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ON THE GENERAL LINEAR RECURSIVE SEQUENCES

ABSTRACT. In this paper we investigate the properties of the general linear
recursive sequences started from the Lucas sequence and give an application
to matrices.

1. INTRODUCTION

For a1, ay € Z, the corresponding Lucas sequence {u,, } is given by ug = 0, u3 = 1,
and up41 + a1y, + aguy—1 = 0 (n > 1). The comparable series have been studied
by many mathematicians [1, 2, 3]. The general linear recursive sequences {u,} is
given by u, + a1tn—1 + -+ + @mln_m = 0 (n > 0). Here we comply [4] the Lucas
series extended to general linear recursive sequences by defining {u, (ai, ...,am)} as
follows:

Ulem = =u_1 =0, ug=1,
Up + A1 Up—1 + ++ + CGpUp—m =0 (n=0,£1,£2 ..),

where m > 2 and a,, # 0.

Throughout the Section 2 we assume that aq,...,a,, are complex numbers with
A # 0, 2™ +arx™ bt ay, = (@ = A) (= Ay Sn = AT AT A
and u, = up(ai,...,an,). There we obtain convolution sums between u, and s,
also state u, by using s,. After newly defining Coef(u,) which is the summation
of the coefficients of s; (1 < i < n) and their multiplication terms in w,,, we prove
Coef(uy) =1 for n € N. In that process, we especially find that

n

2k:
S A——
Z ning - - - nik! ne

ni+ns+-+ng=n

In the Section 3 we treat the application of w, in the powers of matrices and
simplifies it by a modular p according to the Legendre symbol.

2. RELATIONS BETWEEN u,, AND s,

Theorem 2.1. For n € N we have

(a)
n n k
_ 2780, 80y Sy
D D D et
k=0 k=1 12 ket
nit+nz+--+ng=n
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n n k—1
_ 2P 8, Syt Sy
g kuptup—r =n g o
— — ning - - - nik!
ni+tns+--+ng=n

Proof. (a) First in [4, p. 345] we can see that

STL
In E Up " E —a™.
n

n=1

This leads that

22311 n lnzum ni +1nzun2

n=1 n1=0 no=0
o0
_ ni+n
=In E Uy U T2
ni,n2=0

and

2s
Un, Un, v = exp “
(1) S e Z 2",

ni,n2= =0

Then by (1) and Maclaurin series of an exponential function we have
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and so

n n k
_ 2755, 805 " Sny,
E UpUp—f = E —_—
k=0

for n > 1.

— ning - - - nik!
ni+nat-Fng=n

(b) Effortlessly we can know that

Z kupUpy_p = Z (n— K)up_gug
k=0

K=0

n n
n Z Upn— KUK — Z Kup_rug
K=0 K=0
and
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n n

n
E kuguy—p = 5 E UpUp—k
k=0 k=0

so we refer to part (a).

Lemma 2.2. We have
(a)

Uy = s1,

(b)
1, 1

2
551 + 582,

2= 5%y

()
1, 1 1

Uz = 65‘% + 55152 + 553.

Proof. (a) Let us put n =1 in Theorem 2.1 (a):

1

1 k
_ _ 2580, 80y " Sny,
UUy + ULUy = E Ul = E — 1 = 2s1.
— — ning - - - nik!

k=1
ni+ng+--+np=1

Since ug = 1, we obtain u; = s7.
(b) Placing n = 2 in Theorem 2.1 (a), we note that

2

2 2ks, s S
ni°ng " on
Ul + UTU] + FU2Uy = g UpUg_f = E #"‘
Pt ning - - - nik!

k=1
ni+ng+-4ng=2
= 59 4 257

and so

2uy + uf = 5o + 257,

Using part (a) in the above identity, we conclude that

5 1
Uy = 551 + 582.

(¢) In a similar manner we set n = 3 in Theorem 2.1 (a) and use part (a) and

(b).
O

Now Lemma 2.2 suggests that uq, us, and ws are represented by sy, s, s3,
and their multiplication terms, furthermore the summation of the coeflicients of s;
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(1 <4 < 3) and their multiplication terms is 1. For example, Lemma 2.2 (c¢) shows
that
Coef(us)
:= The summation of the coefficients of s; and their multiplication terms in us
1 N 1 n 1
6 2 3
=1.
Thus we define Coef(u,) and generalize the above fact as follows:
Definition 2.3. Coef(u,) implies that the summation of the coefficients of s;
(1 <4< n) and their multiplication terms in w,, for n € N.

Under this condition we can see that Coef(u,) is a linear transformation. To
prove it let us put

T T
Up = a185 sh% - 8P agsT sl sdn 4o a, STt sh2 s
/' Ph Db P 14l 9 @ 1T T
— n n n
Upr = @i s]ish? -8, +ags]iss? o8, 4 tal, st sy s,

where p;, i, 7,0, ¢;,7; € NU {0} and a;,a; € Rfor (1 <i<n, 1<j<n).
Then there exists a constant « and it satisfies

Coef(auy)
=C P1 P2 | .Pn 91 92 | | .qn T1T2 ., oTn
= Coef|a(a1si* s, sPr - ags{t sy’ - st 4 aps)t sy’ -8

= Coef(ozals’l’lsg2 o8P 4 qagsy s - sIt 4 -+ gy ST sh? s;")
=aa; +aaz + -+ aay

=ala;+az+--+ay)

= aCoef(uy).

In a similar manner,

Coef(un + un’)

_ P1 P2 D q1 92 q T1 T2 T
—Coef((a151 §52 s 4 agsT sP o sIh o a,sTtsn? - si)

(2) + (ajsirsh? - shn 4 aésgisgé cest a8 sy -~-s:;7’))
=(a1+as+--+ap) +(a] +as+--+a)
= Coef(un) + Coef(un’).

In addition we can find

(3) Coef(unun’) = Coef(un)C’oef(un/).

Theorem 2.4. We indicate u, by s; (1 < i < n) and their multiplication terms,
moreover Coef(u,) =1 for n € N.

Proof. Obviously we can represent u, as s; (1 < ¢ < n) and their multiplication
terms by Theorem 2.1 and Lemma 2.2. Next we use the induction to deduce that
Coef(uy,) = 1. Let us put

(4) §1 =83 =---=8;, =1
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to exclude the effect of s; (1 < i < n). Then first since u; = s1 in Lemma 2.2 (a),
we have Coef(u;) = 1. Second we suppose that Coef(u,) = 1, which leads that

n

) n—k = _ f N
©) kgouku ’ Z ning - - - ngk! orn e

k=1
ni+ns+--+ng=n

by Theorem 2.1 (a) and Eq. (4). And by (2) and (3) the above identity signifies

n

2k
C - -
oef Z ning - - k!

k=1
nit+na+-+np=n

= Coef <Zn: ukun_k>

k=0
= Coef(upty, + Urthn—1 + UgUp—2 + -+ + Up_1U1 + UnUp)
= Coef(ug)Coef(uyn) + Coef(ui)Coef(un—_1) + Coef(ug)Coef(tu,_2)
+ -+ Coef(un—1)Coef(ur) + Coef(un)Coef(ug)
=2Coef(up)+n—1
=2-14+n-1
=n+1

and

n 2k

(6) Z e =n+1.

k=1
ni+nz+t-ng=n

Similarly, by (5) and (6) we obtain

n—+2
n+1 2k
kz_l ning -+ - nik!
ni+nz+--+np=n+l
n+1 2k

= Coe E -
/ Pt ning - - - npk!
nit+nz+-+np=n+l

n+1
= Coef <Z ukun+1k>

k=0
= Coef(uotns1 + Uity + UgUn_1 + - -+ + UpUy + Upt1Uo)
= Coef(ug)Coef(uns1) + Coef(ur)Coef(un) + Coef(ug)Coef(un—1)
+ -+ Coef(uy)Coef(ur) + Coef(uni1)Coef(up)
=2Coef(unt1) +n
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and so Coef(unp11) = 1.

3. APPLICATION OF u, TO MATRICES

Proposition 3.1. Letp be an odd prime, a,b,c,d € Z, p{ ad—bc, A = (a—d)?*+4be.

Then
I (mod p), if (%) =1,
(072 ()0
(ad — be)I (mod p), if (%) =-1,

where I is the 2 X 2 identity matriz and <> denotes the Legendre symbol.
p

Proof. See Corollary 3.3 in [4]. O

Theorem 3.2. Let p be an odd prime, a,b,c,d € Z, pt ad—be, A = (a—d)? + 4bc.
Then for m,l € NU {0} satisfying m > 1, we have

m—1
(Z Z) (mod p), g (2)=1,
pm=1(5) m
(lcl Z) ! = (a;d> I (mod p), if (%) —0,
(ad — be)' ( ‘ ab) " ot i (3) -1

m—I
In particular, if m =1 or (Z Z) =1 (mod p) with m > 1, then we obtain

I (mod p), if(2) =1,
pei(3) "
(CCL Z) = (a—;—d) I (modp), if (%) =0,
(ad = be)™I (mod p), if (%) =-1.
Proof. Let u_y =0, ug =1, and
(7) Unt1 = (a + d)up, — (ad — bc)un,—1  for n € NU {0}.

Then u,, = un(—a — d,ad — bc). Moreover in [4, p. 348] we can see that
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a b\" Uy —dup— buy,_1
() (c d) N ( Clip—1 Up, — aun_l)
and
A
9) Uy (a) = 0 (mod p), Up_1 = (p) (mod p).

Now, by Proposition 3.1, (8), and (9) we note that

N

(ff Z)pmzm -
(e
<u,,_dup1 {< Z)p@)}

Cup—1

(3

m—I
b’U,p,1 >
Up — QGUPp—1

/(3)

o(3)  m-el3)
I' (mod p), i (%) —1,
(10) « <“;d1>l (mod p), if (%) =0,
((ad - bc)I)l (mod p), if (%) =-1
(’LLpC d upb_ a) " (mod p), if (%) =1,
m—l
GED(T ) e wE)
(ad — be)! (up_—l;d up_—i a) " (mod p), if (%) =-1
Here when (%) =1, using (7) and (9) we deduce that
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up = (a+ d)up—1 — (ad — bc)up—2

= (a +d) (?) ~(ad = be)u, ,_(ay (mod p)

=(a+d)-1—(ad—bc)-0 (mod p)
=a+d (mod p)

thus

m—I1 m—1
up, —d b _f(a b
( c Up — a) - (c d) (mod p).

(mod p) in [4, p. 349] we

And when (%) = 0, referring to Uy (&) = Up =
obtain

8 G 2 (2
<a+d§ (a+d>m 7

m

7N
IS}
+ N
IS

(mod p).

Similarly when (%) = —1, by (9) we have u, = Uy 1 (8) = 0 (mod p) and so

(ad — be)! (“P*d b )mlz(ad—bc)l<d _b>ml (mod p).

—C Up + @ —Cc a

In consequence the above facts lead Eq. (10) to

m—l
(Z Z) (mod p), if (%) =1,
i (20D o £(2) =0
(ad — be)! (dc _ab> " (mod p), if (%) =-1

Especially, if m = then Eq. (11) becomes
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(a 2)Pm-l(ﬁ)

b 0
(Z d) (mod p),

(a ;L d)mf (mod p),

0
(ad — be)™ (_d _b>

I (mod p),

(a ; d)mf (mod p),

(ad — be)™I (mod p),

if (%) =1

From the matrix theory we easily know when a matrix A satisfies A™ = I for
an identity matrix I and m € N, then the inverse matrix A=! = A™~! since
A-A™~! = I. Thus using this property we deduce as follows :

m—l1
If (a b) = I (mod p) with m > [ then the inverse matrix (Ccl

c d

a b m—I{—1
(c d) (mod p) so

(2

1
ad — be

and

(

d

—C

c d

IS
| >
- o

b m—I
a

Therefore Eq. (11) shows that

m—1
b —1
d
m—I1—1 m—l
} (mod p)

(mod p)

(ad —be)™ "I (mod p).

P\ L
d
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. A
I (mod p), if (;) =1,
A
o 0\ ] rara\" .
(c d) = ( . ) I (mod p), if (%) =0,

(ad — be) - (ad — be)™ ' I (mod p), if (%) -1

I (mod p), if (%) =1,

(a;d)ml (mod p), if (£) =0,

(ad —bc)™I (mod p), if (%) =-1.
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