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 5 

ABSTRACT 6 

This article looks at the algebraic background leading to definition and explanation of some 7 
product topology as well as the kiinneth formula for computing the (co)homology group of 8 
product spaces. A detailed look at the four theorems considered as the Universal Coefficient 9 
Theorem is not ignored. Though this article does not proof the theorems, yet it states some 10 
properties of each of these products, which are enough for the calculation of (co)homology 11 
groups. 12 
 13 
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 17 

1. INTRODUCTION 18 
From the theory of topological spaces emerged algebraic topology. Objects are classified 19 
according to the nature of their connectedness [Obeng-Denteh, 2019]. At the elementary level, 20 
algebraic topology separates naturally into the two broad channels of homology and homotopy. 21 
With a simple dualization in the definition of homology, cohomology an algebraic variant of 22 

homology is formed [Hatcher, 2002]. It is therefore not surprise that cohomology groups  23 

satisfy axioms much like the axioms for homology, except that induced homomorphisms go in 24 
the opposite direction as a result of the dualization. The basic difference between homology and 25 
cohomology is thus that cohomology groups are contravariant functors while homology groups 26 
are covariant. In terms of internal study, however, there is not much difference between 27 
homology groups and cohomology groups. The homology groups of a space determine its 28 
cohomology groups, and the converse holds at least when the homology groups are finitely 29 
generated. What is a little surprising being that contravariance leads to extra structure in 30 
cohomology. 31 

 32 
 33 

2. PRELIMINARIES 34 

 2 .1 Exactness of a sequence 35 

Definition 1. For a given pair of homomorphism  is exact at N if 36 
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 Hence a sequence  is exact if it 37 

actually exact at every  that is between two homomorphisms. 38 

Proposition. A sequence  is exact if provided is injective (1 to 1). furthermore, a 39 

sequence   is exact if and only if g is surjective (onto). 40 

Proof. A sequence being exact has its implication, that is kernel x is equal to the image of the 41 
homomorphism 0 → M, which is zero. There is an equivalence relation to the injectivity of 42 

homomorphism x. Similarly, the kernel of zero homomorphism Q → 0 is Q, and  if and 43 

only if y is surjective 44 

2 .2 Product Structures of Abelian Groups 45 

2 .2. 1 Tensor product. 46 

Definition 2.  Let M and N be two abelian groups then the tensor product denoted by M ⊗ N is 47 

defined to be the abelian group with generators m ⊗ n for  m ∈ M, n ∈ N, and relations 48 

 (m + m′) ⊗ n = m ⊗ n + m′ ⊗ n and  49 

m ⊗ (n + n′) = m ⊗ n + m ⊗ n′.  50 

So the zero element of M ⊗ N is 0 ⊗ 0 = 0 ⊗ n = m ⊗ 0, and  51 

− (m ⊗ n) = −m ⊗ n = m ⊗ (−n). 52 

Hence given the direct sums, 1 2 3 .....M m m m     and 1 2 3 .....N n n n      53 

 i

i
M M  and j

j
N N  then there exists an isomorphism 

,

i J

i j

M N M N   . 54 

Tensor product satisfies the following elementary properties 55 

1. M⊗N ≈ M⊗N.  56 

2. (M⊗N) ⊗ Q ≈ M ⊗ (⊗Q). 57 

3. ( ) (M )i i iM N N      58 

 4. ⊗M ≈. M⊗ ≈ M.  59 

5. n ⊗M ≈ M/nM.  60 

6. A pair of homomorphisms f: M→M′ and g: N→N′ induces a homomorphism 61 

                    f ⊗g: M⊗N→M′⊗N′ via (f ⊗g) (m⊗n) = f(m)⊗g(n).  62 

 7. A bilinear map : M×N→Q induces a homomorphism M⊗N→Q sending m ⊗ n to               63 

(m, n).  64 

 65 
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For the calculation of tensor products of finitely generated abelian groups, properties1 to 5 may 66 
be employed. properties 1,2,3,6 and 7 remain valid for tensor products of R-modules. [Hajime, 67 
2000] 68 

2 .3 Homomorphism 69 

Definition 3: let M, N be two abelian groups. A mapping  is called homomorphism if 70 

for all .  71 

For abelian groups M and N, we obtain the abelian group Hom(M, N) of the homomorphism of 72 

M and N. Particularly, given that i

i
M M  and j

j
N N are direct sums as indicated, then 73 

 
,

( , )i j

i j

Hom M M  74 

Therefore, it is important to note that for any two finitely generated abelian groups M and N the 75 

following relations hold (over  ):  76 

1.  77 

2.   78 

3.  79 

4.  80 

5. )  81 

2 .4 Torsion Product 82 

Definition 4: Given that M and N are abelian groups, the an abelian group called their torsion 83 

product over  , is given by  will be determined by the torsion part of M and N. That 84 

is their respective subgroups consisting of the elements whose integral multiples become 0 for 85 
some integers. [Hatcher, 2002] 86 

Hence if M and N are i

i
M M  and j

j
N N , then the torsion product  87 

 88 

It should be noted that for any abelian groups M and N, .  89 

For a given abelian group M 90 

 91 

Torsion product of two finitely generated abelian groups may be determined using the following 92 
relations. 93 

 94 
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 95 

 96 

2 .5 Extensions  97 

Definition 5: given two abelian groups M and N, an extension of M by N is a group together 98 
with an exact sequence of the form: 99 

0→ N → Q → M→0 100 

and is denoted by  for equivalent classes of extension of N by M which determine an 101 

abelian group. [Hatcher, 2002] 102 

moreover, if  are direct sums, i

i
M M  and j

j
N N  the it can be said that there exists 103 

an isomorphism 104 

,

(M, N) ( , N )i j

i j

Ext Ext M  105 

Lemma: for any abelian group M,  106 

 107 

It also follows that the following relations are equivalent 108 

 109 

 110 

 111 

3. Main Thrust 112 

3.1  The Kiinneth formula for (co)homology 113 

Let  be product spaces of topological spaces  given their respective 114 
(co)homology groups.  115 

Theorem: For each p, there exists a natural isomorphism 116 

 117 

Where the left-hand side is the axiomatic homology of all the cell complex X which gives rise to 118 
the chain complex  computed algebraically 119 

 The tensor product of the respective chains of  can be regarded naturally as a chain 120 
on X x Y, which induces a homomorphism 121 

 122 
Similarly, we now get the induced homomorphism  123 

 124 
It can therefore be said that these maps are induced by the cross product. The map induce by 125 
the cross product is injective. The following theorems affirms that. 126 
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Theorem:  for the homology kiinneth formula 127 

 128 

Theorem:  for the cohomology kiinneth formula 129 

 130 

3.2   Cup Product 131 

For a topological space X, the diagonal map 132 

 133 

transforming  is continuous. Hence the composition of the cross product 134 

and the induced map  135 

 136 

This defines a homomorphism 137 

 138 

Hence for , we define their cup product  by 139 

 140 

There is an implication in the definition that is the structure induced on a cohomology theory by 141 
the cup product is homotopy invariant. The cup products satisfy the following properties  142 

For  143 

                       144 

For a map   145 

We see a product- preserving homomorphism in . The cohomology group  146 

 equipped with a product structure has become a ring.  147 

3.3  The Universal Coefficient Theorem 148 

In homology the universal coefficient theorem is a special case of the kiinneth theorem. Now 149 
let’s look at these four formulae considered as the universal coefficient theorem. By reminding 150 
ourselves about the product structures of abelian groups, the easier it is for to comprehend 151 
these theorems. 152 

Theorem: From the corresponding integral homology and the torsion product, we can 153 
calculate homology over a general coefficient group M: 154 
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 155 

Theorem: Using the corresponding integral homology and the extension product, we may also 156 
calculate cohomology over a general coefficient group M: 157 

 158 

Theorem: We can compute cohomology over a general coefficient group M from the integral 159 
cohomology and the torsion product: 160 

 161 

Theorem: from the integral cohomology and the extension product, homology over a general 162 
coefficient group M can also be computed. 163 

 164 

4. Conclusion  165 

The general observation made so far is that, in our quest to look more into abelian groups such 166 
as M and N for the sake of this article as defined from the beginning the tensor product, 167 
Homomorphism, torsion product and extension has to be defined. It must also be noted that 168 
cohomology groups become rings using the structure of a cup product. 169 

The identification of tensor products of respective homology and cohomology groups belonging 170 
to two topological spaces with the cohomology groups of the product spaces may be used to 171 
define the. Cohomology groups of product spaces fall out from kiinneth formula and can be 172 
inferred from the product structures that cross product homomorphism is injective 173 

 174 
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