution of	[•] biomasses in
218	the different compo	onents was Wo	od>Braches>I	Bark>Leaves	(Figure 2). These	e results were
219	similar to those verified reported by Giumarãres et al. [23] in Allegrete//RS in homogeneous					
220	plantation of <i>E. dunni</i> with four years of age and those reported by Benatti [24] in Campos					
221	das Vertentes/MG	using eucalyptu	s clones I-14	4 with 6.5 yea	rs of age <mark>. Regar</mark>	ding biomass,
222	it should be pointe	d out that the 8	-year-old crop	os present abo	out 80% of the b	iomass in the
223	<mark>tree trunks shows</mark>	the potential of	of planting, at	t this age, all	ready for bioma	<mark>ss for energy</mark>
224	production, since m	nost of the biom	ass of the plar	nting may be r	emoved and use	<mark>d as</mark> fuel.

Comment [R6]: Change in fo	nt features????
Formatted	[[40]]
Formatted	[41]
Formatted	[42]
Formatted	[44]
Formatted	[46]
Formatted	[48]
Formatted	[43]
Formatted	[49]
Formatted	[50]
Formatted	[45]
Formatted	[47]
Formatted	[51]
Formatted	[52]
Formatted	[53]
Formatted	[54]
Formatted	[55]
Formatted	[56]
Formatted	[57]
Formatted	[58]
Formatted	[59]
Formatted	[60]
Formatted	[61]
Formatted	[62]
Formatted	[63]
Formatted	[64]
Formatted	[65]
Formatted	[66]
Formatted	[67]
Formatted	[68]
Formatted	[69]
Formatted	[70]
Formatted	[71]
Formatted	[72]
Formatted	[73]
Formatted	[74]
Formatted	[75]
Formatted	[76]
Formatted	[78]
Formatted	[82]
Formatted	[77]
Formatted	[79]
Formatted	[80]
Formatted	[81]
Formatted	[83]
Formatted	[84]

241	percentage reached 90.07% as predicted by [29]	Formatted: Font: (Default) Arial, 10 pt
242	From a commercial and structural point of view, the objective of the cultivator is	
243	to increase the volume of the trunk and to improve the quality of the wood. Less biomass in	
244	the branches is desirable since the primary product is the wood for commercialized [9] $_$	Formatted: Font: (Default) Arial, 10 pt
245	In Figure 3, it can be verified through the regression analysis that the linear	
246	model was adequate to explain the increase of the biomass of the different components in	
247	relation to the DBHs. One can observe an intense relation between these, mainly for wood	
248	and bark, and with lower intensity with the branches	Formatted: Font: (Default) Arial, 10 pt
	UNDER PHILA	

- Comment [R7]: You have to indicate the significance level for the R² values.


 Formatted: Font: (Default) Arial, 10 pt
- Formatted: Font: (Default) Arial, 10 pt

253	The biomass gains of wood and bark due to the increase of the DBH were
254	homogeneous. In other words, as the DAP increased, the biomass of these components
255	also increased, which is justified by the high values of the coefficient of determination
256	presented in the respective regressions (R ² 0.9229 and R ² 0.8604). While the biomass of
257	leaves and branches did not present significant increases with the increase of DBH (R_2
258	0.6647 and R2 0.4672), which evidences the accumulation of biomass as a function of age.
259	In more developed plantations, the biomass of the leaves and branches decrease [16] $1 - 1$

3.2 Adjustments of volumetric models

260	Table 5 shows the adjustments for the different models tested as a function of					
261	height and DBH. Considering the graphical analysis of the residues, the standard error and					
262	the determination coefficient, the double entry models of Schumacher & Hall (log) (0.866 and					
263	21.33%) and Ogaya (0.866 and 20.78%) can be considered the most efficient to predict the					
264	volume of wood for an integra	ted CLF syste	m in this spat	ial arrangeme	nt (Figure 4	l).
265			\mathbf{Y}			
266	Table 5. Adjustments of volu	umetric model	s attributed to	o the eucalyp	tus plantati	on used in
267	the integrated crop-livestock-forest system and their estimated coefficients (β),					
						17
268	coefficient of det	ermination (R2	?), and standa	ard error (Syx ^o	%)	
268	coefficient of det	ermination (R2 β 0	?), and standa	ard error (Syx ^o	%)R2	Syx(%)
268		Y				
268	Models	β0,	β 1 <u>.</u> 0.031469		R2	<u>Syx(%)</u>
268	Models	β0 -0.18775 -0.27662	β 1 <u>.</u> 0.031469	β2	R20.681_	Syx(%) 35.10 20.78
268	Models Husch Ogaya	β 0 -0.18775 -0.27662 -8.8478	β 1 0.031469 0.00045 0.617035	β 2. 0.019777 1.848882	R2 0.681 0.886 0.886	Syx(%) 35.10 20.78 21.33
268 269	Models Husch Ogaya Schumacher & Hall (log)	β 0 -0.18775 -0.27662 -8.8478	β 1 0.031469 0.00045 0.617035	β 2. 0.019777 1.848882	R2 0.681 0.886 0.886	Syx(%) 35.10 20.78 21.33

Comment [R8]: It is not necess	ary to r [87]
Formatted	[85]
Formatted	[86]
Formatted	[88]
Comment [R9]: See the earlier	comment.
Formatted	[89]
Formatted	[90]
Formatted	[91]
Formatted	[92]
Formatted	[93]
Formatted	[94]
Formatted	[95]
Formatted	[96]
Formatted	[[97]
Formatted	[98]
Formatted	[99]
Formatted	[[100]
Formatted	[[101]
Formatted	[102]
Formatted	[103]
Formatted	[[104]
Formatted	[105]
Formatted	[106]
Formatted	[107]
Formatted	[108]
Formatted	[109]
Formatted	[110]
Formatted	[[111]
Formatted	[112]
Formatted	[113]
Formatted	[114]
Formatted	[115]
Formatted	[116]
Formatted	[117]
Formatted	[118]
Formatted	[119]
Formatted	[120]
Formatted	[121]
Formatted	[122]
Formatted	[123]
Formatted	[[124]

Formatted: Font: (Default) Arial, 10 pt

274

275	However, all models tested had a satisfactory distribution of residues, an R_{-}^2	Formatted: Superscript
276	ranging from 0.681 to 0.866 and a standard error of less than 35%, which makes it possible	
277	to use these models to estimate the volume of wood in the integrated CLF system	Formatted: Font: (Default) Arial, 10 pt
278	Lemes Junior et al. [19] considered the Näslund and Ogaya models as the most	
279	efficient to determine the volume of wood in the Integrated CLF system with eucalyptus of	
280	six years of age in Cachoeira Dourada / Goiás. These presented coefficients of	
281	determination of 99.5 and 99.1%, respectively. However, in spite of verifying a higher	
282	coefficient of determination for the Shumacher & Hall model, Miguel [30] observed a	
283	standard error that was considered high, another criterion used to indicate the volumetric	
284	model was the graphical distribution of the residues. In this scenario, the Takata model was	
285	the most suitable for estimating the volume of wood in a settlement of seven years of E.	
286	urophylla in Niquelândia, north of Goiás.	Formatted: Font: (Default) Arial, 10 pt
	In their study with a silvipastoril system in the region of Coronel	
	Pacheco/MG, Müller et al. [31] tested different volumetric models to estimate the volume of	
	eucalyptus trees, and they found that the Schumacher & Hall model presented the best fit for	
	those conditions, as also verified in the present work. This demonstrated that the	
	Schumacher & Hall model has also been used for the integrated CLF system, since its	
	statistical properties almost always result in non-biased estimates.	Formatted: Font: (Default) Arial, 10 pt
287	With regards to the tree component of the integrated CLF system evaluated, a	
288	forest inventory was carried out to verify that at seven years after planting, the total biomass	
289	produced by the Eucalyptus grandis x Eucalyptus urophylla hybrid presented 56.64 Mg ha-1,	
290	a mean tree height of 25 m, and a chest height of 18. 222 cm. This biomass presented a	
291	distribution with greater quantity in the wood component, followed by the branches, bark,	
292	and leaves $_{\star}$	Formatted: Font: (Default) Arial, 10 pt
293	Although crop-livestock-forest integrationCLF presents limitations in its	
294	operation, this system becomes feasible from an adequate planning that meets the	
295	production demands of the property in the short, medium, and long term. Although it is a	

296	complex system because of the need to optimize the production conditions of each	
297	component, it is necessary to know the ecophysiology of the plants that will make up the	
298	integration. Besides the aggregate environmental benefits, this is important to determine if	
299	the productivity of the system is satisfactory to meet the social and economic demands and,	
300	thus, achieve the precepts of sustainability,	Formatted: Font: (Default) Arial, 10 pt
301	The environmental and productive importance of the integrated CLF system can	
302	be considered for the need to deepen the knowledge of the behavior of each component of	
303	the integration and prompted the interest in carrying out this research. It can be concluded	
304	that, finally, the initial objectives were reached, and it is, therefore, time for these results to	
305	be released.	Formatted: Font: (Default) Arial, 10 pt
306	Another aspect to be considered is the need for continuation of this research,	
307	both for this region of the Cerrado of Goiás and for the other regions of the country. It is	
308	known that many agricultural systems, conducted in an inadequate way, have contributed to	
309	the degradation of environmental quality and, due to this condition, seek to maintain	
310	production through the opening of new arable areas. Knowledge of crop-livestock-forest	
311	integration, as well as studies on the various possibilities of system implementation, are	
312	important factors for the productivity of agroecosystem and reduction of negative impacts on	
313	the Cerrado and other biomes,	Formatted: Font: (Default) Arial, 10 pt
314		
315	4. CONCLUSIONS	Formatted: Font: 10 pt
316	The highest average volume of wood per tree was verified in the highest DBH	Formatted: Font: (Default) Arial, 10 pt
317	class; The volumetric models of Schumacher & Hall and Ogaya were efficient to estimate the	
318	volume of wood in the integrated CLF system; The biomass of Eucalyptus grandis x	
319	Eucalyptus urophylla was 56.64 Mg ha-1, and 90.07% was present in the components of the	
320	trunk, while the others allocated in the canopy. Adequate cultural (debris and thinning)	
321	treatment throughout the crop cycle has negatively influenced the development of culture $_{lackslash}$	Formatted: Font: (Default) Arial, 10 pt
322	I	

323	REFERENCES	Formatted: Font: 10 pt
324		Formatted: Font: (Default) Arial, 10 pt
325	1. VASCONCELOS VV, VASCONCELOS CV, VASCONCELOS DM. Phyto-Environmental	
326	Characterization of Brazilian Savanna (Cerrado) and Brazilian Atlantic Forest, with the	
327	Research of Stone Lines and Paleosols Geografia. Ensino & Pesquisa (UFSM), 2010; 14: 6-	
328	17. Portuguese.	
329		
330	2. VIANA MCM, ALVARENGA RC, MASCARENHAS MHT, MACEDO GAR, SILVA EA, SILVA	
331	KT, RIBEIRO PCO. Consorciação de Culturas com o Eucalipto no Sistema de Integração	
332	Lavoura-Pecuária Floresta. In: XXIX CONGRESSO NACIONAL DE MILHO E SORGO, 29,	
333	Águas de Lindóia. SP: Associação Brasileira de Milho e Sorgo (ABMS), 2012. Portuguese.	Formatted: Font: (Default) Arial, 10 pt
334		
335	3. GONTIJO NETO MM, VIANA MCM, ALVARENGA RC, SANTOS EA, SIMÃO EP,	
336	CAMPANHA MM. Sistemas de integração Lavoura Pecuária Floresta em Minas Gerais.	
337	Boletim de Industria Animal, 2014; 71: 183-191, Portuguese	Formatted: Font: (Default) Arial, 10 pt
338	$\sim \sim \sim$	
339	4. XAVIER DF, LÉDO FJS, PACIULLO DSC, PIRES MFÁ, BODDEY RM. Dinâmica da	
340	serapilheira em pastagens de braquiária em sistema silvipastoril e monocultura. Pesquisa	
341	Agropecuária Brasileira, 2011; 46: 1214-1219. Portuguese,	Formatted: Font: (Default) Arial, 10 pt
342		
343	5. GATTO A, BARROS NF, NOVAIS RF, SILVA FR, LEITE FP, VILLANI EMA. Estoques de	
344	carbono no solo e na biomassa em plantações de eucalipto. Revista Brasileira de Ciências	
345	do Solo, 2010; 34: 1069-1079. Portuguese	Formatted: Font: (Default) Arial, 10 pt
346		
347	6. TORRES CMME, OLIVEIRA AC, PEREIRA BLC, JACOVINE LAG, OLIVEIRA NETO SN,	
348	CARNEIRO ACO. Estimativas da produção e propriedades da madeira de eucalipto em	
349	Sistemas Agroflorestais. Scientia Forestalis, 2016; 44: 137-148. Portuguese.	

350	<u>ـ</u> ـــــ	Formatted: Font: (Default) Arial, 10 pt
351	7. IBA. Relatorio IBÁ. Brasilia. Industria Brasileira de Árvores 2016. 6-15 . Portuguese.	
352		
353	8. ORTIGOZA FDSS, SENNA RJ. Caracterização do segmento de florestas plantadas de	
354	eucalipto em Mato Grosso do Sul: Revista de Política Agrícola. Brasilia, 2016; 74-89, 2016.	
355	Portuguese.	
356		
357	9. TONINI H, MORALES MM, MENEGUCI JLP, ANTONIO DBA, WRUCK FJ. Biomassa e	
358	área foliar de clones de eucalipto para a desrama. Nativa, 2016; 4: 271-276. Portuguese	Formatted: Font: (Default) Arial, 10 pt
359		
360	10. CLEMENTE MA. Características agronômicas do sorgo e eucalipto em diferentes	
361	arranjos espaciais. 51 f. Dissertation (Master Degree) – Federal University of Uberlandia,	
362	2015. Portuguese	Formatted: Font: (Default) Arial, 10 pt
363		
364	11. OLIVEIRA P, FREITAS RJ, KLUTHCOUSKI J, RIBEIRO AA, CORDEIRO LAM,	
365	TEIXEIRA LP, MELO RAC, SILVA A, VILELA L, BALBINO LC. Evolução de sistemas de	
366	integração lavoura-pecuária-floresta (ILPF): estudo de caso da fazenda Santa Brígida,	
367	Ipameri, Go. 2 ed. Planaltina: Embrapa Cerrados, 2015. 50 p. Portuguese,	Formatted: Font: (Default) Arial, 10 pt
368		
369	12. SAIDELLES FLF, KÖNIG FG, SCHUMACHER MV. Avaliação da biomassa e dos	
370	nutrientes em espécies florestais de rápido crescimento. In: 1 Simpósio Brasileiro de Pós-	
371	Graduação em Engenharia Florestal. AnaisSanta Maria: Perspectivas e Tendência da	
372	Pesquisa Florestal, 2001; 1: 134-144. Portuguese,	Formatted: Font: (Default) Arial, 10 pt
373		
374	13. CARDOSO MRD, MARCUZZO FFN, BARROS JR. Classificação Climática de Köppen-	
375	Geiger para o Estado de Goiás e o Distrito Federal. Acta Geográfica. 2014; 8: 44-55.	
376	Portuguese,	Formatted: Font: (Default) Arial, 10 pt

377		
378	14. EMBRAPA. Sistema brasileiro de classificação de solos. 3. ed. Rio de Janeiro-RJ:	
379	Embrapa Solos, 2013. 306p. Portuguese	- Formatted: Font: (Default) Arial, 10 pt
380		
381	15. FINGER CAG. Fundamentos de biometria florestal. Santa Maria: UFSM/ CEPEF/	
382	FATEC, 1992. 269 p. Portuguese	Formatted: Font: (Default) Arial, 10 pt
383		
384	16. SCHUMACHER MV, WITSCHORECK R, CALIL FN. Biomassa em povoamentos de	
385	Eucalyptus spp. de pequenas propriedades rurais em Vera Cruz, RS. Ciência Florestal	
386	(UFSM. Impresso), 2011; 21: 17-22. Portuguese,	Formatted: Font: (Default) Arial, 10 pt
387		
388	17. DRAPER NR, SMITH H. Applied regression analysis. New York: Jonh Willey & Sons,	
389	407 p. 1966.	Formatted: Font: (Default) Arial, 10 pt
390		
391		
	18. MIGUEL EP, LEAL FA, ONO HA, LEAL, UAS. Modelagem na predição do volume	
392	18. MIGUEL EP, LEAL FA, ONO HA, LEAL, UAS. Modelagem na predição do volume individual em plantio de Eucalyptus urograndis. Revista Brasileira de Biometria, 2014; 32(4):	
392 393		
	individual em plantio de Eucalyptus urograndis. Revista Brasileira de Biometria, 2014; 32(4):	
393	individual em plantio de Eucalyptus urograndis. Revista Brasileira de Biometria, 2014; 32(4):	
393 394	individual em plantio de Eucalyptus urograndis. Revista Brasileira de Biometria, 2014; 32(4): 584-598. Portuguese	
393 394 395	individual em plantio de Eucalyptus urograndis. Revista Brasileira de Biometria, 2014; 32(4): 584-598. Portuguese 19. LEMES JUNIOR JM, SILVA NETO CM, SOUZA KR, GUIMARÃES LE, OLIVEIRA FD,	- Formatted: Font: Italic
 393 394 395 396 	individual em plantio de Eucalyptus urograndis. Revista Brasileira de Biometria, 2014; 32(4): 584-598. Portuguese 19. LEMES JUNIOR JM, SILVA NETO CM, SOUZA KR, GUIMARÃES LE, OLIVEIRA FD, GONÇALVES RA, MONTEIRO MM, LIMA NL, VENTUROLI F, CALIL FN. Volumetric models	 Formatted: Font: Italic Formatted: Font: Italic
 393 394 395 396 397 	 individual em plantio de Eucalyptus urograndis. Revista Brasileira de Biometria, 2014; 32(4): 584-598. Portuguese 19. LEMES JUNIOR JM, SILVA NETO CM, SOUZA KR, GUIMARÃES LE, OLIVEIRA FD, GONÇALVES RA, MONTEIRO MM, LIMA NL, VENTUROLI F, CALIL FN. Volumetric models for <i>Eucalyptus grandis</i> x <i>urophylla</i> in a crop-livestock-forest integration (CLFI) system in the 	
 393 394 395 396 397 398 	 individual em plantio de Eucalyptus urograndis. Revista Brasileira de Biometria, 2014; 32(4): 584-598. Portuguese 19. LEMES JUNIOR JM, SILVA NETO CM, SOUZA KR, GUIMARÃES LE, OLIVEIRA FD, GONÇALVES RA, MONTEIRO MM, LIMA NL, VENTUROLI F, CALIL FN. Volumetric models for <i>Eucalyptus grandis</i> x <i>urophylla</i> in a crop-livestock-forest integration (CLFI) system in the 	
 393 394 395 396 397 398 399 	 individual em plantio de Eucalyptus urograndis. Revista Brasileira de Biometria, 2014; 32(4): 584-598. Portuguese 19. LEMES JUNIOR JM, SILVA NETO CM, SOUZA KR, GUIMARÃES LE, OLIVEIRA FD, GONÇALVES RA, MONTEIRO MM, LIMA NL, VENTUROLI F, CALIL FN. Volumetric models for <i>Eucalyptus grandis</i> x <i>urophylla</i> in a crop-livestock-forest integration (CLFI) system in the Brazilian cerrado. African Journal of Agricultural Research, 2016; 11(15): 1336-1343. 	
 393 394 395 396 397 398 399 400 	 individual em plantio de Eucalyptus urograndis. Revista Brasileira de Biometria, 2014; 32(4): 584-598. Portuguese 19. LEMES JUNIOR JM, SILVA NETO CM, SOUZA KR, GUIMARÃES LE, OLIVEIRA FD, GONÇALVES RA, MONTEIRO MM, LIMA NL, VENTUROLI F, CALIL FN. Volumetric models for <i>Eucalyptus grandis x urophylla</i> in a crop-livestock-forest integration (CLFI) system in the Brazilian cerrado. African Journal of Agricultural Research, 2016; 11(15): 1336-1343. 20. REINER DA, SILVEIRA ER, SZABO MS. O uso do eucalipto em diferentes 	

404	21. FERRAZ FILHO AC, MOLA-YUDEGO B, GONZALEZ-OLABARRIA JR, SCOLFORO	
405	JRS. (2018). Thinning regimes and initial spacing for Eucalyptus plantations in Brazil. Anais	
406	da Academia Brasileira de Ciências, 2018; 90(1): 255-265. Portuguese.	
407		
408	22. CERDEIRA ALN. Modelos para quantificação do volume de diferentes sortimentos em	
409	plantio de Eucalyptus urophylla x Eucalyptus grandis. 66 f. Monography (Forest	
410	Engeenering), University of Brasília, 2012. Portuguese	Formatted: Font: (Default) Arial, 10 pt
411		
412	23. GUIMARAES CC, SCHUMACHER MV, WITSHORECK R, SOUZA HP, SANTOS JC.	
413	Biomassa e nutriente em povoamento de Eucalyptus dunni Maiden no pampa gaúcho.	
414	Revista Árvore. 2015; 39 (5): 873-882. Portuguese	Formatted: Font: (Default) Arial, 10 pt
415		
416	24. BENATTI BP. Compartimentalização de biomassa e nutrientes em estruturas de plantas	
417	de eucalipto cultivadas em solos distintos. 114 f. Dissertation (Master Degree) - Federal	
418	University of Lavras. 2013; Portuguese	Formatted: Font: (Default) Arial, 10 pt
419	$\sim \sim \sim$	
420	25. UTIMA, A. Y. Crescimento e rendimento dos componentes agrícola e arbóreo de um	
421	sistema integrado de produção agropecuária no ano de implantação em área de proteção	
422	ambiental. 78 f. Dissertation (Master Degree in Agronomy), Federal University of Paraná,	
423	2015. Portuguese	Formatted: Font: (Default) Arial, 10 pt
424		
425	26. CARON BO, ELOY E, SOUZA VQ, SCHMIAT D, BALBINOT R, BEHILNG A,	
426	MONTEIRO GC. Quantificação da Biomassa florestal em plantios de curta rotação com	
427	diferentes espaçamentos. Comunicata Scientiae. 2015; 6 (1): 106-112. Portuguese	Formatted: Font: (Default) Arial, 10 pt
428		
429	27. CALIL FN, VIERA M, SCHUMACHER MV, LOPES VG, WITSCHORECK R. Biomassa e	
430	nutrientes em Sistema agrossilvicultural no extremo sul do Brasil. Ecologia e Nutrição	

431	Florestal. 2013; 1 (2): 80-88. Portuguese	Formatted: Font: (Default) Arial, 10 pt
432		
433	28. GONÇALVES JLM, STAPE JL, BENEDETTI V, FESSEL VAG, GAVA JL. Reflexos do	
434	cultivo mínimo e intensivo do solo em sua fertilidade e na nutrição das árvores. In:	
435	GONÇALVES, J. L. M.; BENEDETTI, V. (eds.) Nutrição e fertilização florestal. Piracicaba:	
436	IPEF, 2005. 1-57. Portuguese,	Formatted: Font: (Default) Arial, 10 pt
437		
438	29. MUÑOZ F, RUBILAR R, ESPINOSA M, CANCINO J, HERRERA M. The effect of pruning	
439	and thinning on above ground aerial biomass off Eucalyptus nitens (Deane & Maiden)	
440	Maiden. Forest Ecology and Management. 2008; 255 (3): 365-373	Formatted: Font: (Default) Arial, 10 pt
441		
442	30. MIGUEL, E. P. Avaliação biométrica e prognose da produção de Eucalyptus urophylla	
443	(s.t. blake) na região norte do estado de Goiás. 166 f. Dissertation (Mester Degree in Forest	
444	Engeenering), Federal University of Paraná. 2009. Portuguese,	Formatted: Font: (Default) Arial, 10 pt
445		
446	31. MÜLLER MD, FERNANDES EM, CASTRO CRT, PACIULLO DSC, ALVES FF. Estimativa	
447	de acúmulo de biomassa e carbono em sistema agrossilvipastoril na zona da mata mineira.	
448	Pesquisa Florestal Brasileira, 2009; 60: 11-17. Colombian.	Formatted: Font: (Default) Arial, 10 pt
449		
450		
451		
452		
453		
454		
455		
456	▲	Formatted: Font: (Default) Arial, 10 pt
l		

Page 8: [1] Comment [R1]	Reviewer	09-Apr-19 9:59:00 PM
This sentence is not clear. R	ewrite.	
Page 8: [2] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt	541	22 May 17 512400 1 M
Fond (Dorault) Final, To pr		
Page 8: [3] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [4] Comment [R3R2]	Reviewer	09-Apr-19 10:00:00 PM
Why there is change in font	style and size??	
Page 8: [5] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		· · · · · ·
Page 8: [6] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [7] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [8] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [9] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [10] Comment [R4]	Reviewer	09-Apr-19 10:02:00 PM
Provide the error values for	these means.	
Page 8: [11] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [12] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [13] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [14] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt	541	22 114 1 1 J J J 2 1 1 1 1
i cha (Donald) i final, i o pr		
Page 8: [15] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [16] Formatted	sdi	22-May-19 3:24:00 PM

Page 8: [17] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [18] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [19] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [20] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [21] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [22] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [23] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [24] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [25] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [26] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [27] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [28] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [29] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [30] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [31] Formatted	sdi	22-May-19 3:24:00 PM

Page 8: [32] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		-
Page 8: [33] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [34] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [35] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [36] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [37] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [38] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 8: [39] Formatted	sdi	22-May-19 3:24:00 PM
Font: Italic		
Page 11: [40] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [41] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [42] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [43] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [44] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [45] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [46] Formatted	sdi	22-May-19 3:24:00 PM

Page 11: [47] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [48] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [49] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [50] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [51] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [52] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [53] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [54] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [55] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [56] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [57] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [58] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [59] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [60] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [61] Formatted	sdi	22-May-19 3:24:00 PM

Page 11: [62] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
· · · · ·		
Page 11: [63] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [64] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [65] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [66] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [67] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [68] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [69] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [70] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [71] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [72] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [73] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [74] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [75] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [76] Formatted	sdi	22-May-19 3:24:00 PM

Page 11: [77] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt	54	11 May 19 012 1100 1111
Font. (Donune) Final, To pr		
Page 11: [78] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [79] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [80] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [81] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [82] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt	Sui	22-May-19 5:24:00 F M
Point. (Default) Affai, 10 pt		
Page 11: [83] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 11: [84] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [85] Formatted	sdi	22-May-19 3:24:00 PM
Superscript	544	May 19 01- 1000 1 11
Supersente		
Page 15: [86] Formatted	sdi	22-May-19 3:24:00 PM
Superscript		
Page 15: [87] Comment [R8]	Reviewer	09-Apr-19 10:14:00 PM
It is not necessary to repeat the	he values that are already in the figures.	
Page 15: [88] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [89] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [90] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
· · · · · · · · · · · · · · · · · · ·		
Page 15: [91] Formatted	sdi	22-May-19 3:24:00 PM

Font: 10 pt

Page 15: [92] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [93] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [94] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		22 hay 19 012 1000 2 h1
Page 15: [95] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [96] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt	Sui	22-may-17 5.24.00 1 m
Tom. (Default) Affai, 10 pt		
Page 15: [97] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [98] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [99] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
· · · ·		
Page 15: [100] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [101] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt	Sui	22-May-17 5.24.00 1 M
Tone. (Doraule) Annui, To pe		
Page 15: [102] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
D 15 [103] D		22 M
Page 15: [103] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [104] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [105] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [106] Formatted	sdi	22-May-19 3:24:00 PM

Page 15: [107] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [108] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [109] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [110] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [111] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [112] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [113] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [114] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [115] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [116] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [117] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [118] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [119] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [120] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [121] Formatted	sdi	22-May-19 3:24:00 PM

Page 15: [122] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [123] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial, 10 pt		
Page 15: [124] Formatted	sdi	22-May-19 3:24:00 PM
Font: (Default) Arial 10 pt		