Notes on "Constructions of triangular norms on lattices by means of irreducible elements"

Abstract

In this note, we show by an counterexample that a paper by Yılmaz and Kazancı (Ş. Yılmaz, O. Kazancı, Constructions of triangular norms on lattices by means of irreducible elements, Inform. Sci. 397–398 (2017) 110–117) suffers from certain mistakes.

Keywords: \land -semilattice, \lor -semilattice, Irreducible element, Triangular norm

1. Introduction

A poset (L, \leq) is a \lor -semilattice (dually, \land -semilattice) iff $\sup\{x, y\}$ (dually, $\inf\{x, y\}$) exists for any two elements x and y. Denote $x \lor y = \sup\{x, y\}$ and call it the join of x and y. Dullary, Denote $x \land y = \inf\{x, y\}$ and call it the meet of x and y. A lattice is an ordered set (E, \leq) which is both an \lor -semilattice and an \land -semilattice with respect to its order [1].

A sublattice is a non-empty subset S of a lattice L, such that S is closed under meet and join. A lattice is complete if for every subset there exist the meet and the join. A lattice which possesses the smallest (the bottom) and the greatest (the top) elements, 0 and 1, respectively is bounded. A lattice L is a chain if either $x \leq 1y$ or $y \leq x$ for all $x, y \in L$.

If L is a lattice then $a \in L$ (with $a \neq 0$ if L has a bottom element 0) is said to be \lor -irreducible if $x \lor y = a$ implies x = a or y = a. Thus, $a \in L$ is \lor -irreducible if it cannot be expressed as the join of two elements that are strictly less than a. We denote the set of \lor -irreducible elements of a lattice L by J(L). Dually, we can define the set M(L) of \wedge -irreducible elements. For further information see [1, 2].

Definition 1.1. [3] Let $(L, \leq, 0, 1)$ be a bounded lattice. The set $J(L)^* = J(L) \cup \{0, 1\}$ and $M(L)^* = M(L) \cup \{0, 1\}$ are defined as the extended set of \vee -irreducible elements and \wedge -irreducible elements of L, respectively.

We point out an assertion in [3] is incorrect by counterexamples.

2. Mistakes and counterexamples

On page 112 in [3], the last line, the authors claimed that $J(L_1 \times L_2)^* = J(L_1 \times L_2) \cup \{(0,0), (1,1)\} = J(L_1)^* \times J(L_2)^*$. It follows from Definition 1.1 that $J(L_1 \times L_2)^* = J(L_1 \times L_2) \cup \{(0,0), (1,1)\}$. However, the following example shows that $J(L_1 \times L_2)^* \neq J(L_1)^* \times J(L_2)^*$ in general.

Example 2.1. Let $L_1 = \{0, a, b, 1\}$ be a boolean lattice with two atoms, and let $L_2 = \{0, 1\}$ be a two-element chain. Then $L_1 \times L_2$ is a boolean lattice with three atoms. It is clear that $J(L_1) = \{a, b\}, J(L_1)^* = L_1, J(L_2) = \{1\}$ and $J(L_2)^* = L_2$. It follows that

$$J(L_1 \times L_2)^* = \{(0,0), (a,0), (b,0), (0,1), (1,1)\},\$$

and $J(L_1)^* \times J(L_2)^* = L_1 \times L_2$. Thus $J(L_1 \times L_2)^* \neq J(L_1)^* \times J(L_2)^*$.

It is clear that $J(L_1 \times L_2)^*$ is a subposet of $L_1 \times L_2$. In Example 2.1, $(a,0) \lor_{L_1 \times L_2} (b,0) = (1,0)$ and $(a,0) \lor_{J(L_1 \times L_2)^*} (b,0) = (1,1)$. It follows that $J(L_1 \times L_2)^*$ is not a sublattice of $L_1 \times L_2$.

- G. Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, Rhode Island, 1967.
- [2] G. Gratzer, General Lattice Theory, second ed., Birkhauser Verlag, Basel, Switzerland, 1998.
- [3] Ş. Yılmaz, O. Kazancı, Constructions of triangular norms on lattices by means of irreducible elements, Inform. Sci. 397–398 (2017) 110–117.