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Abstract

In this study, we consider Murray’s and Glioma’s tumor growth models based
on reaction-diffusion equation. Mathematical modeling of tumor development are
involved with the associated experimental work, reasoning the final relationship be-
tween experimental and theoretical approaches and these lead a path to model the
prediction of tumor growth. We predict the tumor growth model using numerical
study and the observation in different zone of time. The goal of tumor growth pre-
diction is to model the tumor growth process, which can be achieved by theoretical
mathematical modeling collaboration with the model personalization from clinical
assessment. After certain time period, it is proven that the mathematical model
shows the tumor cell population reaching a maximum cell number that the tissue
can carry.
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1 Introduction

To predict the growth, volume and development of tumors, mathematical modeling is
one of the most effective and accessible approach. In this paper, we will use the model
based on reaction-diffusion equation. Even though tumors growth sounds like biological
issues but scientists often have asylum to mathematical modeling in order to explain and
illustrate these experimental discovery. Now-a-days, scientists are becoming aware of the
possibilities offered by mathematical modeling of tumor development. Important thing is
that, this investigation for mathematical modeling of tumor development are involved with
the associated experimental work, reasoning the final relationship between experimental
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and theoretical approaches and these lead a path to model the prediction of tumor growth.
It is also noted that tumor growth is the abnormal growth of tissue, which usually involves
cell invasion and mass effect [1, 2].

Despite internal complexity, tumor growth kinetics follow relatively simple laws that
can be expressed as mathematical models. Murray concurs, asserting that the goal is to
develop models which capture the essence of various interactions allowing their outcome
to be more fully understood [3, 4]. Indeed, Byrne asserts that in order to develop effective
treatments, it is important to identify the mechanisms controlling cancer growth, how they
interact, and how they can most easily be manipulated to eradicate (or manage) the disease
[5].

In order to gain such insight, it is usually necessary to perform large numbers of time-
consuming and intricate experiments but not always. Through the development and solu-
tion of mathematical models that describe different aspects of solid tumor growth, applied
mathematics has the potential to prevent excessive experimentation and also to provide
biologists with complementary and valuable insight into the mechanisms that may con-
trol the development of solid tumors. Differential equation models paved the way into
quantitative cancer biology about two decades ago.

In the present study, we will give a description on how reaction-diffusion equation are
derived and how they can be utilized to simulate prediction of tumor growth. The goal of
tumor growth prediction is to accurate model the tumor growth process, which is mainly
achieved by physiological modeling and model personalization from clinical measurements.
If accurate prediction can be achieved from non-invasive measurements, better treatment
planning and patient prioritization can be determined, allowing more efficient use of re-
sources. For example, if tumor doubling times of pancreatic neuroendocrine tumors can
be estimated, the risk of metastatic disease, operative resection, and unnecessary testing
can be better managed [6].

Furthermore, if phenotype or genotype information can be revealed from the personal-
ized growth model, outcomes of drug treatments can be improved with reduced toxicity [1].
Tumor growth modeling is particularly pertinent for tumors that are either unresectable,
or that are not removed until they reach a certain size threshold [6]. Therefore, image-
based tumor growth modeling has been actively researched. Image-based tumor growth
personalization requires three key components:

• a tumor growth model,

• medical images, and

• a parameter estimation algorithm.

The tumor growth model accounts for the general physiological properties derived from
ex vivo, in vitro experiments, or in vivo animal tests which providing a powerful tool for
tumor growth prediction. On the other hand, medical images provide the in-vivo measure-
ments of the patient, revealing the structural or functional information of the underlying
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physiological status. Through computational or mathematical algorithms, the comple-
mentary information from the model and images can be combined together to provide
patient-specific tumor growth prediction.

The rest of the paper is organized as follows. In Section 2, we discuss the basic mathe-
matical model of tumor growth without diffusion and their solutions behaviour. In Section
3, we putted various reaction-diffusion model of tumors growth and their initial study.
In this portion, we consider the Murray’s tumor growth model as studied in this paper.
In the corresponding Section 4, the solution methodology and error analysis of Murray’s
reaction-dispersion equation is studied. Graphical presentation and the result discussions
are presented in Section 5. Finally, in Section 6, we conclude the summery and discussion
of the paper.

2 Preliminaries of Tumor Growth Model

The number of cancer cells in a tumor is difficult to estimate due to constant changes in
time. Tumor cells may proliferate, rest in a quiescent state, or die. Describing the number
of tumor cells as a function of time is therefore remarkably challenging. The number of
living cells only changes when cells proliferate or die:
Difference in live cells over time= number of cells created and died over time.
Consider the time difference, dt, where d stands for difference and t for time. Let us assume
the cell cycle length of an arbitrary cancer cell is 24 hours. Then, over the course of one day,
the probability that the cell divides is close to 100%. For a population of unsynchronized
cells with a cell cycle length of 24 hours, we can assume that all cells divide once if dt = 24
hrs. We therefore must introduce the time difference as well as two parameters into the
above equation [7]:

difference in number of cells

dt
= α(number of cellls)− β(number of cells) (2.1)

Where α and β are respectively understood as the fraction of dividing and dying cells at
each dt, and hence denote the per capita growth and death rates of the total cell population.

Let us introduce variable c as number of cells. The difference in cell number then
becomes dc, and the equation (2.1) can be written as:

dc

dt
= αc− βc (2.2)

Such equation is one of the basic tumor growth model presented via ordinary differential
equation.

Let us assume that at time t = t0 = 0, i.e. the starting point of an experiment, we have
one million cells, i.e. c = 106 and the population growth dynamics can follow one of three
facts as shown in Figure 1 [7]:

1. if α = β, then dc
dt

= 0. In this case the number of cells in the population does not
change and the population exhibits a state of tumor dormancy. It is remark that

3

UNDER PEER REVIEW



either α = β = 0, that is all cells in the population are in state of cellular dormancy
or quiescence, or α = β > 0 in which case cell proliferation is balanced by cell death.

2. if α > β then dc
dt

> 0 and the cell population will continuously grow with greater α−β
rates yielding faster growth. On the other hand, the population will monotonically
decrease.

3. if α < β and thus dc
dt

< 0.

Figure 1: Growth dynamics of cell population c over time t for different relative rates of
cell proliferation α and cell death β when c = 106 at time t = 0 [7].

Equation (2.2) can be reduced to a one-parameter problem. The terms αc − βc can be
combined by introducing the single parameter, λ, where λ = α−β, which is called the net
population growth rate. The differential equation describing cell population change over
time is then

dc

dt
= λc. (2.3)

As before, if λ < 0, λ = 0, or λ > 0 the population decreases, remains at constant, or
increases, respectively.

The choice of a model is largely guided by the available data. In fact, observations at
the microscopic scale are used to design very detailed mathematical tumour growth models
[8] and those models are involving only the density of cells in the tumour:

du

dt
= f(u) (2.4)

where u(t) > 0 is the tumour cells density at time t and f ∈ C1 is a function describing
the cells proliferation rate through general frameworks for tumour growth kinetics. Its
expression is given by the generalized logistic equation:

f(u) = ρuαβ(1− u( 1
β
))γ

where α ,β, γ are non-negative real numbers and β > 0. Standard models for the growth
of brain tumours are classified according to the function f and include:

f(u) =


ρu α = 1, β = 1, γ = 0 Exponential

ρu(1− u) α = 1, β = 1, γ = 1 Logistic

−ρu lnu α = 1, β → +∞, γ = 0 Gompertz

(2.5)
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where ρ > 0 is the proliferation rate.
The simplest growth assumes a linear relationship of the tumor cell density, resulting in
exponential growth stating that cellular division obeys a cycle, with doubling time ln 2

ρ
.

This renders a biologically accurate description of tumor growth on time scales that are
short in comparison to the life expectancy after the initial tumor development [9].

3 Description of the Model

3.1 Glioma Tumor Growth by Reaction-Diffusion Equation

The first attempts to model glioma tumor growth by means of a reaction-diffusion math-
ematical model [10] were performed by Cruywagen et al. [11], Tracqui et al. [12] and
Woodward et al. [13] in order to account for the effect of therapies on glioma growth and
later by Burgess et al. [14] to emphasize the importance of diffusion on glioma growth.
The model is described by the following partial differential equation [10]

∂c

∂t
= D∆c+ S(c, t)− T (c, t), t > 0, c ∈ Ω (3.1)

where c is the tumor cell concentration, S(c, t) is a term that accounts for cellular prolif-
eration and T (c, t) represents the contribution of treatment and the proliferation term is
set to produce an exponential growth, then equation (3.1) leads to

∂c

∂t
= D∆c+ ρc (3.2)

where D is a diffusion coefficient that accounts for tumor invasiveness and ρ is the tumor
cell proliferation rate. The solution of equation (3.2) is restricted by the boundary condition
that the flux of cells outside the brain or into the ventricles is zero

n⃗ · ∇c = 0 (3.3)

where n⃗ is a unitary vector normal to the cortical and ventricular surfaces. Experiments
performed on rats demonstrated that glioma cells disperse more effectively along white
matter axon tracts [15, 16, 17] than along neuronal cell bodies in gray matter, which leads
to a variation of equation (3.2), proposed by Swanson et al. [18, 19, 20], which includes
the spatial dependence of the diffusion coefficient D such that

∂c

∂t
= ∇ · (D(x)∇c) + ρc (3.4)

To evaluate the differences between grey and white matter motilities, Swanson et al. [18,
19, 21] used the Fisher approximation [10, 22] which stablishes that a travelling wave
solution of equation (3.4) propagates with a terminal velocity given by

v = 2(ρD)
1
2 (3.5)

Equation (3.5) allows for the estimation of the diffusion coefficient knowing the wave front
propagation velocity and the proliferation rate, ρ.
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3.2 Model with Spatial Heterogeneity

We can account for spatial heterogeneity in our model by taking the diffusion D to be a
function of the spatial variable, x, thereby differentiating regions of grey and white matter.
This gives,

∂c

∂t
= ∇ · (D(x)∇c) + ρc (3.6)

We take zero flux boundary conditions on the anatomic boundaries of the brain and the
ventricles. So, if B is the brain domain on which the equation (4.24) is to be solved, the
boundary conditions are

n ·D(x)∇c = 0 for x on ∂B (3.7)

where n is the unit normal to the boundary ∂B of B. With the geometric complexity of
an anatomically accurate brain (which we shall in fact use) it is clearly a very difficult
analytical problem and a nontrivial numerical problem, even in two dimensions.
We first nondimensionalise the spatially heterogeneous model, which as usual, also de-
creases the number of effective parameters in the system, and get some idea of the relative
importance of various terms (without regard to units). To give some concept of the numbers
involved there can be 1011 cancerous cells in a small tumour while the diffusion coefficient
can be of the order 104 cm2/day.
We consider the diffusion coefficients to be constant, but different, in each of the two tis-
sues, the white matter and the grey matter. So, we have to solve

∂c

∂t
= ∇ · (D(x)∇c) + ρc (3.8)

where

D(x) =

{
Dw for x in white matter.

Dg for x in gray matter.
(3.9)

and initial condition c(x, o) = f(x).

3.3 Estimation of Survival Time

In reality, tumour cells can not be detected at very low densities. On a MRI, the profile
of the tumour is defined by some nonzero level of resolution corresponding to a cellular
density c∗ (roughly 40, 000 cells/cm2) [24].
In the case of a constant growth rate ρ and homogeneous diffusion D(x) = D,

Survival Time = tlethal − tdetect =
1√
Dρ

(rlethal − rdetect)

where r is the radius of the tumour. So, if the tumour is identified when it has a radius
rdetect and the tumour is fatal when it has a radius rlethal.
This shows that D and ρ are both important parameters in determining survival time:
increasing either ρ or D will decrease survival time.
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4 Solution Methodology and Stability Analysis

We consider the numerical solution of the non-linear equations (3.6)-(3.9) considered in
Sub-section 3.2 for tumour growth in a finite domain B . The first step is to choose
integers n to define step sizes h = b−a

n
. Partition the interval [a, b] into n equal parts of

width h. Place a grid on the rectangle R by drawing vertical and horizontal lines through
the points with coordinates (xi), where xi = a + ih for each i = 0, 1, 2......n also the lines
x = xi represent grid lines. We also assume tn = nt for n = 0, 1.... where t is the time grid
step size. We denote the exact and numerical solutions at the grid point (xm, tn) by cmn
and Cm

n respectively. To solve the problem, we consider the finite difference method. Let
us first recall the governing equation to get it in non-dimensional form for simplicity:

ct = Dcxx + ρc

where D is the diffusion constant, ρ is the net proliferation rate in units day− 1 and c(x, t)
is considered as the density in space x and at time t. It is also used as the logistic popu-
lation growth models, chemical wave propagation models and neutron population models
in nuclear reactors. The Murray’s equation can be reduced to non-dimensional form with
the scaling factors

t1 = rt, x1 = x/L, c1 = c/k.

Then the equation becomes

ct = cxx + ρc

To get the solution, we consider forward in time and center in space (FTCS) explicit
scheme by substituting the forward difference approximation for the time derivative and
the central difference approximation for the space derivative in the equation,

c = cni , ct =
cn+1
i − cni

p
, cxx =

cni+1 − 2cni + cni−1

h2

which leads to the following,

cn+1
i = cni (1 + ρ− 2R1) +R1(c

n
i+1 + cni−1)

where R1 = p
h2 . Since the one dimensional diffusion-reaction equation is non-linear and

wellposed, Lax’s equivalence theorem indicates that consistency and stability of the FTCS
finite difference approximation is necessary and sufficient for FD solution to converge to
diffusion reaction equation . Once convergence has been proved, the solution to the given
partial differential equation can be obtained to any desired degree of accuracy . Make sure
the spacing h for spatial and p for time of the finite difference grid are made sufficiently
small. The FTCS scheme is classified as explicit because the value of cn+1

i at the (n +1)th
time level may be calculated directly from known value of cni at previous time levels. It
is a two level method because values of c at only two levels of time are involved in the
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approximating finite difference equation.
Error Analysis and Stability Test:
To find accuracy of the FTCS scheme, we apply Taylors series on each term of the equation.
Let us consider the Taylors series in the following way:

ct = cn+1
i − cni

cxx = cni+1 − 2cni + cni−1

Take above equation into account, and apply this scheme with Taylors series on each term,
updated equation is as follows

Eq = (ct − cxx − c(1− c))p+
1

2
cttk

2 −R1cxxh
2 +

1

6
ctttp

3 − 1

12
R1cxxxx + .......

Now principle part of the truncation error is along with above equation. So first part of
the above equation goes to zero if we consider the above equation.

PPTE of c =
1

2
ctt −R1cxxh

2 +
1

6
ctttk

2 − 1

12
R1cxxxxh

4 + .....

Which shows that this scheme is first order accurate in time and 2nd order accurate in
space, such as O(k, h2) .

We want to study under what condition the error can be magnified. Many methods can
be used to study this issue. We consider only Von-Neumann stability analysis to explain
this method on FTCS scheme. Consider the scheme in the following way

cn+1
m = cnm +R1δ

2
xc

n
m + ρcnm

According to Von-Neumann stability analysis, let us consider the solution as:

cnm = eαnpeiβmh

The Von-neumann stability condition is

|eαp| ≤ 1

Note that,
cn+1
m = eα(n+1)peiβmh, cn−1

m = eα(n−1)peiβmh

cnm+1 = eαnpeiβ(m+1)h, cnm−1 = eαnpeiβ(m−1)h

Also

δ2xC
n
m = −4 sin2(

βh

2
[eαnkeiβmh]), δ2xC

n+1
m = −4 sin2(

βh

2
[eα(n+1)keiβmh])

Apply above terms to the respective equation, we get the following

eαk = 1− 4R1 sin
2(
βh

2
) + k(1− const)
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Since |eαp| ≤ 1 which produces −1 ≤ eαk ≤ 1. Take left hand side of above equation along
equation

1− 4R1 sin
2(
βh

2
) + ρ ≤ 1

which yields

R1 ≥
ρ

4

Similarly, from the right hand side of the equation, we obtain

R1 ≤
2 + ρ

4

where R1 = p
h2 . According to Von-Neumann stability analysis on both sides as left and

right, it concludes that FTCS scheme is conditionally stable for Murray’s equation.

5 Numerical Examples

In this Section, we recall our governing reaction-diffusion tumor growth model and intro-
duce some constant values of D(x) as considered in [25, 26].
The system is then modified to the particular partial differential equation

∂c

∂t
= ∇ · (D(x)∇c) + ρc

where,

D(x) =


Dg = 0.0013 cm2/day 0 ≤ x ≤ 7.5 (gray region)

Dw = 0.0065 cm2/day 7.5 ≤ x ≤ 42.5 (white region)

Dg = 0.0013 cm2/day 42.5 ≤ x ≤ 50 (gray region)

(5.1)

With the no-flux Neumann boundary conditions

cx(0, t) = 0 (5.2)

cx(50, t) = 0 (5.3)

and the initial condition is taken as Gaussian initial tumor profile:

c(0, x) = g(x) =
1√
2πε

e−
1
2
(x−xo

ε
)2 (5.4)

where c = c(t, x) denoted the tumor concentration of glioma cells at time t and spatial
location x and x0 = 25cm (the middle of the considered interval) and ε = 0.01 suggested
by Becker et al. [2]. Here, ρ = 0.012 is the net proliferation rate in units day-1 and
Fickian diffusion has been used to quantify the random motility of a variety of invading
cells (Cozens-Roberts et al [3]). A factor of 5, Dw = 5Dg, was used by Swanson et al. [21]
but this may vary from patient to patient.
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Figure 2: Comparative study at each moment (left diagram) and in the domain at time
t = T (right diagram).

To get the solution profiel, we introduce the programming language MATLAB. In
Fig. 2, this is the growth of a tumour in 800 days with those boundary conditions and
initial conditions. The mathematical model shows the tumor cell population reaching a
maximum cell number that the tissue can carry. However, in reality, after this point, new
mutations will continue to occur within the nuclear DNA, providing advantages in their
proliferation, survival and invasion. We assume that the diffusion coefficient D depends
on the tissue environment, thus we consider D as a function of x having finite number of
discontinuities and this results in the lack of smoothness in our model solution.
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Figure 3: (Zone 1) x0 = 3 means x0 in grey region and the corresponding growth
result.

Here in Fig. 2, we set x0 = 25, which is the center of space for gaussian initial condition.
If we vary the x0 from grey region to white region, then we can see some difference.

So after these results, it is observed that initial location of a tumor is very important
and plays the significant role to predict the growth.
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Figure 4: (Zone 2) x0 = 18 means x0 in white region and the respective growth
result.
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Figure 5: (Zone 3) x0 = 45 means x0 in grey region and the corresponding growth
result.

6 Conclusion

In this paper, we study reaction-diffusion model using one dimensional equation regarding
the growth of human tumors. We analysis the result numerically by Finite difference
method. It is consider that the diffusion coeffitient is spatially distributed and we have
also numerically studied the behavior of the evolution of tumor concentration of the Glioma
in term of the speed of tumor cells for different center position values x0 of Gaussian initial
profile for each zone. Sequentially, we get a growth for 800 days in simulations and also
get some result for different zones. It is seen that the difference for grey matter and white
matter. Also, we observe that initial location of a tumour is very important to predict the
growth. Without any laboratories test, we can predict about the growth of a tumour. This
is the beauty of Mathematics and here is the collaborating scenario of Mathematics and
Biology.

11

UNDER PEER REVIEW



References

[1] S. Benzekry et al., Classical Mathematical Models for Description and Prediction of
Experimental Tumor Growth, PLoS Comput. Biol., 2014, 10(8), e1003800.

[2] S. Becker, A. Mang, A. Toma and T. M. Buzug, In-silico oncology: an approximate
model of brain tumor mass effect based on directly manipulated free form deforma-
tion, Int. J. CARS, 2010, 6, 607–622.

[3] C. Cozens-Roberts, J. A. Quinn and D. A. Lauffenburger, Receptor-mediated adhe-
sion phenomena: Model studies with the radial-flow detachment assay, J. Biophys,
1990, 58, 107–125.

[4] J. D. Murray, Mathematical Biology I: An Introduction, Berlin: Springer, 2002.

[5] H. M. Byrne, Using mathematics to study solid tumour growth, in Proceedings of
the 9th General Meetings of European Women in Mathematics, 1999a, 81–107.

[6] K. C. L. Wong, Tumor Growth Prediction with Reaction-Diffusion and Hyperelastic
Biomechanical Model by Physiological Data Fusion, Medical Image Analysis, 25(1),
2015, 72–85.

[7] H. Enderling and M. A. Chaplain, Mathematical modeling of tumor growth and
treatment, Curr. Pharm. Des., 2014, 20(30), 4934–4940.

[8] M. Marusic, Z. Bajzer and J. P. Freyer, Analysis of growth of multicellular tumour
spheroids by mathematical models, Cell Prolif., 1994, 27(2), 73–94.

[9] Benzekry et al., Classical Mathematical Models for Description and Prediction of
Experimental Tumor Growth, PLoS Comput. Biology, 2014,10.

[10] J. D. Murray, Mathematical Biology, Springer-Verlag, 1989.

[11] G. C. Cruywagen et al., The modeling of diffusive tumours, J. Biol. Sys, 1995, 3,
937–945.

[12] P. Tracqui et al., A mathematical model of glioma growth: the effect of chemotherapy
on spatio-temporal growth, Cell Prolif, 1995, 28, 17–31.

[13] D. E. Woodward et al., A mathematical model of glioma growth: the effect of extent
of surgical resection, Cell Prolif, 1996, 29, 269–288.

[14] P. K. Burgess et al., The interaction of growth rates and diffusion coefficients in a
three-dimensional mathematical model of gliomas, Neuropath. Exp. Neuro, 1997, 56,
704–713.

[15] P. Grindrod, The Theory and Applications of Reaction-Diffusion Equations, Oxford
University Press, 1996.

12

UNDER PEER REVIEW



[16] M. Kot, Elements of Mathematical Ecology, Cambridge University Press, 2001.

[17] E. Sontag, Lecture Notes on Mathematical Biology, Rutgers University, 2005.

[18] K. R. Swanson, Mathematical modeling of the growth and control of tumors, Uni-
versity of Washington,1999.

[19] K. R. Swanson, J. E. Alvord and J. D. Murray, A quantitative model for differential
motility of gliomas in grey and white matter, Cell Prolif., 2000, 33, 317–329.

[20] D. Basanta, M. Simon, H. Hatzikirou, A. Deutsch, Evolutionary game theory eluci-
dates the role of glycolysis in glioma progression and invasion, Cell Prolif., 41, 2008,
980–987.

[21] K. R. Swanson et al., Velocity of radial expansion of contrast-enhancing gliomas and
the effectiveness of radiotherapy in individual patients: a proof of principle, Clin.
Oncol, 2008, 20, 301–308.

[22] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 1937, 7,
353–369.

[23] W. Strauss, Partielle Differential gleichungen, lecture note,1995.

[24] R. Rockne et al., Modeling Diffusely Invading Brain Tumors An Individualized Ap-
proach to Quantifying Glioma Evolution and Response to Therapy, Book chapter:
Selected Topics in Cancer Modeling, 2008.

[25] E. Ozugurlu, A note on the numerical approach for the reactiondiffusion problem to
model the density of the tumor growth dynamics, Elsevier, 2015, 69, 1504–1517.

[26] R. Jaroudi, Inverse Mathematical Models for Brain Tumor Growth, Linkoping Uni-
versity, 2017, 19–30.

13

UNDER PEER REVIEW


