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ABSTRACT 10 

Aims: Direct methods of measuring saturated hydraulic conductivity (Ks), either in situ or in 
the laboratory, are time consuming and very expensive. Several Pedotransfer functions 
(PTFs) are available for estimating Ks, with each having its own limitations. In this study, the 
performances of four popular PTFs were evaluated on different soil classes. The PTFs 
considered herein were Puckett et al. (1985), Campbell and Shiozawa (1994), Dane and 
Puckett (1994), and Ferrer-Julià et al. (2004). In addition, five local data derived PTFs were 
used to study the possibility of using local datasets to validate PTF accuracy.  
Materials and methods: A total of 450 undisturbed soil cores were collected from the 0 – 
15 cm depth from a Stagni-Dystric Gleysol, Plinthi Ferric Acrisol and Plinthic Acrisol. The Ks 
of samples were measured by falling-head permeameter method in the laboratory. Sand, silt 
and clay fractions, bulk density, organic matter content, and exchangeable calcium and 
sodium were measured and used as input parameters for the derived PTFs. Accuracy and 
reliability of the predictions were evaluated by the root mean square error (RMSE), 
coefficient of correlation (r), index of agreement (d), and the Nash-Sutcliffe efficiency (NSE) 
between the measured and predicted values. The relative improvement (RI) of the derived 
PTFs from this study over the existing ones were also evaluated. 
Results: The derived PTFs in this study had good prediction accuracy with r, d, RMSE and 
NSE ranging from 0.80 – 0.99, 0.79 – 0.94, 0.14 – 1.74 and 0.84 – 0.98, respectively, 
compared with 0.32 – 0.45, 0.27 – 0.50, 4.00 – 4.90 and 0.41 – 0.47 for the tested PTFs. 
The relative improvement of the derived over the tested PTFs ranged from 56.50 – 95.71% 
in the Stagni-Dystric Gleysol, 70.73 – 96.89% in the Plinthi Ferric Acrisol, and 65.37 – 
95.81% in the Plinthic Acrisol. Generally, RI was observed to be highest for Model 1 in the 
Stagni-Dystric Gleysol, and Model 4 in both Plinthic Ferric Acrisol and Plinthic Acrisol, and 
lowest for Model 5 in all three soils. It was observed that the inclusion of exchangeable 
calcium and sodium as predictors increased the predictability of the derived PTFs.   
 11 
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1. INTRODUCTION 13 

Hydraulic conductivity is a major parameter in all hydrological models, spanning from 14 
physically-based, fully-distributed small-catchment models to land surface parameterizing 15 
schemes of general circulation or global climate models [1, 2]. Hydraulic conductivity in 16 
saturated soils, referred to as the saturated hydraulic conductivity (Ks) is very crucial in soil 17 
and water management with regard to ecology, agriculture and the environment [3, 4]. In 18 
addition, it is a very significant parameter in the study of processes such as infiltration, 19 
irrigation and drainage, runoff and erosion, and heat and mass transport in top soils, and 20 
solute transport in soils [5 – 7]. However, direct determination of Ks under both field and 21 
laboratory conditions can be very tedious, time constraining, and cost inefficient, especially 22 
over large scales [8], and may often result in unreliable data due to soil heterogeneity and 23 
experimental errors. As a result, indirect methods often adopted estimate Ks from other soil 24 



 

 

properties. These are categorized into three, namely, pore-size distribution models, inverse 25 
methods, and pedotransfer functions [1, 9].  26 

Pedotransfer functions are mainly empirical; however, physico-empirical models and fractal 27 
theory models are also available [10]. They are generally employed for estimating hydraulic 28 
properties from soil properties such as soil texture, bulk density, organic matter content, and 29 
water retention [1, 10, 11]. According to Schaap [11] any PTF may belong to one of three 30 
main groups, namely, Class PTFs, Continuous PTFs, and Neural network analysis-derived 31 
PTFs. The Class PTFs [e.g. 12 – 14] are based on the similar media theory [15], wherein, 32 
similar soils are assumed to exhibit similar hydraulic properties. Continuous PTFs, which are 33 
mainly derived from linear and nonlinear regression models, show a continuous trend of 34 
variations among estimated hydraulic properties for defined textural classes [16]. All PTFs 35 
are developed from data obtained from a small number of soil samples, and usually do not 36 
account for soil structural heterogeneities, which may result in less accurate or poor 37 
predictions when applied to soils different from those from which they were developed [7, 38 
17]. This implies that the prediction accuracy of PTFs depends on the similarity between the 39 
soils from which they were developed and tested [18]. Inclusion of extra basic soil 40 
properties, such as bulk density, porosity, organic matter content, water retention 41 
parameters [19 – 22], and exchangeable sodium and calcium may improve the prediction 42 
performance of such models. It is therefore, important to evaluate how well PTFs will 43 
perform when applied outside the range of the data that were used to derive them, and to 44 
make appropriate modifications where necessary. The objectives of the study were to:  45 

i. Evaluate the general reliability of four most commonly cited PTFs to predict Ks of 46 
selected Ghanaian soils, where climatic and geological conditions are different from 47 
where they were developed and tested; 48 

ii. Derive and verify, for selected benchmark soils in Ghana, more accurate PTFs to 49 
estimate Ks; 50 

iii. Test whether the inclusion of exchangeable Na and Ca as input parameters would 51 
improve the accuracy of the derived PTFs. 52 

2. MATERIAL AND METHODS  53 

2.1 Soil sampling, analysis and characterization 54 

A set undisturbed soil samples were collected from the surface 0 – 15 cm depth with a core 55 
sampler of 10 cm diameter and 30 cm height. The soils were classified as Stagni-Dystric 56 
Gleysol, Plinthi Ferric Acrisol and Plinthic Acrisol. In total, 450 undisturbed cores and two 57 
sets of 450 disturbed samples were collected. One set of the disturbed samples was oven-58 
dried and used for the determination of bulk density; the other set was air-dried and sieved 59 
through a 2 mm sieve. The disturbed samples were used for the determination of particle 60 
size distribution, pH, organic matter content, exchangeable sodium, calcium, magnesium, 61 
and potassium, cation exchange capacity, exchangeable sodium percentage and sodium 62 
absorption ratio. The undisturbed cores were used for the laboratory measurements of 63 
saturated hydraulic conductivity. Soil bulk density was estimated based on the weight of soil 64 
core samples after correcting for soil moisture and the mass and volume of roots and stones 65 
[23]. Saturated moisture content was assumed to be equal to the total porosity [24, 25]. 66 
Particle size analysis was determined by the hydrometer method. The saturated hydraulic 67 
conductivity was determined on laboratory soil columns with the falling head permeameter 68 
(Figure 1) [2, 26]. Measured properties of the soil classes are presented in Table 1. The soil 69 
textures were sandy, sandy loam, and loamy sand. 70 



 

 

 71 

Figure 1. Laboratory setup for the determination of saturated hydraulic conductivity    72 
Source: Tuffour et al. [27] 73 

2.1.1 Collection of soil cores 74 

Soil sampling was done as described by Tuffour [2]. Undisturbed soil cores were collected 75 
from the fields using a 10 cm diameter PVC pressure sewer pipe and a height of 30 cm and 76 
beveled on the outer part of one end to provide a cutting edge to facilitate the insertion of 77 
the core. Soil cores were collected by first digging a circular trench around an intact “pillar” 78 
of undisturbed soil which was taller and had a slightly larger diameter than the core sampler. 79 
The core sampler was then inserted directly into the pillar of soil by striking a wooden plank 80 
positioned across the top of the ring, with a mallet. By this, the edges of the pillar were 81 
allowed to fall away from the core as it was inserted. Following complete insertion, the core 82 
was excavated by hand. A sealant (herein, paraffin wax) was used to ensure good contact 83 
between the soil and core, and thereby minimised any edge flow resulting from an air 84 
annulus created by the inner ring down the core.  85 

Table 1. Soil property ranges of the datasets soil types 86 

Soil property SDG PFA PA 
Sand (%) 87.73 68.45 77.65 
Silt (%) 9.30 13.74 12.55 
Clay (%) 3.11 17.80 9.79 
Texture Sandy Sandy loam Loamy sand 
BD (g/cm3) 1.70 1.40 1.20 
Ks (cm/min) 4.14 4.14 4.12 
OM (%) 0.98 3.77 2.40 



 

 

Exch. Na (cmol/kg) 0.04 0.02 0.04 
Exch. Ca (cmol/kg) 1.50 4.87 7.34 
SDG = Stagni-Dystric Gleysol; PFA = Plinthi Ferric Acrisol; PA = Plinthic Acrisol; BD = Bulk 87 
density; TP = Total porosity; MC = Moisture content; Ks = Saturated hydraulic conductivity; 88 
OM = Organic matter; Figures in parentheses represent standard deviations; Exch. Na and 89 
Ca = Exchangeable sodium and calcium 90 

2.2 Pedotransfer functions (PTFs) 91 

Saturated hydraulic conductivity was predicted by relating it to basic soil properties using 92 
PTFs. The commonly cited PTFs evaluated were those developed by Puckett et al. [28], 93 
Campbell and Shiozawa [29], Dane and Puckett [30], and Ferrer-Julià et al. [31] as 94 
presented in equations (1 – 4), respectively: 95 

௦ܭ ൌ 156.96 expሾെ0.1975݈ܥሿ                                                                                                            ሺ1ሻ                                                 96 

௦ܭ ൌ 54 expሾെ0.07ܵ െ  ሿ                                                                                                     ሺ2ሻ                                                 97݈ܥ0.167

௦ܭ ൌ 303.84 expሺെ0.144݈ܥሻ                                                                                                               ሺ3ሻ                                                 98 

௦ܭ ൌ 2.556 ൈ 10ି expሺ0.0491ܵሻ                                                                                                    ሺ4ሻ                                                99 

Additionally, five new PTFs, (Equations 5 – 9), were derived using multiple linear regression 100 
(MLR) to relate Ks to particle size distribution, bulk density, exchangeable sodium and 101 
cation, and organic matter content. The derived PTFs (Equations 5 – 9) in this study are:  102 

Model 1: ܭ௦ ൌ 0.046158ܵ  0.008362 ܵ  ܽܥ0.107176 െ 1.121352ܰܽ                            ሺ5ሻ      103 

Model 2: ܭ௦ ൌ 0.02256 ܵ  ݈ܥ0.06784  ܯ0.29335ܱ  ܽܥ0.14592  33.75189ܰܽ       ሺ6ሻ   104 

Model 3: ܭ௦ ൌ ݈ܥ0.1832  40.9297ܰܽ                                                                                             ሺ7ሻ                                              105 

Model 4: ܭ௦ ൌ ܦܤ2.743  1.123ܰܽ                                                                                                   ሺ8ሻ          106 

Model 5: ܭ௦ ൌ ܽܥ0.45615  37.403333ܰܽ                                                                                     ሺ9ሻ                                               107 

where, ܭ௦ ൌ Saturated hydraulic conductivity [L/T]; ܵ ൌ Sand content;  ܵ ൌ Silt content; ݈ܥ ൌ 108 
Clay content; BD = Bulk density; OM = Organic matter; Na  = Exchangeable sodium; Ca = 109 
Exchangeable calcium 110 

The first model (Model 1) uses sand, silt percentages, and exchangeable calcium and 111 
sodium contents. The second model (Model 2) uses silt and clay percentages, organic 112 
matter, and exchangeable calcium and sodium contents. The third model (Model 3) uses 113 
clay percentage and exchangeable sodium content. The fourth model (Model 4) uses bulk 114 
density and exchangeable sodium content. The fifth model (Model 5) uses exchangeable 115 
calcium and sodium contents.  116 

2.3 Performance evaluation of the PTFs 117 

In order to evaluate the performance of the PTFs in predicting Ks, the Ks values estimated 118 
from the derived and tested PTFs were compared to the laboratory measured Ks values, 119 
and assessed with the root mean square error (RMSE) (Equation 10), index of agreement 120 
(d) (Equation 11), correlation coefficient (r) (Equation 12), relative improvement (RI) 121 
(Equation 13), and Nash–Sutcliffe efficiency (NSE) (Equation 14). The d statistic was used 122 
to avoid problems related with coefficient of determination (R2).  123 
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where, ݊ = Number of observations; ݀ = Observed data; ݀௦ = Simulated data 124 

ݎ ൌ ඨ1 െ
ܧܵܵ

ܵܵܶ
                                                                                                                                       ሺ12ሻ 

where, ܵܵܧ measures the deviations of observations from their predicted values and ܵܵܶ is 125 
a measure of the deviations of the observations from their mean. 126 
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where, ܴܧܵܯா ൌ ܴܧܵܯ of the existing models; ܴܧܵܯ ൌ ܴܧܵܯ of the derived models 127 

The Nash–Sutcliffe efficiency was estimated as: 128 
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where, ݀௦ ൌ Calculated values of Ks; ݀ ൌ Observed values of Ks; ݊ ൌ Number of 129 
observations 130 

3. RESULTS AND DISCUSSION 131 

Saturated hydraulic conductivity was estimated from the above-mentioned PTFs, and 132 
compared to measured Ks of the 45 spots in each study site. The performance of the tested 133 
PTFs were assessed based on the quality of the estimations when applied on specific soil 134 
data from this study. However, since those PTFs were developed from different soil 135 
datasets, their predictability is always expected to be dependent on the set from which they 136 
were developed and those on which they are tested [18]. The results of scatter plots of 137 
measured versus estimated Ks for the derived and tested PTFs, and their performance 138 
statistics are presented in Table 2. The input data required for the PTFs varied upon the 139 
parameters used in developing a particular model. This resulted in variations in their 140 
performances in the prediction of Ks. In general, the performances of the well-known PTFs 141 
were not good as evidenced by the evaluation indices (i.e., r, d, RMSE and NSE) as shown 142 
in Table 2. This implies that no particular model amongst the well-known PTFs could be said 143 
to have yielded the best quality fit for Ks in this study. However, estimated Ks by from the 144 
PTFs showed a positive correlation with measured Ks. Generally, the r values observed in 145 
the study were comparable to those reported by Agyare et al. [32], who reported r in the 146 
range of 0.29 – 0.41 when NN model, a concept that is very similar to PTF was used to 147 
estimate Ks.  148 
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Table 2. Goodness-of-fit indicators for the well-known PTFs 152 

Soil  Equation r RMSE d NSE 

Stagni-Dystric Gleysol 

P 0.40 4.00 0.45 0.42 
CS 0.35 4.10 0.44 0.41 
DP 0.35 4.90 0.44 0.46 
FJ 0.35 4.30 0.40 0.43 

 
Plinthi Ferric Acrisol 

 
P 

 
0.45 

 
4.10 

 
0.50 

 
0.47 

CS 0.40 4.30 0.39 0.44 
DP 0.43 4.20 0.40 0.44 
FJ 0.41 4.50 0.27 0.46 

 
Plinthic Acrisol 

 
P 

 
0.38 

 
4.10 

 
0.32 

 
0.40 

CS 0.32 4.30 0.36 0.45 
DP 0.32 4.20 0.45 0.42 
FJ 0.32 4.10 0.37 0.44 

r = Correlation coefficient; RMSE = Root mean square error; d = Index of agreement; P = 153 
Puckett et al. [28]; CS = Campbell and Shiozawa [29]; DP = Dane and Puckett [30]; FJ = 154 
Ferrer-Julià et al. [31]; NSE = Nash–Sutcliffe efficiency 155 
 156 
Since the ultimate goal of this study was to find a suitable PTF to include in soil water 157 
management scheduling, it was imperative to also develop PTFs upon the failure of the 158 
tested ones (Table 2) to predict the saturated hydraulic conductivity. A key aspect of this 159 
study, therefore, dealt with the identification of additional soil information that could improve 160 
the accuracy of the PTFs, besides the traditional PTF predictors, viz., sand, silt, and clay 161 
contents, bulk density, and OM content. This implies that PTF development should be site-162 
specific [33, 34]. From the set of derived PTFs, OM was only applicable in Model 2, even 163 
though it was listed among the essential input parameters to build PTFs in this study. A 164 
possible reason, according to Tomasella et al. [35] is that not only the quantity, but the 165 
quality of organic matter significantly affects soil hydraulic properties. In addition, OM is 166 
reported to be an important variable for estimating unsaturated soil hydraulic properties; it 167 
has less effect in saturated soils, since OM mainly affects retention forces (matric potential), 168 
which are ca zero in saturated soils [36, 37]. Also, the exchangeable Na and Ca contents, 169 
and bulk density made the use of OM unnecessary. Thus, the use of bulk density [35, 38], 170 
and exchangeable Na and Ca were effective substitutes for OM in the development of PTFs 171 
in this study.   172 
 173 
Table 3 presents the performance indices of the derived PTFs. While the performances of 174 
all the well-known PTFs were generally poor, those of the derived PTFs (Models 1 – 5) were 175 
highly accurate, as revealed by the very high r, d, NSE, and very low RMSE values. 176 
Contrary to the tested the PTFs, Models 1 – 5 would allow for the assessment of changes in 177 
OM, bulk density [39], and exchangeable Na and Ca on saturated hydraulic conductivity. 178 
Compared to the best predictor amongst the well-known PTFs, herein, Puckett et al. [28] 179 
model with RMSE between 4.00 and 4.10, the derived PTFs provided high accuracy, with 180 
RMSE not exceeding 1.741. In addition, the NSE values of the derived PTFs ranged 181 
between 0.844 – 0.950 in the Stagni-Dystric Gleysol, 0.854 – 0.982 in the Plinthi Ferric 182 
Acrisol, and 0.892 – 0.972 in the Plinthi Acrisol. This implies that the PTFs developed from 183 
the local datasets had a superior performance over the well-known ones. The relatively poor 184 
prediction of the well-known PTFs may be explained by the selection of inappropriate soil 185 
properties as predictors [40]. This corroborates the reports by several studies [e.g. 5, 41 – 186 
43] that the performance of PTFs is highly affected by factors such as geographical source 187 
of data used for its derivation, and differences in methods of measurement. Additionally, 188 
according to Tuffour [2], most theories in soil hydrology, including these well-known PTFs 189 
have been developed for standard, clay-rich and organic-rich, and fertile temperate soils. 190 
This implies that these models are generally successful for moist environments, but do not 191 
always carry over meaningfully over arid and semi-arid regions as in the present study. The 192 



 

 

derived PTFs, on the other hand, are a simple and suitable approach for the determination 193 
of Ks in the absence of instrumentation. 194 
 195 
Table 3. Goodness-of-fit indicators for the derived PTFs  196 

Soil  Equation r RMSE d NSE 

 
Stagni-Dystric Gleysol 
 

Model 1 0.892 0.213 0.794 0.844 
Model 2 0.994 0.584 0.920 0.932 
Model 3 0.993 1.040 0.911 0.950 
Model 4 0.994 0.283 0.923 0.873 
Model 5 0.991 1.741 0.874 0.931 

 
 
 
Plinthi Ferric Acrisol 

 
Model 1 

 
0.990 

 
0.154 

 
0.893 

 
0.982 

Model 2 0.993 0.212 0.941 0.963 
Model 3 0.991 0.714 0.844 0.940 
Model 4 0.994 0.143 0.921 0.903 
Model 5 0.992 1.204 0.873 0.854 

 
 
 
Plinthic Acrisol 

 
Model 1 

 
0.971 

 
0.203 

 
0.863 

 
0.892 

Model 2 0.992 0.534 0.922 0.930 
Model 3 0.991 0.670 0.874 0.952 
Model 4 0.993 0.181 0.911 0.894 
Model 5 0.991 1.422 0.912 0.972 

r = Correlation coefficient; RMSE = Root mean square error; d = Index of agreement; NSE = 197 
Nash–Sutcliffe efficiency 198 
 199 
The observation made in the study is a clear evidence of inter-user variability emanating 200 
from soil surface characteristics, presence of a protective layer, and land use history of the 201 
study site [44] and site specificity of PTFs, which are the key limitations of applying PTFs 202 
developed in one region to other regions [45, 46]. Hence, the prediction of Ks using PTFs 203 
could be well improved by adding input variables such as topographic, vegetation, and land 204 
use and/or by enlarging the datasets [47]. This clearly shows the importance of using local 205 
data in the development of Ks PTFs as corroborated by [46], who assessed the 206 
performances of four PTFs (Jabro, Puckett, Neurotheta, and Rosetta) with a locally derived 207 
PTF (Turkey). They reported the lowest RMSE value of 0.74 for the Turkey against Rosetta, 208 
which performed best among the four well-known PTFs, with RMSE of 1.61.  The index of 209 
agreement (d) (Table 3), ranged between 0.79 (for Model 1 in the Stagni-Dystric Gleysol) 210 
and 0.94 (for Model 2 in the Plinthi Ferric Acrisol), which reflects reasonable performance of 211 
the derived PTFs. The d statistic herein reflects the degree to which the observations were 212 
accurately estimated by the predictions [43, 48]. In all, the results indicate very good 213 
performance of the derived PTFs in terms of the four statistics used as evaluation indices.  214 
 215 
As presented in Table 4, the addition of Ca and Na as input parameters for the derived 216 
PTFs improved the predictions of Ks between 57.56% and 95.71% in the Stagni-Dystric 217 
Gleysol, 70.73% and 96.89% in the Plinthi Ferric Acrisol, and 65.37% and 95.81% in the 218 
Plinthic Acrisol. Most especially, it was found that Ks was directly affected by exchangeable 219 
Na, which was in fact the most important soil property influencing Ks in the soils in this study. 220 
The performances of the derived PTFs based on their relative improvements over the well-221 
known ones were in the order of Model 1 > Model 4 > Model 2 > Model 3 > Model 5 for the 222 
Stagni-Dystric Gleysol, and the Plinthi Ferric Acrisol, and Model 4 > Model 1 > Model 2 > 223 
Model 3 > Model 5 for the Plinthic Acrisol. The large improvement may be attributed to the 224 
consideration of additional properties, particularly Na as input parameters. The PTF with OM 225 
as an input variable (Model 2) performed very well in estimating Ks as reported by Wösten 226 
[13] and Vereecken et al. [20]. Similar to fine textured soils as reported by Candemir and 227 
Gϋlser [49], Ks depends on both soil physical and chemical properties in coarse textured 228 
soils. The differences in the results between estimates from the derived and tested PTFs 229 
may not be exclusively due to the inclusion of OM, exchangeable Ca and Na, but also from 230 
other factors such as database-related uncertainties and the adopted algorithms [9, 44, 50]. 231 



 

 

Table 4. Relative improvement of the derived over the tested PTFs 232 

Soil Equation 
Relative Improvement (%) 

P CS DP FJ 

 
Stagni-Dystric Gleysol 
 

Model 1 94.75 94.88 95.71 95.12 
Model 2 85.50 85.85 88.16 86.51 
Model 3 74.00 74.63 78.78 75.81 
Model 4 93.00 93.17 94.29 94.65 
Model 5 56.50 57.56 64.49 59.53 

 
Plinthi Ferric Acrisol 

 
Model 1 

 
96.34 

 
96.51 

 
96.43 

 
96.67 

Model 2 94.88 95.11 95.00 95.33 
Model 3 82.68 83.49 83.10 84.22 
Model 4 96.59 94.74 96.67 96.89 
Model 5 70.73 72.09 71.43 73.33 

 
Plinthic Acrisol 

 
Model 1 

 
95.12 

 
95.35 

 
95.24 

 
95.12 

Model 2 87.07 87.67 87.38 87.07 
Model 3 83.66 84.42 84.05 83.66 
Model 4 95.61 95.81 95.71 95.61 
Model 5 65.37 66.98 66.19 65.37 

P = Puckett et al [28]; CS = Campbell and Shiozawa [29]; DP = Dane and Puckett [30]; FJ = 233 
Ferrer-Julià et al [31]  234 
 235 
4. CONCLUSION 236 

This study tested the application of four well-known Pedotransfer Functions (PTFs) in the 237 
literature and local data derived PTFs, to identify the level of accuracy to estimate Ks for 238 
some selected benchmark soils in Ghana. Multilinear regression analysis was used to derive 239 
the best relationships between Ks and some basic soil properties. The derived PTFs 240 
provided more accurate predictions, whereas the well-known PTFs underestimated Ks 241 
values for all three soil types. The derived PTFs in this study are highly advantageous over 242 
the tested ones due to the overall low error levels (i.e., higher r, d and NSE values, and 243 
lower RMSE values) and simplicity to input parameters. Reliability of the developed PTFs 244 
(Models 1 – 5) against the well-known ones demonstrated the ability of the developed PTFs 245 
to accurately predict Ks, and also revealed the shortcomings of the well-known PTFs. The RI 246 
of the derived over the tested PTFs was observed to be highest for Model 1 in the Stagni-247 
Dystric Gleysol, and Model 4 in both Plinthic Ferric Acrisol and Plinthic Acrisol, and lowest 248 
for Model 5 in all three soils. It was observed that the inclusion of exchangeable Ca and Na 249 
as predictors increased the predictability of the derived PTFs. Thus, inclusion of additional 250 
soil parameters which influence soil aggregation and structure improved the prediction 251 
accuracy of the derived PTFs. Another alternative could be the development of soil class 252 
specific PTF models. 253 
 254 
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