
The Double Auxiliary Equations Method and its
Application to Some Nonlinear Evolution Equations

Abstract

Throughout this article, symbolic computation will be used in order to construct more
general exact solutions of nonlinear evolution equations through a new method called the
double auxiliary equations method, the method represent the study focus of this article.
The method has proven applicable and practical through its application to the generalized
regularized long wave (RLW) equation and nonlinear Schrodinger equation.

Keywords: double auxiliary equations method; (RLW) equation ; the nonlinear Schodinger
equation; traveling wave solution.
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1 Introduction

Nonlinear partial differential equations (NPDEs) are used in physics as models to describe many

important phenomena in several fields of science, such as plasma physics, nonlinear optics,fluid

mechanics, solid state physics, fluid flow,biology, chemistry, economy, and so on. For this very

reason, establishing exact traveling wave solutions of NPDEs is essential to properly understand

nonlinear phenomenas as well as other practical real-life applications.

In the past, a number of methods have been developed to generate analytical solutions of

nonlinear partial differential equations. One of these methods are the
(

G
′

G

)
expansion method

[1,2], the
(

G
′

G
, 1
G

)
expansion method [3], the exp (−ϕ (ξ)) expansion method [4,5], the general-

ized exp (−ϕ (ξ)) expansion method [6,7], the cotha (ξ) expansion method [8], the F -expansion

method [9], the (tanh (ξ)) expansion method [10], and various other methods [11-14].

In this paper, the double auxiliary equations method is introduced and used to deal with

the following two nonlinear differential equations (NPDEs):

(I) The generalized regularized long wave (RLW) equation

ut + ux + a
(
u2
)
x
− buxxt = 0,

where a and b are positive constants. RLW equation was first introduced as a model for small

amplitude long waves on the surface of water in a channel by Peregrine [15] and later by

Benjamin [16].

(II) The nonlinear Schodinger equation

iWt = −1

2
Wxx + δ |W |2W,

The nonlinear Schrodinger equation is a nonlinear variation of the Schrodinger equation.

It is a field equation whose principal applications are to the propagation of light in nonlin-

ear optical fibers and planar waveguides and to Bose-Einstein condensates confined to highly

anisotropic cigar-shaped traps, in the mean-field regime[17,18].

The remainder of the paper is organized as follows. Section 2 explains the double auxiliary

equations method. Section 3 applies this method for solving the RLW equation. Section 4,

applies this method for solving the nonlinear Schodinger equation. Section 5 concludes the

paper.
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2 Description of double auxiliary equations method

Suppose that we have a nonlinear partial differential equation for u = u(x, t) in the form:

P (u, ut, ux, utt, uxx, uxt, ...) = 0, (2.1)

where P is a polynomial in u = u(x, t) and their various partial derivatives including derivatives.

The main steps of the double auxiliary equations method are as follows:

Step 1. Use the traveling wave transformation:

u(x, t) = u(ξ) , ξ = x− vt, (2.2)

where v is a non-zero constant to be determined latter, which reduces (2.1) to an (ODE) for

u = u (ξ) in the form:

P (u, uξ, uξξ, uξξξ, ...) = 0. (2.3)

Step 2. Balance the highest derivative term with the nonlinear terms in (2.3) to find the

value of the positive integer (m). If the value (m) is noninteger one can transform the equation

studied.

Step 3. Suppose that the solution of (2.3) can be expressed as follows:

u (ξ) =
m∑

i=−m

αi

(
h (ξ)

g (ξ)

)i

(2.4)

where, αi (i = 0,±1, ...,±m) are constants to be determined, such that αi ̸= 0 and h (ξ) and

g (ξ) satisfies the following system of two equations:

{ (
h(ξ)
g(ξ)

)′
= A

(
h(ξ)
g(ξ)

)2
+B

(
h(ξ)
g(ξ)

)
+ C

F (x, t, h (ξ) , g (ξ) , h′ (ξ) , g′ (ξ) , ...) = 0,
(2.5)

where, F (x, t, h (ξ) , g (ξ) , h′ (ξ) , g′ (ξ) , ...) = 0, is a differential equation or algebric equation.

Step 4. Substituting (2.4) into (2.3) and using (2.5), and then setting all the cofficients

of
(

h(ξ)
g(ξ)

)i
of the resulting systems to zero, yields a system of algebraic equations for A,B,C, v

and αi (i = 0,±1, ...,±m).

Step 5. Suppose that the value of the constants A,B,C, k and αi (i = 0,±1, ...,±m) can

be found by solving the algebraic equations which are obtained in Step 4. Since the general
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solutions of (2.3) have been well known, substituting A,B,C, v, αi and the solutions of (2.5)

into (2.4), we obtain the exact solutions for Eq. (2.1).

In this paper we will choose the following system

{ (
h(ξ)
g(ξ)

)′
= A

(
h(ξ)
g(ξ)

)2
+B

(
h(ξ)
g(ξ)

)
+ C

h′ (ξ) = exp (ξ) ;A,B,C ∈ R
(2.6)

The system (2.6) gives the following solutions:

Family 1. When (B2 − 4AC) > 0,

(
h (ξ)

g (ξ)

)
= −

2C
(
C1 cosh

(√
B2−4AC

2
ξ
)
+ sinh

(√
B2−4AC

2
ξ
))

(
B − C1

√
B2 − 4AC

)
sinh

(√
B2−4AC

2
ξ
)
+
(
BC1 −

√
B2 − 4AC

)
cosh

(√
B2−4AC

2
ξ
) ;C1 ∈ R

(2.7)

Family 2. When (B2 − 4AC) < 0,

(
h (ξ)

g (ξ)

)
= −

2C
(
C1 cos

(√
4AC−B2

2
ξ
)
+ i sin

(√
4AC−B2

2
ξ
))

(
iB + C1

√
4AC −B2

)
sin
(√

4AC−B2

2
ξ
)
+
(
BC1 − i

√
4AC −B2

)
cos
(√

4AC−B2

2
ξ
) ;C1 ∈ R

(2.8)

Family 3. When (B2 − 4AC) = 0,

(
h (ξ)

g (ξ)

)
= − 2C (C1ξ + 1)

B + C1 (Bξ − 2)
;C1 ∈ R (2.9)

Family 4. When B = 0, AC ̸= 0, C > 0,

(
h (ξ)

g (ξ)

)
=

i
√

(eξ + C1)
√
C√

−A (eξ + C1) tan

((
i
√

−A(eξ+C1)
√
C
)
ξ−C2

√
(eξ+C1)√

(eξ+C1)

) ;C1, C2 ∈ R (2.10)

Family 5. When B = 0, AC ̸= 0, C < 0,

(
h (ξ)

g (ξ)

)
=

−
√

(eξ + C1)
√

|C|√
−A (eξ + C1) tan

((
−
√

−A(eξ+C1)
√

|C|
)
ξ−C2

√
(eξ+C1)√

(eξ+C1)

) ;C1, C2 ∈ R (2.11)

Note that if A = −1, B = −λ,C = −µ, h (ξ) = G (ξ) , g (ξ) = G′ (ξ) , F = g′ (ξ)−h (ξ) then

the double auxiliary equations method becomes which is the foundation of the known
(

G′(ξ)
G(ξ)

)
expansion method for solving partial differential equations (PDEs) [1,2].
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Note that if A = −k,B = 0, C = k, h (ξ) = Y (ξ) , F = g (ξ)− 1 then the double auxiliary

equations method becomes which is the foundation of the known (tanh (ξ)) expansion method

for solving partial differential equations (PDEs) [10].

Note that if A = −1, B = −λ,C = −µ, g (ξ) = ϕ (ξ) , F = h (ξ) − g (ξ) . exp (−g (ξ))

then the double auxiliary equations method becomes which is the foundation of the known

exp (−ϕ (ξ)) expansion method for solving partial differential equations (PDEs) [4,5].

Thus, the above described double auxiliary equations method is the Generalization of the(
G′(ξ)
G(ξ)

)
, (tanh (ξ)) and exp (−ϕ (ξ)) methods .

3 The Exact Solution For (RLW) equation

In this section, we will apply the double auxiliary equations method to find the exact solutions

of the generalized regularized long wave (RLW) equation:

ut + ux + a
(
u2
)
x
− buxxt = 0, (3.1)

where a and b are positive constants. Suppose that

u (x, t) = u (ξ) , ξ = x− vt, (3.2)

where v is a constant. Substituting (3.2) into Eq. (3.1), gives the following nonlinear ordinary

differential equation:

−vuξ + uξ + 2auuξ + bvuξξξ = 0, (3.3)

Integrating Eq. (3.2) once with respect to ξ and setting the integration constant as zero yields

−vu+ u+ au2 + bvuξξ = 0. (3.4)

Balancing the highest order nonlinear term u2 and the highest order partial derivative uξξ, we

get m+ 2 = 2m, hence m = 2. So we can suppose that Eq. (3.4) has the following ansatz:

u (ξ) = α0 + α1

(
h (ξ)

g (ξ)

)
+ α2

(
h (ξ)

g (ξ)

)2

+ α−1

(
h (ξ)

g (ξ)

)−1

+ α−2

(
h (ξ)

g (ξ)

)−2

(3.5)

where α0, α1, α2, α−1, α−2 are constants and need to be determined, Substituting (3.5) and

(2.6) into (3.4), the left-hand side is converted into polynomials in
(

h(ξ)
g(ξ)

)j
, (j = 0,±1,±2, ....).
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By collecting each coefficient of the resulting polynomials and setting them to zero, we ob-

tain a set of simultaneous algebraic equations, which are not presented for sake of clarity, for

α0, α1, α2, α−1, α−2 and v. Solving these algebraic equations with the help of algebraic software

Maple, we obtain:

Case (1).


α0 =

6bAC
ab(B2−4AC)−a

, α1 =
6bAB

ab(B2−4AC)−a
, α2 =

6bA2

ab(B2−4AC)−a
,

α−1 = 0, α−2 = 0, v = 1
1−b(B2−4AC)

(3.6)

Substituting (3.6) into (3.5), we have:

u (ξ) =
6bA

ab (B2 − 4AC)− a

(
C +B

(
h (ξ)

g (ξ)

)
+ A

(
h (ξ)

g (ξ)

)2
)
, (3.7)

where ξ = x− 1
1−b(B2−4AC)

t.

Consequently, the exact solutions of the generalized regularized long wave (RLW) equation

with the help of Eq. (2.7) to Eq. (2.11), are obtained in the following form:

Case (1-1). When (B2 − 4AC) > 0,



u (ξ) = 6bA
ab(B2−4AC)−a


C −B

(
2C

(
C1 cosh

(√
B2−4AC

2
ξ

)
+sinh

(√
B2−4AC

2
ξ

))
(B−C1

√
B2−4AC) sinh

(√
B2−4AC

2
ξ

)
+(BC1−

√
B2−4AC) cosh

(√
B2−4AC

2
ξ

)
)

+A

(
2C

(
C1 cosh

(√
B2−4AC

2
ξ

)
+sinh

(√
B2−4AC

2
ξ

))
(B−C1

√
B2−4AC) sinh

(√
B2−4AC

2
ξ

)
+(BC1−

√
B2−4AC) cosh

(√
B2−4AC

2
ξ

)
)2


,

ξ = x− 1
1−b(B2−4AC)

t;C1 ∈ R
(3.5)

Case (1-2). When (B2 − 4AC) < 0,


u (ξ) = 6bA

ab(B2−4AC)−a


C −B

(
2C

(
C1 cos

(√
4AC−B2

2
ξ

)
+i sin

(√
4AC−B2

2
ξ

))
(iB+C1

√
4AC−B2) sin

(√
4AC−B2

2
ξ

)
+(BC1−i

√
4AC−B2) cos

(√
4AC−B2

2
ξ

)
)

+A

(
2C

(
C1 cos

(√
4AC−B2

2
ξ

)
+i sin

(√
4AC−B2

2
ξ

))
(iB+C1

√
4AC−B2) sin

(√
4AC−B2

2
ξ

)
+(BC1−i

√
4AC−B2) cos

(√
4AC−B2

2
ξ

)
)2

 ,

ξ = x− 1
1−b(B2−4AC)

t;C1 ∈ R
(3.6)
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Case (1-3). When (B2 − 4AC) = 0,

 u (ξ) = −6bA
a

(
C +B

(
− 2C(C1ξ+1)

B+C1(Bξ−2)

)
+ A

(
− 2C(C1ξ+1)

B+C1(Bξ−2)

)2)
,

ξ = x− t
(3.7)

Case (1-4). When B = 0, AC ̸= 0, C > 0,


u (ξ) = − 6bA

a(1+4bAC)

C + A

 i
√
(eξ+C1)

√
C√

−A(eξ+C1) tan


(
i

√
−A(eξ+C1)

√
C

)
ξ−C2

√
(eξ+C1)√

(eξ+C1)




2 ,

ξ = x+ 1
(1+4bAC)

t;C1, C1 ∈ R

(3.8)

Case (1-5). When B = 0, AC ̸= 0, C < 0,


u (ξ) = − 6bA

a(4bAC+1)

C + A


√
(eξ+C1)

√
|C|√

−A(eξ+C1) tan


(
−
√

−A(eξ+C1)
√

|C|
)
ξ−C2

√
(eξ+C1)√

(eξ+C1)




2 ,

ξ = x+ 1
(4bAC+1)

t;C1, C1 ∈ R

(3.9)

Case (2).


α0 = − b(B2+2AC)

a+ab(B2−4AC)
, α1 = 0, α2 = 0,

α−1 =
−6bBC

a+ab(B2−4AC)
, α−2 =

−6bC2

a+ab(B2−4AC)
, v = 1

1+b(B2−4AC)

(3.10)

Substituting (3.10) into (3.5), we have:

u (ξ) =

(
−b

a+ ab (B2 − 4AC)

)(
B2 + 2AC + 6BC

(
h (ξ)

g (ξ)

)−1

+ 6C2

(
h (ξ)

g (ξ)

)−2
)

(3.11)

where ξ = x− 1
1+b(B2−4AC)

t.

Consequently, the exact solution of the generalized regularized long wave (RLW) equation

with the help of Eq. (2.7) to Eq. (2.11), are obtained in the followin form:

Case (2-1). When (B2 − 4AC) > 0,
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

u (ξ) =
(

6b
a+ab(B2−4AC)

)


(
−B2+2AC

6

)

+BC

(
2C

(
C1 cosh

(√
B2−4AC

2
ξ

)
+sinh

(√
B2−4AC

2
ξ

))
(B−C1

√
B2−4AC) sinh

(√
B2−4AC

2
ξ

)
+(BC1−

√
B2−4AC) cosh

(√
B2−4AC

2
ξ

)
)−1

+C2

(
2C

(
C1 cosh

(√
B2−4AC

2
ξ

)
+sinh

(√
B2−4AC

2
ξ

))
(B−C1

√
B2−4AC) sinh

(√
B2−4AC

2
ξ

)
+(BC1−

√
B2−4AC) cosh

(√
B2−4AC

2
ξ

)
)−2


,

ξ = x− 1
1+b(B2−4AC)

t;C1 ∈ R
(3.12)

Case (2-2). When (B2 − 4AC) < 0,



u (ξ) =
(

6b
a+ab(B2−4AC)

)


(
−B2+2AC

6

)

+BC

(
2C

(
C1 cos

(√
4AC−B2

2
ξ

)
+i sin

(√
4AC−B2

2
ξ

))
(iB+C1

√
4AC−B2) sin

(√
4AC−B2

2
ξ

)
+(BC1−i

√
4AC−B2) cos

(√
4AC−B2

2
ξ

)
)−1

+C2

(
2C

(
C1 cos

(√
4AC−B2

2
ξ

)
+i sin

(√
4AC−B2

2
ξ

))
(iB+C1

√
4AC−B2) sin

(√
4AC−B2

2
ξ

)
+(BC1−i

√
4AC−B2) cos

(√
4AC−B2

2
ξ

)
)−2


,

ξ = x− 1
1+b(B2−4AC)

t;C1 ∈ R
(3.13)

Case (2-3). When (B2 − 4AC) = 0,


u (ξ) =

(−6bC
a

)(
A+B

(
− 2C(C1ξ+1)

B+C1(Bξ−2)

)−1

+ C
(
− 2C(C1ξ+1)

B+C1(Bξ−2)

)−2
)
,

ξ = x− t;C1 ∈ R

(3.14)

Case (2-4). When B = 0, AC ̸= 0, C > 0,


u (ξ) =

( −2bC
a−4abAC

)
A+ 3C

 i
√
(eξ+C1)

√
C√

−A(eξ+C1) tan


(
i

√
−A(eξ+C1)

√
C

)
ξ−C2

√
(eξ+C1)√

(eξ+C1)




−2 ,

ξ = x− 1
1−4bAC

t;C1, C2 ∈ R

(3.15)
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Case (2-5). When B = 0, AC ̸= 0, C < 0,


u (ξ) =

( −2bC
a−4abAC

)
A+ 3C


√
(eξ+C1)

√
|C|√

−A(eξ+C1) tan


(
−
√

−A(eξ+C1)
√

|C|
)
ξ−C2

√
(eξ+C1)√

(eξ+C1)




−2 ,

ξ = x− 1
1−4bAC

t;C1, C2 ∈ R

(3.16)

4 The Exact Solution For the nonlinear Schodinger equa-

tion

In this section, we will apply the double auxiliary equations method to find the exact solutions

of the nonlinear Schrodinger equation.

Let us consider the nonlinear Schrodinger equation:

iWt = −1

2
Wxx + δ |W |2W (4.1)

We may choose the following traveling wave transformation

W (x, t) = u (ξ) exp (i (αx+ βt)) ; ξ = K (x− αt) (4.2)

where K,α and β are costants to be determined later. Eq. (4.1) becomes

−
(
α2 + 2β

)
u+K2uξξ − 2δu3 = 0 (4.3)

By balancing the hieghest order derivative term (uξξ) with the nonlinear term (u3) in (4.3),

gives (m = 1). Therefore, the double auxiliary equations method allows us to use the solution

in the following form:

u (ξ) = α0 + α1

(
h (ξ)

g (ξ)

)
+ α−1

(
h (ξ)

g (ξ)

)−1

(4.4)

where α0, α1, α−1 are constants and need to be determined, Substituting (4.4) and (2.6) into

(4.3), the left-hand side is converted into polynomials in
(

h(ξ)
g(ξ)

)j
, (j = 0,±1,±2, ....). By

collecting each coefficient of the resulting polynomials and setting them to zero, we obtain

a set of simultaneous algebraic equations, which are not presented for sake of clarity, for
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α0, α1, α−1, α, β,K and v. Solving these algebraic equations with the help of algebraic soft-

ware Maple, we obtain:

Case (1).

{
α0 =

KB
2
√
δ
, α1 = 0, α−1 =

KC√
δ
, α = α, β = −1

2
α2 − K2

4
(B2 − 4AC)

K = K,C = C,B = B,A = A, δ = δ
(4.5)

Substituting (4.5) into(4.4), and using (4.2) we have :

W (ξ) =
K√
δ

(
B

2
+ C

(
h (ξ)

g (ξ)

)−1
)

(4.6)

where

ξ = K(x− αt) (4.7)

Consequently,the exact solution of the nonlinear Schrodinger equation (4.1) with the help

of Eq. (2.7) to Eq. (2.11) are obtained in the followin form:

Case (1-1): When (B2 − 4AC) > 0.

 u (ξ) =
K
√
B2−4AC

(
cosh

(√
B2−4AC

2
ξ

)
+C1 sinh

(√
B2−4AC

2
ξ

))
2
√
δ

[
sinh

(√
B2−4AC

2
ξ

)
+C1 cosh

(√
B2−4AC

2
ξ

)] ,

ξ = K(x− αt);C1 ∈ R
(4.8)

Case (1-2): When (B2 − 4AC) < 0.


u (ξ) = K

√
4AC−B2

(
i cos

(√
4AC−B2

2
ξ

)
−C1 sin

(√
4AC−B2

2
ξ

))
2
√
δ

[
i sin

(√
4AC−B2

2
ξ

)
+C1 cos

(√
4AC−B2

2
ξ

)] ,

ξ = K(x− αt);C1 ∈ R

(4.9)

Case (1-3): When (B2 − 4AC) = 0.

{
u (ξ) = KC1√

δ(C1ξ+1)
,

ξ = K(x− αt);C1 ∈ R
(4.10)

Case (2-4): When B = 0, AC ̸= 0, C > 0.


u (ξ) = −

iK
√

−A(eξ+C1)
√
C tan


(
i

√
−A(eξ+C1)

√
C

)
ξ−C2

√
(eξ+C1)√

(eξ+C1)


√
δ
√

(eξ+C1)
,

ξ = K(x− αt);C1, C2 ∈ R

(4.11)

Case (2-5): When B = 0, AC ̸= 0, C < 0.
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 u (ξ) =

CK
√

−A(eξ+C1) tan


(√

−A(eξ+C1)
√

|C|
)
ξ−C2

√
(eξ+C1)√

(eξ+C1)


√
δ
√
(eξ+C1)

,

ξ = K(x− αt);C1, C2 ∈ R

(4.12)

Case (2).

{
α0 =

KB
2
√
δ
, α1 =

AK√
δ
, α−1 = 0, α = α, β = −1

2
α2 − K2

4
(B2 − 4AC)

K = K
(4.13)

Substituting (4.5) into(4.4), and use (4.2) we have :

W (ξ) =
K√
δ

(
B

2
+ A

(
h (ξ)

g (ξ)

))
(4.14)

where

ξ = K(x− αt) (4.15)

Consequently,the exact solution of the nonlinear Schrodinger equation (4.1) with the help

of Eq. (2.7) to Eq. (2.11) are obtained in the followin form:

Case (2-1): When (B2 − 4AC) > 0.

 u (ξ) = KB
2
√
δ
−

2AKC

(
C1 cosh

(√
B2−4AC

2
ξ

)
+sinh

(√
B2−4AC

2
ξ

))
√
δ

[
(B−C1

√
B2−4AC) sinh

(√
B2−4AC

2
ξ

)
+(BC1−

√
B2−4AC) cosh

(√
B2−4AC

2
ξ

)] ,
ξ = K(x− αt);C1 ∈ R

(4.16)

Case (2-2): When (B2 − 4AC) < 0.


u (ξ) = KB

2
√
δ
−

2AKC

(
C1 cos

(√
4AC−B2

2
ξ

)
+i sin

(√
4AC−B2

2
ξ

))
√
δ

[
(iB+C1

√
4AC−B2) sin

(√
4AC−B2

2
ξ

)
+(BC1−i

√
4AC−B2) cos

(√
4AC−B2

2
ξ

)] ,

ξ = K(x− αt);C1 ∈ R

(4.17)

Case (2-3): When (B2 − 4AC) = 0.

{
u (ξ) = −KB

2
√
δ
− 2AKC(C1ξ+1)√

δ[B+C1(Bξ−2)]
,

ξ = k(x− αt);C1 ∈ R
(4.18)

Case (2-4): When B = 0, AC ̸= 0, C > 0.
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
u (ξ) =

iAK
√
(eξ+C1)

√
C

√
δ
√

−A(eξ+C1) tan


(
i

√
−A(eξ+C1)

√
C

)
ξ−C2

√
(eξ+C1)√

(eξ+C1)

 ,

ξ = K(x− αt);C1, C2 ∈ R

(4.19)

Case (2-5): When B = 0, AC ̸= 0, C < 0.


u (ξ) = −

AK
√
(eξ+C1)

√
|C|

√
δ
√

−A(eξ+C1) tan


(
−
√

−A(eξ+C1)
√

|C|
)
ξ−C2

√
(eξ+C1)√

(eξ+C1)

 ,

ξ = K(x− αt);C1, C2 ∈ R

(4.20)

5 Conclusion

In this article, a new method called the double auxiliary equations method was proposed where

the validity of the method has been tested by applying it successfully to the the RLW equation

and the nonlinear Schodinger equation. It was proved that the double auxiliary equations

method is a powerful mathematical technique for finding the exact solutions for the partial

differential equations..
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