The characterization of Talcose rocks by X-Ray Diffraction in Kagara Area (Sheet 142 SE and Part of Sheet 142 SW) North Central, Nigeria

3

4 Abstract

The unequivocal identification of mineral impurities in talcose rock requires definitive analytical techniques due to the very similar structure of many naturally occurring silicates and the small quantities of associated minerals frequently found. Light microscopy and X-ray diffractometry have been found to be particularly useful, complementary, and practical for both exploratory and routine determinations of mineral impurities in the talcose rock.

10 The major rock units in the study area are migmatitic gneiss, banded gneiss, granitic gneiss, metaarkosic rock, amphibolite, talcose rock, phyllite, granodiorite, porphyritic granite, fine-medium 11 grained granite, and pegmatite. Petrographical studies revealed that quartz, microcline, plagioclase 12 and biotite constitute the major minerals present in the migmatitic gneiss, porphyritic granite, fine-13 medium grained granite, meta- arkosic rocks and pegmatite with epidote as the dominant accessory 14 mineral. The talcose rock contains in addition to talc, appreciable amount of chlorite, magnesite, 15 anthophyillte with magnesite and quartz forming the accessory minerals. X-Ray Diffraction of the 16 talcose rock also revealed talc as major mineral. Other constituent minerals of the talcose rock are 17 chlorite, tremolite, actonilite, magnesite, and magnetite while spinel and quartz are the accessory 18 minerals. 19

20 **KEYWORD:** X-Ray Diffraction, basement complex, Kagara, North central Nigeria.

21 INTRODUCTION

The study area is lies within the Pan – African complex of the north-central part of Nigeria, which is a part of an Upper Proterozoic mobile belt, extending from Algeria across the Southern Sahara into Nigeria, Benin and Cameroon. The Pan-African belt continues into north-eastern Brazil, where talcose rocks are also known to occur (Elueze, 1981, Olobaniyi and Annor, 2003). It is situated between the Archean - Paleoproterozoic blocks of West African Craton in the west, the Congo Craton in the southeast and the east Sahara block in the northeast (Durotoye and Ige, 1991) (Figure 1).

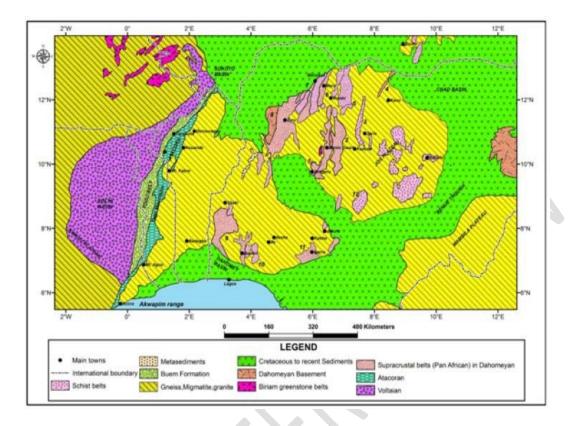
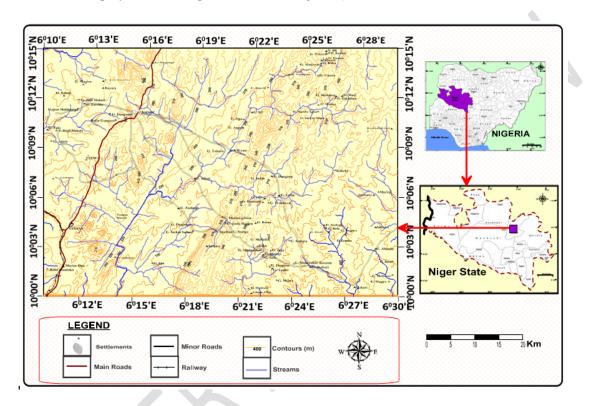


Figure 1: Generalized geological map of Nigerian- Dahomeyan sub region: The Migmatite–Gneiss
comlplex (mgc); Schist Belts (Sb); Older Granites (og), (after Woakes et al., 1987).

The Nigerian basement complex (Figure 1) consists of Precambrian gneisses and migmatitic rocks into which belts of N-S trending low to medium grade supracrustal rocks are infolded (Ajibade et al 1987).This supracrustal rocks consist of low to medium- grade metasediments of politic to semipelitic compositions, belonging to carbonates, psammitic rocks as well as mafic and ultramafic (talcose) rocks. These occur as lenticular to ovoid shaped bodies intercalated within the metasediments. Both basement and supracrustal cover sequence that have suffered polyphase deformation and metamorphism and are intruded in some places by Pan- African granitoids.

Talc is a hydrated silicate of magnesium $Mg_3Si_4O_{10}(OH)_2$. It is an alteration product of original or secondary magnesian minerals or rocks resulting from mild hydrothermal processess, aided by simple dynamic metamorphism but never from weathering (Hecht et al., 1999). **Minerals**


commonly associated with talc serpentine (3MgO.2SiO2.2H2O), chlorite 41 are (MgO.FeO.Al2O3.3SiO2.4H2O), quartz (SiO2), Scheelite (CaWO4) Calcite Ca(CO2)3, anthophllite 42 (7MgO.7FeO.16SiO2.2H2O), pholopite (5MgO.8SiO2), Enstatite (5MgSiO3) among others 43 depending on the rocks from which the talc is derived (Piniazkiewicz et al., 1994; Virta, 2009). The 44 major unique characteristics are lamellarity, softness, chemical inertness, affinity for organic 45 chemicals, and whiteness. Talc properties that are considered most important for possible applications 46 include mineral composition, chemical composition, dry brightness, whiteness, oil absorption, particle 47 size distribution, and density (Schandl et al;1999). 48

49 LOCATION AND ACCESSIBILTY

The study area is bounded by latitudes 10° 00'N and 10°15'N and longitudes 6°10'E and 6°30'E. 50 It is a part of the Basement Complex of Nigeria and it is located towards the central part of the N-S 51 trending Kushaka Schist belts. The Kushaka belt occupies a belt of about 50 Km wide and stretches 52 from Minna area up to Tsohon Birnin Gwari area in northwestern Nigeria. Kagara is located about 15 53 km northeast of Tegina along Tegina - Pandogari -Birnin Gwari road (Figure 1). The study area is 54 55 assessible from the north and south through Lagos - Tegina - Kaduna highway. The study area can also be accessed from Abuja - Minna- Zugeru en - route Tegina, while the Lagos rail line which 56 trasverses Ibadan - Ilorin - Jebba - Mokwa - Tegina, also provide good access to Kagara and 57 environs. Good accessibility is also provided by numerous untarred roads, foot paths, cattle tracks as 58 well as streams and rivers channels. 59

60 RELIEF AND DRAINAGE

The study area is generally undunlating lowland. The eastern half of the area rises a gradual from plain to gently sloping highlands with height ranging from 350 to 365m above the sea level. The terrain on the western half of the area is dominated by lowland with elevation well below 300 m. The pattern of these rivers seems to suggest features of structural significance, which tend to drain almost radially from the central part. These rivers as well as their tributaries make up the drainage system in the area and display a dendritic pattern of flow(Figure 2).

67

Figure 2: Location map of the study area.

69

70

71 **PREVIOUS WORK**

The occurrences of talcose rock in ultramafic rocks in Kagara area have previously been reported by Truswell and Cope, (1963); Elueze, (1982); Elueze and Dosunmu (1987); RMRDC, (2010). Elueze (1983; 1986) were speculated on tectonic affinity of the amphibolites in the area. Other works done in the past were related to the geochemistry and general geology of the area without special preference to deposits like talcose occurring within the Kushaka schist belt (Ajibade, (1982).

Recently, geochemical studies by Ihaza et al., (2014) focused on appraisal of talcose bodies in the 77 area with emphasis on its industral application while Amoka (2000); Ogunbanjo and Amoka (2005, 78 2006; 2010) worked on decolourization of talcose rock from Kagara using magnetic separation 79 and acid bleaching as route for colour enhancement; Since strong colours are objectionable in most 80 industrial applications, most of the talc deposits require bleaching before usage. Apart from the 81 aforementioned previous studies, no further work has been done on talcose deposits in this area. The 82 83 aim of this study is to determine its minerals compositions of the talcose rocks through X- ray diffraction analysis. 84

85 MATERIALS AND METHODS

The methodology adopted in the execution of this research work consists of field study and laboratory analyses. The field study involved geological mapping on a scale of 1:50 000 which was undertaken with topographic map, geologic hammer, compass - clinometers and Global positioning system (GPS). The laboratory work involved sample preparation, petrographic study and geochemical analysis.

The petrographic study was undertaken with the petrological microscope at petrographic laboratory, Department of Geology, Ahmadu Bello University, Zaria. Seven (7) samples of talcose rock were prepared for petrographic study and two (2) selected samples of talcose rock were analysed for x-ray diffraction (XRD) at Activation Laboratories Limited (ACTLAB), Ancaster, Ontario, Canada.

96 FIELD INVESTIGATION

97 The field work started with a reconnaissance survey of the area principally to determine traverse 98 route and for logistic planning. This was followed by the detailed geological mapping on a scale of 99 1:50,000 using traverse method. Collection of representative rock samples from outcrops, road cuts 100 e.t.c alongside the field mapping was also undertaken. Altogether, seven (7) representative rock samples were collected from exposures in the study area. In the field, each outcrop was observed
and described based on it's mode of occurrence, macroscopic characteristics, structural elements
and field relation with adjacent outcrops.

Fresh samples were taken during the field work with the aid of sledge hammer and chisel and 104 examined with hand lens. Germain Global positioning system (GPS) was used to determine the 105 elevation, longitudes and latitudes of the samples. Careful observation of lithological boundaries 106 was made by observing changes in rock exposures, nature of soil, vegetation and topography. A 107 Silva compass clinometer facilitated traversing and was also used to take strike and dip values of 108 the various structures. Linear measurements were taken with the aid of meter rule. Other materials 109 that were used for the field work are digital Camera to obtain photographs of the rocks and 110 important features where possible. The field note book was used to record the daily activities and 111 rocks description on the field. All the samples were labelled so as to prevent mis-identification and 112 later bagged for sample preparation. 113

114 115

X-RAY DIFFRACTION ANALYSIS

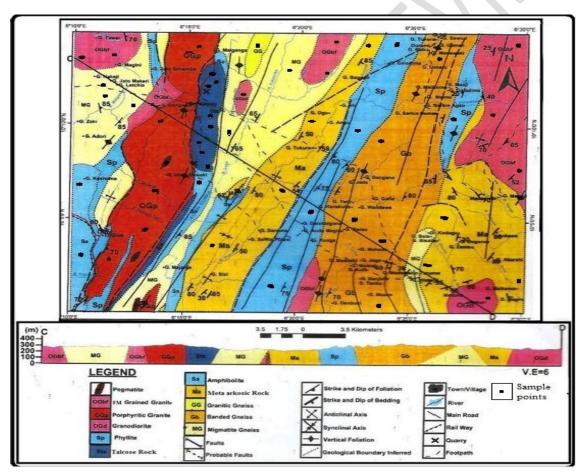
Two (2) representative's samples of talcose rock were analysed for x-ray diffraction (XRD). About 1 kg of each sample was broken into pieces with a hammer and crushed into smaller piece with a jaw crusher. The samples were thereafter pulverized in a disc mill for about two minutes. Each pulverized sample was thoroughly homogenized to obtain a representatatives portion. The samples were thereafter shipped for X-ray diffraction analysis at ACTLAB analytical Laboratory Ontario in Canada.

X-ray diffraction analysis was performed on a Panalytical X'Pert Pro diffractometer, equipped
with a Cu X-ray source and an X'celerator detector, operating at the following X-ray settings:
voltage: 40 kV; current: 40 mA; range: 5-70 deg 20; step size: 0.017 deg 20; time per step: 50.165
sec; divergence slit: fixed, angle 0.5°. The crystalline mineral phases were identified in X'Pert

- 127
- 128 129

132

RESULTS AND DISCUSSION


131 GEOLOGY OF THE STUDY AREA

The lithologies in Kagara area are migmatitic gneiss, banded gneiss, granitic gneiss, meta-133 arkosic rock, amphibolites, talcose rock, phyllite, granodiorite, porphyritic granite, fine-medium 134 grained granite, and pegmatite. Migmatitic-gneisses are extensive in the area, intruded by the 135 Older Granites at the northern part truncating its massive extension from the western part of the 136 area to the eastern. It constitutes well over 52% of the rock types in the study area. The Older 137 Granites in the study area are porphyritic and fine-medium grained granites. The porphyritic 138 granites intruded the other rocks in the area especially in the southwestern axis and central part 139 northwards, covering about 30% of the entire area while fine- medium grained granites covers 4% 140 of the area notably in the northeast and toward the central part of the study area. The amphibolites 141 and phyllites consititute about 8% of the rock types in the area. Outcrops of the amphibolite in 142 143 are lenticular, texturally distinctive and well oriented sub - parallel to the N-S foliated trend.

144 The talcose rocks constitute about 6% of the rocks in the study area and occur in the northwestern part close to Kagara in Tsaunin Agwaru area in a ridge surrounded by amphiobolite 145 and the Older Granites. The colour of the talc varies from grey, white to pale brown and 146 green depending on the relative mineral constituent with a soapy feel when touched. The chlorite 147 content of the talcose rock is reflected in its green colour. Outcrop of the talc occurs as lensoid 148 bodies of moderate size and length. It extends to the southwestern part having contacts with the 149 migmatitic-gneisses and the Older Granites in an oval shaped outcrops of about 15 m above the 150 surrounding ground surface. In the southern part of Kumunu, talcose rocks occurs as large 151 inselbergs and massives exposures, and are bounded by the Older Granites and migmatitic 152

gneiss in the western and eastern sides. The talcose rock truncate the linearly elongated north
- south amphibolite bodies (Figure 3). The talcose bodies are largely extensive in Kagara area
with different grade, colours, sizes, and textures. The colour of talc varies from grey, white to pale
brown colour with a soapy feel when handled.

There are metamorphosed arkosic rocks mainly of sandstone containing at least 25 % of feldspar. This unit runs in N-S direction in the southeastern part of the study area and also occurs in the north towards the east, though not as massive as in southeastern part of the study area. The geological map of the study area is presented as (Figure 3).

161

162 Figure 3: Geological map of the Kagara area.

163 X-RAY DIFFRACTION ANALYSIS

X-ray diffraction studies were carried out in order to determine the mineralogical 164 compositions of talc and host rocks. The mineralogical compositions of talcose rock 165 (Table 1) and the host rocks from Kagara are shown in Table (2) while the mineral 166 assemblages developed in individual samples including talc are listed in Appendices (1-2) 167 The result of X-ray diffraction show conspicuous peaks of talc, chlorite and magnetite 168 in assemblage of the talcose rock. Ferroan and quartz are minor constituents in the 169 amphibolites. Other minor peaks include those with spinel structure, magnesite and biotite 170 minerals from biotite group. 171

The X-ray diffractogram identified the following minerals namely talc, chlorite, tremolite, magnesite, anthophyllite, and opaque minerals. XRD studies indicate "talc + chlorites" coexistence which indicate that the study area is a typical metamorphic terrains (Table 2).

Sample Code	Fomular	Mineral	Percentage
			(%)
L13a ₂ (talcose rock)	Mg(CO ₃)	Magnesite	20
	(Mg,Fe)Al) ₆ (Si,Cr) ₄ O ₁₀ (OH) ₈	Clinochlore,/ Ferroan	40
	Fe ₃ O ₄	Magnetite	3
	Mg ₃ Si ₄ O ₁₀ (OH) ₂	Talc	38
L15 _a (talcose rock)	SiO ₂	Quartz	5
	(Na,Ca)Al(SiAl) ₃ O ₈	Albite	3
	KMg _{1.3} Ti _{0.3} Fe _{1.7} Al _{1.2} Si _{2.8} O _{11(OH)}	Biotite	7
	(Mg,Fe,Al) ₆ (Si,Al) ₄ O ₁₀ (OH) ₈	Clinochlore	37
	$Mg_3Si_4O_{10}(OH)_2$	Talc	45
	KA ₁₂ (Si _{3Al} O ₁₀ (O) ₁₀ (OH,F) ₂	Muscovite	3

Table 1: Composition of the Samples from the XRD Analysis.

- 177
- 178
- 179 180
- 181

182

183

Table 2: Minera	l paragenesis of talcose rock from Kagara
-----------------	---

Sample number	Mineral Paragenesis	

L13_a(Talcose rock) talc + tremolite+ chlorite + magnesite + anthophyllite + magnetite

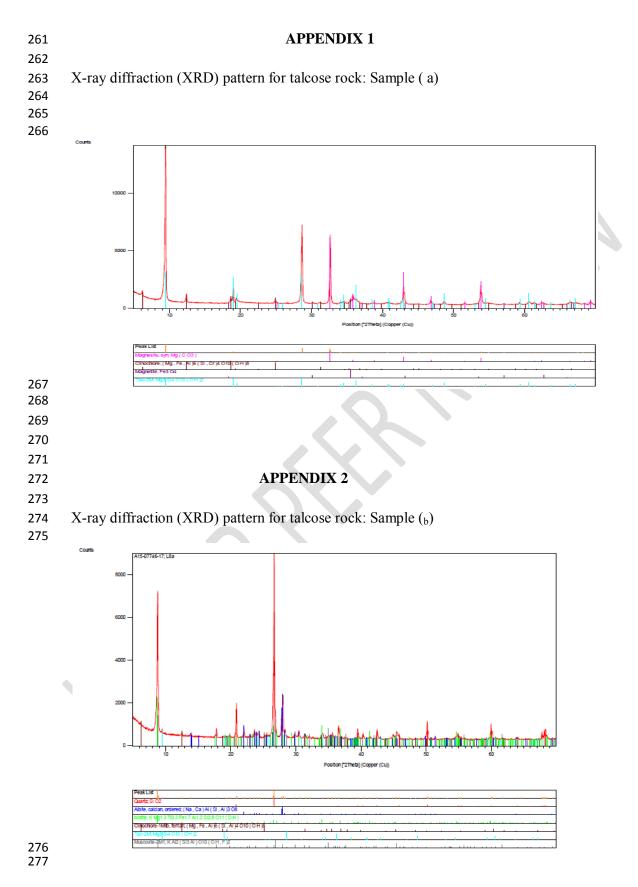
185 $L8_a$ (Talcose rock) talc + actinolite + chlorite + anthophyllite + quartz

186 187

188 MINERALIZATION PROCESS OF TALCOSE ROCK IN THE STUDY AREA

The study area is a typical metamorphic terrain. The potential sources of the fluids are through dehydration and decarbonation processes, which occur during the metamorphic event in the area. The mineral constituents of talcose rocks are talc, chlorite, anthophyllite, tremolite /actinolite, and magnesite. Tremolite and actinolite are slightly to moderately altered to chlorite and or talc, where fine relics of actinolite laths are randomly distributed within the talc matrix Plate (1). Chlorite occurs in the form of disseminated anhedral plates and massive lenses of very fine-grained mineral.

The excess water circulate through the surrounding rocks, scavenge and transport minerals to the sites where they can be precipitated as talcose rock (Plate I). The change in temperature affected the grade of metamorphism and with low temperature, hydrous minerals recrystallized into new, higher temperature, anhydrous minerals. The order is from primary phases through alteration to final products as actinolite and clinochore altered to chlorite with talcose rocks as the final product from chlorite.


The major factor that control the mineral assemblage is the partial pressure of carbon (iv) oxide within the metamorphic fluid, here in designated as called the ${}^{X}CO_{2}$ which support talcose mineralization.

The role of mixed volatiles as a factor of metamorphsims has been highlighted by Winkler 205 (1979) who observed that metamorphism of basalts to chlorite-green shists or amphibolite is 206 impoosible if sufficient amount of water is present during metamorphism. 207 Decarbonation and dehydration reactions are examples of solid—> solid + vapour reactions. 208

209

a) Solid ——> solid + vapour reaction (dehydration process) where brucite liberates water. 210 211 $Mg(OH)_2 \longrightarrow MgO$ H₂O.....(iii) 212 Brucite \longrightarrow Periclase +Vapour 213 214 b) Solid——> solid + gas reaction (decarbonation process) where magnesite liberates 215 216 CO_2 CO₂ (iv) $MgCO_3 \longrightarrow MgO$ 217 + Magnesite Periclase 218 219 In the study area, the effects of metamorphism on clinochlore at a low pressure proceed to 220 the right. The crystallization of the tremolite was contemporaneous with reactions as successive 221 metamorphic reactions have replaced or dissolved all primary minerals in the study area in the 222 presence of carbon (iv) oxide that form magnesite (MgCO₃). The possible reactions are shown 223 below: 224 $5Mg_5Al_3Si_3O_{10}(OH)_8 \rightarrow 7Mg_2SiO_4 + 2Mg_3Si_4O_{12}(OH)_2 + 5MgAl_2O_4 + 18H_2O_....(vii)$ 225 226 ----> forsterite + talc +227 Clinochlore spinel + Vapour 228 229 CONCLUSIONS 230 231 The study area is underlain by migmatitic-gneiss, banded gneiss, granitic gneiss, meta-arkosic 232 rock, amphibolite, talcose rock, phyllite, porphyritic granite, fine to medium grained granite, 233 234 granodiorite, and pegmatite. Two distinct varieties of talcose rock are distinguished by colour (white and black). Green chunks of chlorite and bands of quartz veins were also observed in the 235 236 field as megascopic examination shows typical greasy lustre and basal cleavage of talc. 237 Mineralogically, the talcose rock contains in addition to talc, appreciable amounts of chlorite, magnesite, and anthophyiltes with quartz and magnetite forming the accessory minerals. Talc 238 239 mineralization is controlled by many factors particularly silica activity in the liquid phase. Fluid coming from the surrounding was most probably rocks may be rich in dissolved SiO₂ as shown in 240 equations (i) and (ii). 241

242	$Ca_{2}Mg_{5}Si_{8}O_{22}(OH)_{2} + 4CO_{2} \longrightarrow Mg_{3}Si_{4}O_{10}(OH)_{2} + 2CaMgCO_{3} + 4SiO_{2} \dots (i)$
243 244	Tremolite + carbonic acid> talc + magnesite + quartz
245	$Mg_{5}Al_{2}Si_{3}O_{10}(OH)_{8+}SiO_{2} + 2CO_{2} \longrightarrow Mg_{3}Si_{4}O_{10}(OH)_{2} + 2MgCO_{3} + 2(AIOH)_{3}(ii)$
246	Actinolite + silica + carbonic acid> talc + magnesite + spinel
247	In the study area, the effects of metamorphism on clinochlore at low pressure proceed to the
248	right as crystallization of the tremolite was contemporaneous with reactions as successive event.
249	During metamorphism some of all primary minerals in the study area were replaced or altered the
250	presence of carbon (iv) oxide that produced magnesite (MgCO ₃). The possible reactions are as
251	shown in equations (iii) and (iv).
252 253	$5Mg_{5}Al_{3}Si_{3}O_{10}(OH)_{8} \longrightarrow 7Mg_{2}SiO_{4} + 2Mg_{3}Si_{4}O_{12}(OH)_{2} + 5MgAl_{2}O_{4} + 18H_{2}O(iii)$
253 254 255	Clinochlore —> forsterite + talc + spinel + Vapour
255 256	On the basis of the physical, mineralogicall characteristics of the talcose rock, this works
257	has established that the coexistence of chlorite with talc is not detrimental to talc for many
258	applications because they have similar mineralogical composition.
259 260	

278	
279	REFERENCES
280	
281	Ajibade, A.C. (1982). The Origin of the Older Granites of Nigeria: Some evidence from the
282	Zungeru region. Journal of Mining and Geology, 19, pp. 223-230.
283	
284	Ajibade, A.C., Rahaman, M.A. and Woakes. M. (1987). Proterozoic crustal
285	Development in the Pan - African regime of Nigeria. In: Proterozoic Lithospheric
286	Evolution (Kroner, A., Ed.), American Geophysicists Union, 17, pp. 259–271.
287	
288	Amoka, I.S. (2000). Beneficiation of talcose rock from Kagara, North-Western
289	Nigeria.Unpublished Master Technology Thesis, Federal University of
290	Technology, Minna, Nigeria. 211p.
291	Amoka, I.S. (2010). Characterization and processing of talcose rock from Kagara and Isanlu
292	mineral deposits, North-Western and south-western Nigeria Unpublished Phd Thesis,
293	Federal University of Technology, Minna, Nigeria.231p
294	
295	Durotoye, M.A. and Ige, O.A.(1991). An inventory of talc deposits in Nigeria and their
296	Industrial application potentials. Journal of Mining and Geology, 2, pp27-31.
297	There A A (1001) Determining the line of motoles is made and moto altermediate in
298	Elueze, A.A. (1981). Petrographic studies of metabasic rocks and meta-ultramafites in
299	relation to mineralization in Nigerian schist belts. <i>Journal of Mining and Geology</i> ,1, np 21 27
300 301	pp.31-37
302	Elueze, A. A. (1982). Mineralogy and chemical nature of meta-ultramafics in Nigerian
303	schist belts, Nigeria. Journal of Mining and Geology, 19 , pp.21-29.
304	senist oens, rugeria. Journal of mining and colorgy, 19, pp.21-29.
305	Elueze, A.A. (1983). Dynamic Metamorphism and Oxidation of Amphibolites of,
306	Tegina Area, Northwestern Nigeria. <i>Precambrian Research.</i> , 14: pp 379 – 388
307	
308	Elueze, A.A. (1986). Petrology and gold mineralization of the amphibolite belt, Ilesha
309	area, Southwestern Nigeria. Geologie en Mijnbouw, 65, pp.189-195.
310	
311	Elueze, A.A and Dosumu, O.O (1987). Preliminary investigation of industrial
312	properties of magnesia bearing rocks in Tungan Bako district, Tegina area North-
313	western Nigeria, Nigeria Journal of Science, 21, pp.133-139.
314	
315	Hecht, L., Freiberger, R., Gilg, H.A., Grundmann, G. and Kostitsyn, Y.A., (1999). Rare
316	earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates:
317	genetic Implications for dolomite- hosted tale mineralization at Gopfersgrun
318	(Fichtelgebirge, Germany). Chemical Geology. 155, pp.115–130.
319	there CA Address UD and Oweninger OA (2014) Annuaical of the Tale Dadies of
320	Ihaza, C.A., Adekeye, J.I.D. and Omorinoye, O.A (2014). Appraisal of the Talc Bodies of
321	Kagara Area, North-western Nigeria and their Industrial Potentials. <i>Centre point</i>
322 323	<i>journal of science</i> , 20 , pp. 151-171
323 324	Ogunbanjo M.I. and Amoka, I.S. (2005). Froth floatation studies on Kagara talc.
324 325	Journal of Engineering, Technology and Industrial Applications. 1, pp. 66-71.
326	counter of Engineering, recurring, una maismai reprictations. 1, pp. 00-71.

327 328 329 330	Ogunbanjo, M.I. and Amoka, I.S. (2006). Decolourization of Kagara talc using Magnetic separation and acid bleaching. <i>Journal of Engineering Technology and</i> Industrial Applications. 2, pp.1-5
331 332 333	Olobaniyi, S.B and Annor.A.E, (2003). Petrology and age implication of ultramafic schist in the Isanlu area of the Isanlu–Egbe schist belt SouthWestern Nigeria. <i>Journal of Mining and Geology</i> , 39 , pp.1-9.
334 335 336	Piniazkiewicz, R.J, McCarthy.E.F and Mallo, J.S (1994). Talc in industrial minerals and rocks, 6 th edition, <i>Littleton</i> , pp.1049-1068.
337 338 339 340 341	Schandl, E.S., Gorton, M.P., Bleeker, W. (1999). A systematic study of rare earth and trace element geochemistry of host rocks to the Kidd Creek volcanogenic massive sulphide deposit. In:Hannington, M.D.,Barrie, C.T.(Eds.), <i>Economic Geology Monograph</i> , 10, pp.309–334
342 343 344 345 346	Truswell, J.F. and Cope, R.N. (1963). The geology of parts of Niger and Zaria provinces, Northern Nigeria, Bulletin, Geological Survey of Nigeria, 29. Pp. 1- 104.
347 348 349	Virta, R.L. (2009). Talc and pyrophyllite, Minerals Year book of United State of America Geological Society, 1 , pp. 67-72.
350 351 352	Winkler, H.G.F.(1979). Petrogenesis of metamorphic rocks 4 th editions, Springer- Verlag, Berlin.169p.
353 354	Woakes, M. Ajibade C.A., Rahaman, M.A., (1987): Some metallogenic features of the Nigerian Basement, <i>Journal of Africa Science</i> . 5. pp. 655-664.