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Pullback Absorbing set for the stochastic lattice Selkov
equations

Abstract: In this paper, a transformation of addition involved with O-U process is exploited to deal
with the challenge in proving the pullback absorbing property for the stochastic reversible Selkov
system in an infinite lattice with additive white noises.
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1 Introduction

For the stochastic reversible Selkov system with the cubic nonlinearity and additive white noise
on an infinite lattice:
dui = [dl(ui+1 — 2'LLZ' + ’U,ifl) —a1u; + blufvi - bguf + fh]dt + aidwi, xS Z7 t> 0,
(1.1)
dv; = [dQ(UH_l — 2v; + 'Ui—l) — agl; — blu?vi + bgu? + fgi]dt + azdw;, 1 €Z, t >0,

with initial conditions
ul(O) = Uj,0, UZ(O) = V;,0, 1€ Z, (12)

where Z denotes the integer set, u = (u;)iez € €2, v = (v;)icz € €%, di, da, a1, a2,b1,by are positive
constants, a = (;)iez € €2, {w;|i € Z} is independent Brownian motions. We have obtained the
random dynamical system, see [7]. Pullback absorbing property is very important to describe the long-
time behavior of the equations for the mathematics and physics, especially, to prove the existence of
random attractor. Therefore, in this paper, we prove the pullback absorbing property for the Selkov

equations (1.1).

2 Preliminaries

In this section, we introduce the relevant definitions of absorbing property, which are taken from
(2], [4], [6], [8].

Let (H,d) be a complete separable metric space, (€2, F,P) be a probability space, Rt = [0, 00).
Definition 2.1. (2, F, P, (0;):cr) is called a metric dynamical system if 6 : RxQ — Qis (B(R)xF, F)
measurable, 6y = 1,05, = 05086, for all s,t € R, and ;P =P for all t € R.

Definition 2.2. A continuous random dynamical system (RDS) on H over a metric dynamical system

(Q, F, P, (0;)ter) is a mapping
0:RT"xQxH—H, (twz)— ot w,),

which is (B(R1) x F x B(H), B(H))-measurable and satisfies, for every w € Q,
(i) ¢(0,w,-) is the identity on H;
(ii) Cocycle property: p(t + s,w,-) = ¢(t,0sw, p(s,w,-)) for all t,s € RT;
(iii) o(-,w,*) : RT x H — H is strongly continuous.
Definition 2.3. A random bounded set B(w) C X is called tempered with respect to (6;):er if for

every w € (Q,
lim e”*d(B(f_,w)) = 0 for all 3 > 0,

t—o0



UNDER PEER REVI EW

where d(B) = sup,cp ||z x-
Definition 2.4. A random set K(w) is called a pullback absorbing set in D, where D is a collection
of random sets of H, if for all B € D and every w € €, there exists a tg(w) > 0 such that

o(t, 0w, B(0_1w)) C K(w), for all t > tp(w).

3 Ornstein-Uhlenbeck process

To convert the stochastic wave equation to a deterministic one with random parameters, we intro-
duce an Ornstein-Uhlenbeck process (O-U process) in £? on the metric dynamical systems (Q, F, P, (6)¢cr)

given by the Wiener process:

0
y(Ow) = —(a1 + ag)/ el@1%a2)3(9,5) (s)ds, teR, weq.

— 00

The above integral exists for any path w with a subexponential growth, and y solve the following It
equations respectively:
dy + (a1 + ag)ydt = dw(t), t>0.

Furthermore, there exists a 0;-invariant set ' C Q of full P measure such that
(1) the mappings s — y(fsw), is continuous for each w € Q;
(2) the random variables ||y(6:w)|| is tempered.
Let

a(t) = u(t) —y(buw),  o(t) =v(t) — y(biw).
Then we get

Uy = —di AT + y(0w)) — a1t + azy(0rw) + b (@ + y(6:w))* (0 + y(Ouw))
—ba (i + y(0iw))® + fu

U = —da A(D + y(0w)) — az® + ary(Opw) — b1 (@ + y(:w))*(0 + y(Ouw))
+ba (i + y(0iw))? + fo

with the initial value condition

a(0,w,7p) = tg(w) = up — y(w), (0, w, o) = o(w) = vo — Yy(w).

4 pullback absorbing property

Lemma 4.1. There exists a 0y-invariant set Q' C Q of full P measure and an absorbing random set
K(w),w € Y, for the random dynamical system o(t,w), i.e. for all B € D and allw € ', there exists
Tp(w) > 0 such that

o(t,0_w,B(0_w)) C K(w) for all t > Tp(w).

Moreover, K € D.
Proof. Taking the inner product (3.1) with (4,9, 2)T in E, we obtain

1d

5%\\@?”2 = —di(Aa, @) — di{Ay(Ow), @) — ar]lal® + bi{(@ + y(0:w))*(7 + y(hw)), @)
~b2((@ + y(0w))*, @) + (f1, @) + az(y(Ouw), @),

%%H@IF = —dx(A0,7) — dz(Ay(Bw), D) — az(|5]]* = bi((a@ + y(Brw))* (0 + y (b)), D)
+b2((@ + y(0:w))?, 8) + (f2,0) + a1 (y(w), D). (4.1)
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Summing the three equations up, we get that

D02 + 01) + 241 (A, @) + 205 (40, 5) + 20 ] + 200

L Ay (00), ) — 2 A0, ) + 20f1,3) + 2 B + 20y(Br)s 3) + 2ar (o0, 3
12by (7 + y(0)) (5 + y(0)), ) — 201 (@ + y(0,))2 (5 + y(0u)), )
—2bg<(ﬂ+y(9tw)) ,ﬂ>+2b2<(ﬁ+y(9tw)) , D). (4.2)

Then we have

201 (@ + y(01w))? (0 + y(01w)), @) — 2b1{(@ + y(6:0))* (0 + y(:w)), )
—2ba((@ + y(0uw))®, @) + 2b2((a@ + y(0uw))*, T)

201 ((@ + y(0:w)) (0 + y(61w)), @ — 0) — 2b2((a + y(fyw))*, @ — )
2max{by, by }{(@ + y(01w))*(0 + y(61w) — @ — y(O1w)), & — )
—2max{by, by }{(@ + y(6w))? (& — D), & — D)

-2 Z(u + i (0w))? (@ — 7;)% < 0. (4.3)

I IA

By Young’s inequality, we have the following estimate
a1 . 3d3
=201 (Ay(0,w), ) < Sl + T Ay (0],
o ag, . 3d2
—2dy(Ay(0sw), 0) < f\lvll2 + lelAy(HtW)H27

- ai . 3a?
2as(y(Orw), @) < gl\IUII2 + Tf\ly(ﬁ’tw)llg,

- as , . 3a?)?
201 (y(0), 7)< 2 + 22 1y (0,1,
ag

- ai . 3
2(f1,u) < ngUII2 + a\|f1||27

- as . 3
2(f2,0) < gllvll2 + = f2l?. (4.4)

a2
By (4.2)-(4.4), we obtain that

d - _ - i -
S Uall? + [191%] + 2d1 (A@, @) + 2d5 (A5, 9) + 2aa|]* + 2025

,0)
% 2 2 a1 2
o, 14yl +*||f 1"+ - llal

IN

ai . 3d2
3 lall? + Ay (0) * + || I”+
ay
gl + g + a ly(0e)[I* + fIIﬁHQ , B ly(@o)I + 215
a9 3 ap 3 as 3

3d? 3
2 Ay (0|1 + = f111?
as aq

_ o 3d} 2 ~ 112
= aifa +*||Ay(9tw)|| + az|9]]” +
3a?
*Ilf ||2+ 2||y(49t )I\2+7;||y(9tw)ll2,

hence we have,

d, _ i .
Zlal® + 191 + ax[1a]* + az o]

3d2 3d? 3 3a2 3a?
< By + 2 payowr + Linie+ 2ise+ 2 e + 2o
< 01||Ay(9tw)||2 + Cally(Ow)|1? + Cs (|| f11* + [| 217 )
< Ca(lly(B:w)|1* + | Ay (0|1 + || f111 + 1 £211% + 11 £3]1%), (4.5)
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where

3d2 3d 3a; 3
Cy = max{— , Cy= max{ a2 al }
ap a2

3 3
C3 = max{—, —}, Cy :max{Cl7C’27C;3}.
ap az
By Gronwall’s inequality, it follows that

1%(t, w, o ())II* + 15(t, w, To(w))|”
< em e Hidg (w) | + || (w) 7] +

Cy

min{a,as}

(LA + 12107)

t
+04/ e~ min{araz}(t=9) |1y (9,0 |2 + | Ay(Bw)]|2)ds. (4.6)
0

Let ¢; = min{a1,as}. Note that the random variable y(6;w) is tempered and y(6;w) is continuous
in ¢. Therefore, it follows from Proposition 4.3.3 in [1] that there exists a tempered function I(w) > 0
such that

ly(Ou)|* + | Ay(w)||* < 1(0rw) < Uw)e T, (4.7)
Replacing w by 6_;w in (4.6) and using (4.7), we obtain

(t, 0w, o (0—ew))||* + 5(¢, 0w, To(0—ew)) |I®

< e ao@- ) + Io(0-w)*) + A + 1)
+04 [ g0 + 400
< e la0-)I? + o0+ AL +1a1)
£0 [ + ay(o) Par
< e o0l + @)+ S+ 11 + 22, (43)

Define R%(w) = 2[C4(||f1I1* + |l f2]|?) + 2C4l(w)]/e1; since [(w) is a tempered function, then R(w) is
also tempered.
Define

K(w) = {(a,7) € € x £ ||al* + ||o]* < R*(w)}.

Then f((w) is an absorbing set for the random dynamical system (a(t, w, tg), 0(t,w, 0g)), which follows
from Theorem 4.2 in [7], that is, for every B € D and every w € ', there exists Tg(w) such that

®(t,0_w, B(A_w)) C K(w) for t>Tp(w).

Let
K(w) = {(u,v) € 2 x £, ||ul]> + [[v]* < R} (w)},
where

Ri(w) = 2R*(w) + 4]y (w)|*.
Then, K(w) is an absorbing random set for the random dynamical system ¢(t,w) since
o(t,w, (uo,vo, 20))

= O(t,w, (uo —y(w),vo — y(w))) + (y(b:w), y(Orw))
= (at,w,up = y(w)) + y(Ouw), o(t, w0, v0 — y(w)) + y(fiw))
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and K € D. This completes the proof of Lemma 4.1. O
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