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Abstract
The convergence rate of a Markov transition matrix is governed by the second largest eigenvalue,
where the first largest eigenvalue is unity, under general regularity conditions. Garren and Smith
(2000) constructed confidence intervals on this second largest eigenvalue, based on asymptotic
normality theory, and performed simulations, which were somewhat limited in scope due to the
reduced computing power of that time period. Herein we focus on simulating coverage intervals,
using the advanced computing power of our current time period. Thus, we compare our simulated
coverage intervals to the theoretical confidence intervals from Garren and Smith (2000).

Keywords: Markov chain Monte Carlo; Gibbs sampling; Hilbert-Schmidt operator; eigenvalue
2010 Mathematics Subject Classification: 62F15, 62F25

1 Introduction
We consider a Markov chain governed by a Hilbert-Schmidt operator. The convergence rate is
determined by the second largest eigenvalue of the Markov chain, noting that the largest eigenvalue is
one. Under general regularity conditions, this Markov chain is ergodic; i.e., aperiodic and irreducible.

When estimating the convergence rate, the least-squares estimator defined herein is the same one
used by Garren and Smith (2000) [1] (G-S), and we adopt their notation as well. Additional theoretical
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details may be found in G-S, and we focus on simulations for an applied example herein.

An overview of Markov chain Monte Carlo (MCMC) is provided by [2]. Convergence diagnostics for
MCMC is analyzed by [3]. Subsampling techniques for hastening convergence of the MCMC are
discussed by [4]. A clever R package for performing parallel runs of MCMC is introduced by [5].
In an application to genetics, [6] discussed the difficulty in concluding convergence of MCMC using
graphical techniques. An application of MCMC to astronomy is given by [7].

The least-squares estimation of the second largest eigenvalue, along with two nuisance parameters,
is discussed in section 2. As an example, we analyze the hierarchical Poisson model in section 3.
We end with a brief conclusion in section 4.

2 Least-squares estimation
The Markov chain, as governed by a Hilbert-Schmidt operator, is allowed M burn-in iterations and
terminates after a total of N iterations. Then, L independent runs of the Markov chain are performed.
Modern computers allow us to select L to be quite huge, especially in comparison to the values of L
selected by G-S when the computing power was much less efficient.

For each independent run, the Markov chain is given an initial state. Then, a set D is selected, so
that for each iterate we determine whether or not X(l)

n , the state of the Markov chain after n iterates
of the lth run, is in set D. Hence, we define the indicator variable

Z(l)
n = I(X(l)

n ∈ D), 0 ≤ n ≤ N, 1 ≤ l ≤ L,

and we also define

Z̄n =
1

L

L∑
l=1

Z(l)
n

to be the average of the Z
(l)
n values among the independent runs. The asymptotic behavior of Z̄n

may be written as
Z̄n = ρ+ a2 λ

n
2 + oP (λn2 ), as n→∞.

Note that ρ depends on D; a2 depends on the initial state and D, whereas λ2 depends on neither the
initial state nor D.

The joint least-squares estimators of (ρ, a2, λ2) are defined to be the values of (θ1, θ2, θ3) which
minimize

N∑
n=M+1

[
Z̄n − (θ1 + θ2θ

n
3 )
]2
,

and are found numerically. G-S showed that the least-squares estimators are consistent and asymptotically
normal as M , N , and L go to infinity under certain regularity conditions. They further derived the
variance of the asymptotic distribution.

3 Hierarchical Poisson model
The example we analyze herein was studied by [8], [9], and also G-S. Let yi, the number of failures
at a nuclear power plant, be modeled as a Poisson distribution with mean ωiti for time ti. We model
the parameter ωi ∼ Γ(α, β), whose density is ωα−1

i exp{−ωi/β}/βαΓ(α), for i = 1, . . . , 10.

The data for yi and ti are shown in Table 1. We set α = 1.802, based on method of moments
estimates, as suggested by [8]. Furthermore, we model 1/β as a Γ(γ = 0.01, δ = 1) distribution.
These values of α, γ, and δ were used by [8], [9], and G-S.
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Table 1: Number of pump failures at a nuclear power plant

Number of failures (yi) Time (ti)

5 94.320
1 15.720
5 62.880

14 125.760
3 5.240

19 31.440
1 1.048
1 1.048
4 2.096

22 10.480

To set up the Gibbs sampler, we use the conditional distributions

[ ωi | β, ωj , j 6= i; y ] ∼ Γ
(
α+ yi, (ti + 1/β)−1) , i = 1, . . . , 10,

and

[ 1/β | ω, y ] ∼ Γ

γ + 10α,

{
1/δ +

10∑
i=1

ωi

}−1
 .

This Gibbs sampler is reversible and is produced by a Hilbert-Schmidt operator; see G-S.

Estimates of ρ seem most stable for 2 ≤ M ≤ 6, with tight coverage intervals for 0 ≤ M ≤ 5,
as seen in Figure 1a. The median of ρ̂ is approximately 0.505 for 2 ≤ M ≤ 6. This figure hints at
the importance of allowing at least a small amount of burn-in, implying a preference of M > 0 when
performing this least-squares estimation.

The coverage intervals on a2 are quite narrow for 0 ≤M ≤ 2 but get quite a bit wider as M increases,
as shown in Figure 1b. These median values of â2 range between 0.89 and 8.06 for 0 ≤M ≤ 6.

The coverage intervals on λ2 are somewhat narrow for 0 ≤M ≤ 3 but get a lot wider as M increases,
as shown in Figure 1c. The median estimate of λ2 tends to stabilize around 0.33 for 2 ≤ M ≤ 6
despite the widening of the coverage intervals.

3

Due to increased computing speeds in the statistical software R [10], we increased L to 500,000
and computed 20,000 least-squares estimates rather than just one. By producing 20,000 least-
squares estimates, we empirically constructed the coverage intervals, rather than use the information
sandwich approach based on just one estimate. Therefore, we are able to evaluate the theoretical
information sandwich approach of G-S by simulating the coverage intervals. Our estimates of ρ, a2,
and λ2, are shown in Figures 1a, 1b, and 1c, respectively, where the inner line segments represent
the median of the 20,000 least-squares estimates and the two outer line segments represent the 95%
coverage intervals.

G-S selected M = 0, . . . , 6, N = 12, and L = 5000. Hence, for each of the seven values of M,
G-S obtained one joint least-squares estimator of (ρ, a2, λ2), error bounds based on the information
sandwich approach, and hence 95% confidence intervals as well. Graphs of their estimates, along
with 95% confidence intervals, are shown in Figures 1, 2 of G-S.
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Figure 1: 95% coverage intervals on ρ, a2, and λ, for M = 0, . . . , 6.

This widening of coverage intervals on both a2 and λ2 as M increases is anticipated, since a small
value of λ produces rapid convergence of the Gibbs sampler, causing increased difficulty in estimating
both a2 and λ2. G-S tended to obtain even wider coverage intervals, which were calculated by the
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information sandwich approach, but this is not at all surprising since their value of L was much smaller
than ours.

Next, we increase L by a factor of 100, so that the new value is L = 50, 000, 000, but we obtain only
one least-squares estimate of (ρ, a2, λ2). In the color red, we plot ρ̂n = ρ̂ + â2λ̂

n
2 , n = 1, . . . , 12,

where the least-squares estimates are based on M = 0, . . . , 6 in Figure 2. Also in those seven
figures, in the color black, we plot what ρ̂n is estimating; i.e., Z̄n. The standard errors on Z̄n are no
more than 0.5/

√
L = 0.00007, so these standard errors are quite negligible and in fact non-detectable

in Figure 2.

4 Conclusion
The simulations herein exemplify the huge difficulty in estimating the second largest eigenvalue, which
is heavily tied to the convergence rate of the Gibbs sampler. Using no burn-in of the chain tends to
confound the impact of the second largest eigenvalue with the remaining eigenvalues. However,
as the amount of burn-in increases, the impact of all eigenvalues, including the second largest
eigenvalue though excluding the largest eigenvalue of unity, decreases substantially, again increasing
the difficulty in estimating the second largest eigenvalue. Therefore, reasonable estimation of the
second largest eigenvalue requires a large number of replications and a small amount of burn-in.
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Figure 2: Estimating ρn for M = 0, . . . , 6.
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