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THE PRINCIPAL COMPONENT ANALYSIS BIPLOT PREDICTIONS VERSUS THE ORDINARY LEAST 
SQUARES REGRESSION PREDICTIONS: THE ANTHROPOMETRIC CASE STUDY 

 

Abstract 

An indicative feature of a principal component analysis (PCA) variant to the multivariate data set is the ability 
to transform correlated linearly dependent variables to linearly independent principal components. Back-
transforming these components with the samples and variables approximated on a single calibrated plot gives 
rise to the PCA Biplots. In this work, the predictive property of the PCA biplot was augmented in the 
visualization of anthropometric measurements namely; weight (kg), height (cm), skinfold (cm), arm muscle 
circumference AMC (cm), mid upper arm circumference MUAC (cm) collected from the students of School of 
Nursing and Midwifery, Federal Medical Center (FMC), Umuahia, Nigeria. The adequacy and quality of the 
PCA Biplot was calculated and the predicted samples are then compared with the ordinary least square (OLS) 
regression predictions since both predictions makes use of an indicative minimization of the error sum of 
squares. The result suggests that the PCA biplot prediction merits further consideration when handling 
correlated multivariate data sets as its predictions with mean square error (MSE) of 0.00149 seems to be better 
when compared to the OLS regression predictions with MSE of 29.452.  
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1. Introduction 

In wide sense statistics is defined as the enterprise dealing with the collection of data sets, analyzing, extraction 
and presentation of the facts they contain”. In the light of this definition it is clear that graphical presentations of 
a data set form an integral part of any statistical analysis. According to Chambers et al. (1983) “there is no 
single statistical tool that is as powerful as a well-chosen graph”, graphical displays not only presentthe 
information contained in the data but can also be used to extract information that is difficult or even impossible 
to extract by means of traditional parametric multivariate analyses. In the words of Everitt (1994) “there are 
many patterns and relationships that are easier to detect in graphical displays than by any other data analysis 
method”. 

Applying biplot technique to any multidimensional scaling configuration enhances the informativeness of the 
lower-dimensional graphical display by adding information regarding the measured variables. Gabriel (1971) 
introduced biplots were, he also coined the name. A biplot is a joint map of the samples and variables of a data 
set. Gower et al. (2011) noted that the ‘bi’ in ‘biplot’ refers to the fact that two modes, namely samples and 
variables, are represented simultaneously and not to the dimension of the display space. The biplot proposed by 
Gabriel is known as the traditional (or classical) biplot. In the traditional biplot each row (sample) and column 
(variable) of the data matrix under consideration is represented by a vector emanating from the origin. The 
differences between the traditional PCA biplot proposed by Gabriel (1971) and the PCA biplot proposed by 
Gower and Hand (1996) are evident upon comparison. The main weakness of the traditional biplot is that inner 
products are difficult to visualize. Gower and Hand (1996) addressed this problem by proposing that the 
(continuous) variables be represented by axes, called biplot axes, which are calibrated such that the 
approximations to the elements of the data matrix of interest can be read off from the biplot axes by means of 
orthogonal projection onto the calibrated axes, as is done in the case of ordinary scatter plots. Gower (2003) 
outlined the fundamental geometry that underlies all biplots of a data-matrix X of n cases and p variables, with 
the cases represented by n points and variables by a reference system. This reference system for quantitative 



 

 

variables may be orthogonal Cartesian axes, other linear axes or nonlinear trajectories. Greenacre (2012) 
proposed a new scaling of the display, showing visually the important contributors and thus facilitating the 
biplot interpretation and often simplifying the graphical representation considerably. Gower et al. (2013) 
studied the underlying theory and quality measures in PCA and CVA biplot with the primary focus on the 
quality measures associated with these biplots. Thus, this work compares the predictive capabilities of the 
calibrated PCA biplot to that of the multiple regression technique using anthropometric measurements as a case 
study. For an enhanced graphics display, the R statistical programming software will be utilized.   

2. Methodology 

This study is aimed at using the PCA Biplot to study the multidimensional relationship between the variables 
and also visualizing with predictive capabilities in the multidimensional configurations. Thus, a summary look 
of the PCA variants, the biplots, and the PCA Biplot is expected. In addition, since the PCA biplot predictions 
are to be compared with the ordinary least squares a regression prediction, a brief discussion on the OLS 
regression technique summary is inevitable. These procedures are already in many literary books and thus, a 
case study application procedure will be used. 

2.1 Data Collection 

The data to be used for this study were collected from a secondary source. A total of sixty (60) students of 
School of Nursing and Midwifery, Federal Medical Center Umuahia, Nigeria being the number of nurses taken 
in a single section of the hospital for a clinical experience in 2014 were included in this study. This suggests a 
total sampling of the data. The data were made up of anthropometric measurements such as weight (kg), height 
(ft), skinfold (cm), arm muscle circumference AMC (cm), mid upper arm circumference MUAC (cm). For 
statistical purposes, there were no medical assumptions attached to these measurements. A multivariate plot as 
packaged by Revelle (2016) of the data shows the scatter, correlation and distributions as displayed in Figure 1. 
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Figure 1.0: Multivariate scatter plot with correlation, histogram and density lines for the FMC Anthropometric 
data set using the Psych package by Revelle (2016). 

It is evident in Figure 1.0 that there seems to be very weak correlations among the variables except that of the 
height vs weight and skin vs muac variables that displayed a relatively positive correlation.  

 

2.2 The Principal Component Analysis  

The Principal Component Analysis (PCA) is essentially directed ‘to reduce the dimensionality of 
a data set consisting of a large number of interrelated variables, while retaining as much as possible of the 
variation present in the data set (Johnson & Wichern, 2007). Pearson (1901) and Hotelling (1933), 
independently of each other arrived at PCA following two different routes. While Pearson searched to find the 
straight line or hyperplane which is best fitting to a higher dimensional configuration of points, Hotelling aimed 
to summarize the total sample variance associated with the set of variables by means of a few uncorrelated 
linear combinations of the variables. Given a centered matrix : n pX  with p variables and n observations 

where the n observations are denoted by the vector : 1, 2,i i n x . Then  sample covariance matrix of X is 

proportional to ( -1)n S = X X  (where S  is the sample covariance matrix) and this can be represented by 
applying the singular value decomposition (SVD) as : 

1 1
2 2 (1)   X X = VΛ U UΛ V = VΛV  

where V  and U  are the left and right singular vectors. The notation : p pΛ  is a diagonal matrix containing 

the ordered eigenvalues  of X X  with the eigenvalues : 1,2,i i pλ   ordered from the largest to the smallest 

while the notation : p pV is a matrix containing the orthonormal eigenvectors of X X as it’s column vectors, 
ordered accordingly. The sample principal components (Sample PCs) are given by the p column vectors of 
V with : 1, 2,i i pν  . Thus, the coordinates of the sample PCs in the p-dimensional space is the matrix of 

principal component scores (PC scores), : n pZ , given by  
(2)Z XV  

From the aspect of dimension reduction property of the PCA, the dimensionality of the data matrix X  is 
reduced to r-dimensional space. Let the first r-column vectors to be extracted be denoted as :r p rV . Cox and 

Cox, (2001) showed that rV is a matrix containing the first r eigenvectors : 1, 2,i i rν   corresponding the r 

largest eigenvalues giving the principal component approximation of X  as 
ˆ : (3)r rn p Z = XV V  

This PCA approximation uses a least-squares criterion as the basis of approximation to produce the least 
squared residuals between the original observations in p-dimensional spaces and its projection in r-dimensional 
space. This Eckart & Young (1936) minimization is shown to be a minimization problem given by: 

 ˆ ˆ ˆ( ( ) ) (4)
2

minimize tr  X - Z) X - Z (X - Z  

Note that following the PCA from another route by applying the SVD directly to X  will yield the same 
equation as (2). This is readily seen as the SVD of X  given by  X U V  produces the PC scores  

(5) XV UΩ Z  
since V  is orthonormal, multiplying by V  on the right of  X U V  with the   notation equivalent to Λ . 
Following this approach, the r-dimensional subspace with the largest r-singular values of Ω  extracted and 
denoted as rΩ could be obtained. Denoting rU  and rV  to be the first r columns of U  and V , respectively with 

the best r-dimensional approximation of the data matrix X  obtained as  
(6)r r r r r   X XV V U V  



 

 

Thus, given a multivariate data set X with n  samples and p  variables the fundamental problem of PCA is to 

approximate X by r dimensions or, equivalently, of rank r.  

 

2.3 The Biplot 

Biplots are plots, usually with two or more dimensions, the bi signifying two modes, the observations or 
samples and the variables or axis. This two modes are displayed in two-dimensional (2D) spaces popularly 
known as the 2D biplots, which are the most common (Displays). Other biplot displays that can be constructed 
are the one dimensional (1D) and the three-dimensional (3D) space biplots. In general, one can visualize the 2D 
configuration as a display on a surface, the 3D as a display on a sphere, and the 1D display as that on a line. A 
brief summary underlying the construction of a Biplot is showcased in the book Gower et al. (2011). 

2.4 The Principal Component Analysis (PCA) biplot 

A Principal Components Analysis Biplot (PCA Biplot) is a two-dimensional chart that represents the 
relationship between the samples and variables of a given in the same plot in which they are being transformed 
with aid of PCA. The PCA biplot provides linear axes for points placed by PCA. 

Section 2.2 shows that the best r-dimensional subspace to represent observations from a p-dimension space is 
determined by rV . A set of orthogonal coordinate axes in the r-dimensional space is provided by rV and this is 

called the principal axes (PA). The PA is also known as the scaffolding axes since they are only used for 
representing the biplot observations.  
 
2.5 Biplot Interpolation  
Gower et al. (2011) noted that the biplot observations are determined as projections from the principal axes and 
are given by, 

(7)r rZ XV  

In (7), the rows of rZ are the PC scores of the first r sample PCs given by : 1,2,i i n z , of which the first r 

samples makes the difference between (7) and (2). 
 
 
From the interpolation point of view, a new p-variable observation : 1p x  needs to be projected to an 

observation in the r-dimensional space as : 1p z . Analogously using the new x  and  z   on (7), this r-
dimension projection produces 

* * (8) Vrz = x  

 
2.6 Biplot Prediction 
 
In prediction, the original p-variable observation must be approximated as ˆ : 1p x from the coordinates in the 

r-dimensional space *z . Gardner (2001) summarizes this using (8) as  
* *ˆ (9)r
   z VVx  

Note that focus will be placed on (9) as this case study will compare the predicted samples with that of the 
predicted samples obtained from the OLS approach. 
 



 

 

2.7 Calibration of Biplot in 2D 
 
An important step in the construction of the biplot axes is the plotting the axes that correspond to the p variables 
of the data. Although the axes for prediction and interpolation will differ in terms of the position of the axes 
markers, the different axes markers are determined by some value of   , with     . Let  : 1k rw  

represent a unit vector with the kth element equal to one and all other elements equal to zero. Gower et al. 

(2011) showed that each observation ix  with coordinates  ,1 ,2 ,, , ,i i i px x x  can be expressed as 

,
1

p

i i k k
k

x


 x e giving the interpolation matrix as ,
1

p

i i r i k r
k

x


  V Vkz = x w . Interestingly, since the kth interpolation 

biplot axis markers is determined by k r Vw , it can be shown that the corresponding kth prediction biplot axis 

markers as   varies is given by 

(13)k r

k r


 

V

V V k

w

w w
 

 

2.8 Prediction in Ordinary Least Squares (OLS) Regression  

Given the general linear model as shown in Equation (6) with the notations iy  as the independent, 

ix independent variables, i  parameters and i residuals. 

0 1 1 2 2 (14)i i i k ik iy x x x           

The matrix notation of the linear regression model in (14) is given in Equation (15). 

1 11 1 0 1

2 21 2 1 2

1

1

1
(15)

1

k

k

n n nk k n

Y x x

Y x x

Y x x

 
 

 

       
       
        
       
       
       





     



 

The condensed matrix notation of  Equation (15) will yield 

(16)y X +  

From equation (16), the ordinary least squares (OLS) estimates seeks for a function of the estimates  

 1 2, , , ik     of the fitted coefficients that minimizes the error sum of squares 

( ) (17)f 
      

upon minimization, (17) yields   1ˆ   X X X y  with the vector of the OLS predicted or fitted values gives 

ˆˆ (18)y X  

 



 

 

3. Comparative Results based on the PCA biplot and the OLS 

There is a basis for comparing the PCA biplot predictions and the OLS prediction. Notice that the two methods 
are based on the minimization of the error sum of squares as indicated in (3) and (17). Figure 2 showcases the 
predictive biplot of the FMC anthropometric data set introduced in Section 2.1. The quality of the display in 2D 
configuration is 94.65% and this is reasonable enough to rely on information or interpretations that could be 
made from the biplot. The singular value decomposition (SVD) of the X matrix shows that the overall PCA 
Quality (94.65%), the Adequacy (0.002,  0.908,  0.066,  0.027,  0.998) and Predictivity (0.118,  0.975,  0.238,  
0.093,  1.000) for the respective variables (height,   skin,    amc,   muac, weight). 
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Figure 2: A Predictive PCA Biplot display of the FMC data set with Quality of Display = 94.65%  
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Figure 3: A Predictive PCA Biplot display of the FMC data set with predictions of samples 17, 30 and 51. 

 

Our concern is to predict each of the sample points in the biplot and minus its value from the original data 
values to form the vector of residuals for each of the variables. For instance, Figure 3 showcases a scenario 
where this is done for only three samples with results given in Table 1. This process was used to predict the 
entire samples as shown in Figure 4. From the predictions recorded, the vector of residuals is calculated for each 
of the variables. 

 

Table 1: Predictions of Samples 17, 30 and 51 using the PCA biplots. 

   s17 s30 s51 
  Actual Predicted Actual Predicted Actual Predicted 

height 4.9000 5.9617 5.6000 5.4090 5.8000 5.6140 
skin 15.0000 15.0919 16.0000 16.0082 11.5000 11.1757 
amc 25.0000 24.2767 23.8000 24.2828 22.5000 23.0136 
muac 26.5000 27.2886 28.9000 28.0557 26.1000 27.1647 
weight 78.0000 78.0054 60.0000 59.9705 62.0000 62.0347 

 

h
e

ig
h

t

5.5

6

sk
in

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

a
m

c

21

22

23

24

25

26

27 m
u

a
c

26

27

28

29

weight
6065707580

12

3

4

5

6
7 8

9 1011
12

13
1415 16

17

18
19

20

21
22

23

24

25
26

27
28

29

30 31

32

33

34

35

36

37

3839

40

41

42

4344
45

46

4748
49

5051
52

53

54

55

56
57

58

59

60

 

Figure 4: Predictive PCA Biplot display of the FMC data set with predictions for all the samples (1 – 60). 



 

 

Taking the weight variable as a case study (weight variable is the response variable), the residuals of the PCA 
biplots prediction for this variable (for the full samples 1 - 60) are obtained by:  

PCA Biplots Residualsweight = actual data samplesweight – PCA Biplots predicted resultsweight             (19) 

The results obtained from Equation (11) are compared using the Mean Square Error (MSE) and the Standard 
Error (SE) of the residuals from the OLS residuals results obtained from (12). Note that the OLS result is simply 
modeled in the R software (R Core Team, 2017) using the code: 

                                                                  ˆy - y  =lm(weight ~., data = fmc.data)$residuals       (20) 

 

 

Table 2: MSE and SE results of the OLS Residuals and PCA Biplot Residuals (response variable=weight). 

   OLS Prediction Residuals  PCA Biplot Prediction Residuals  

MSE  29.4535 0.001491 
SE   0.7065 0.005027 

 

 4. Conclusion 

The results obtained from Table 2 suggests that the PCA biplot merits further consideration when handling 
correlated multivariate data sets as its predictions with mean square error (MSE) of 0.00149 seems to be better 
when compared to the OLS regression prediction MSE of 29.452. One indicative reason is the PCA Biplots 
ability to transform a set of linearly dependent and correlated data matrix to linearly independent principal 
components, which are uncorrelated. Thus, predictivity with the PCA Biplots are envisaged to perform better 
than the OLS regression predictions especially in cases where all the OLS assumptions like multicolinearity is 
not eliminated.  
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