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ABSTRACT 5 

More than two billion global populations are malnourished. In India, 25% of the total children are 6 

suffering from protein energy malnutrition. India ranks 103rd among the 119 country in Global Hunger 7 

Index (GHI). Though world level hunger declined from 29.2 in 2000 to 20.9 in 2018, the figures still holds 8 

a deadly future. Micronutrient malnutrition is a very serious problem mostly affecting children and women 9 

in the country. The impact is highly seen in poor and landless rural people who can’t afford diverse food 10 

or supplement in their diet with needed nutrition. Among consumed food, pulses are the cheapest source 11 

of protein, vitamins and micronutrients and can be supplied to the people through daily diet. 12 

Biofortification in pulses through agronomic, breeding and microbial intervention can increase the level of 13 

bioavailable micronutrients especially Zn and Fe in the final food products. This paper focuses on the role 14 

of micronutrients on human health and various mechanisms to get nutrient rich staple food along with 15 

main emphasis on biofortification.  16 
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1. INTRODUCTION 18 

Worldwide more than two billion people or one in every three persons is spotted to be troubled 19 

with multiple micronutrient deficiencies (FAO, 2015). Growing children are grievously affected by nutrient 20 

deficiency compared to adults as their requirement changes according to growth and developmental 21 

phages (Prieto and Cid, 2011). In Kolhapur district, 40% children between the age group of 8-9 years are 22 

micronutrient deficient (iron in 38.8% and fluoride in 36.6% respectively) (Bharati et al 2018) and globally 23 

it is 22% (GNR, 2018). At all India level 18 percent infants had a birth weight of less than 2.5kg, 38% 24 

children below five years were under-weight, 28% mild, 29% moderately and 2% severely anaemic 25 

(NFHS- 4, 2015-16). Malnutrition caused by vitamins and minerals also known as “Hidden hunger”, 26 

which don’t give any visual symptom usually. As per GHI 2018, India ranked 103rd among 119 countries 27 

and world-wide level of hunger declines from 29.2 in 2000 to 20.9 in 2018. Micronutrient deficiencies are 28 

the fountainhead of various health issues like poor neurological function, impaired eye sight, diabetes, 29 

hypertension, week immunity, diarrhea, food allergies, thinning hair, leaky gut, acne or rashes (Lynch and 30 
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Green 2001; Beard 2001; Shankar and Prasad 1998; Gilbert and Foster 2001; Stein et al., 2005).Those 31 

deficiencies are attributable to less intake of quality diet enriched with protein, vitamins and minerals 32 

(Bhatnagar et al., 2011 and Bouis and Saltzman, 2017). Increased price of non staple commodities is 33 

one of the important reasons of decreasing dietary quality especially to resource poor people (Bouis et 34 

al., 2011). In developing countries agricultural products are the prime source of nutrition (Graham et al., 35 

2001; Schneeman, 2001). Main concern of green revolution was laid on yield increase not on quality food 36 

production. And it scale down soil productivity accompanied by less nutritive food grain production 37 

(Bhatnagar et al., 2011). Micronutrient rich vegetables, pulses and animal products have also not been 38 

increased in last fifty years (Bouis and Saltzman, 2017). Possible ways to combat those deficiencies 39 

encircle dietary diversification (healthy balance diet), food fortification, biofortification and 40 

supplementation (Allen et al. 2006). Biofortification is the process of increasing nutrient concentration in 41 

plant edible parts by fertilization (agronomic intervention), breeding approaches or microbes (White and 42 

Broadley, 2005), whereas fortification is nutrient enrichment during processing 43 

(https://en.wikipedia.org/wiki/Food_fortification). Biofortification is an effective strategy in long run to 44 

overcome the current situation as it is more cost effective, sustainable and practical one to reach poorest 45 

of the poor population (Meenakshi et al., 2010, Hoddinott et al., 2013, Garcia-Banuelos et al., 2014). 46 

Besides quality enhancement, micronutrient has some added advantages like yield increase, biomass 47 

enhancement and disease control in micronutrient deficient soils (Hussain et al., 2010). A healthy 48 

balance diet must include pulses as they are rich source of energy, protein, dietary fibre and also 49 

content considerable amount of vitamins and minerals like thiamin, riboflavin, pyridoxine, folic acid, 50 

vitamin E and K, zinc, iron etc (Ofuya and Akhidue, 2005; Thavarajah et al., 2011; Johnson et al., 2005). 51 

So, pulses can be considered as good option for biofortification to provide nutritious food sustainably 52 

(Thavarajah et al., 2011).  53 

2. ROLE OF MICRONUTRIENTS ON HUMAN HEALTH 54 

Iron plays key role in haemoglobin formation and oxygen transport (Underwood and Suttle, 1999). 55 

Iron deficiency exerts influence on learning ability (CDC 2010), immune system (Fiall, 2003), ability to 56 

work (Viteri, 1974) and cognitive development (Bread and Connor, 2003). Its deficiency is also associated 57 

with anemia and pregnancy related issues like mortality, low birth weight etc (CDC 2010). 58 

Zinc requirement get larger during pregnancy and puberty. Zinc deficiency curtails physical 59 

growth and development of children (Brown et al., 2002). Gastrointestinal, central nervous, epidermal, 60 

immune, skeletal, and reproductive systems are known to be affected by zinc deficiency (Hambidge and 61 

Walravens, 1982). The daily requirement of Zn and Fe varies with the age of people (Table 1). 62 

Selenium is a good source of antioxidant which narrow down heart and skin diseases, cancer, 63 

alzheimer, (Elahi et al. 2009; Marksbery and Lovell, 2006; Klaunig and Kamendulis 2004; Cui et al., 2012; 64 
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Shirley et al., 2014), thyroid (Ventura et al., 2017), asthma (Norton and Hoffmann, 2012). Patients having 65 

tuberculosis, influenza and hepatitis C delineated to be benefited by selenium (Steinbrenner et al., 2015). 66 

Table 1. Daily requirements of Zn and Fe in Indian context (ICMR, 2010) 67 

 Group 
Recommended Daily Allowance (mg day-1) 

Zinc Iron 

Adult men  12 21 

Adult women 
Normal 10 17 

Pregnant 12 35 

Children 

1-3 Years 5 9 

4-6 Years 7 13 

7-9 Years 8 16 

Adolescents 
Boys 11-12 21-28 

Girls 9-12 26-27 

 68 

3. CRITERIA OF BIOFORTIFIED CROP 69 

Bouis and Welch (2010) suggested the following criteria to be a potential biofortified crop. 70 

• High Yielding: Crop productivity must be maintained. 71 

• Effective: The increased level of micronutrient must have significant positive impact on human. 72 

• Stable: Increased level of micronutrients in crop must be stable year after year. 73 

• Good Taste And Cooking Quality 74 

4. POTENTIAL WAYS OF BIOFORTIFICATION 75 

 Agronomic intervention 76 
 Breeding intervention 77 
 Microbial intervention 78 

4.1 AGRONOMIC INTERVENTIONS 79 

Agronomic biofortification is the application of micronutrients via chemical fertilizer with the aid of 80 

foliar application, soil application, seed priming and seed coating of fertilizers to increase the 81 
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bioavailability of nutrients in edible plant parts (De Valença et al., 2017). Several factors like source of 82 

fertilizer, quantity of fertilizer and time and methods of application regulate the nutrient intake to the 83 

edible plant parts and it’s bioavailability to the consumer (Singh and Prasad, 2014, Rietra et al., 2015). 84 

Micronutrient amendment in soil is a useful strategy to increase micronutrient quantity in crop (Manzeke 85 

et al., 2012; Vanlauwe et al., 2015 and Voortman and Bindraban, 2015). Among the different methods of 86 

application, foliar application is more efficient (Lawson et al., 2015) as it can manage soil immobilization 87 

(Garcia-Banuelos et al., 2014) and quick availability of nutrients to the crop. Hidoto et al. (2017) reported 88 

85 g ha-1 grain zinc yield with foliar application in chickpea which was significantly higher than soil 89 

application (71 g ha-1) and priming (68 g ha-1). Combined application in both soil and foliar often showed 90 

better results (Phattarakul et al., 2012). Other biofortification methods like seed priming and seed 91 

coating are spotted to give very infrequent result (Duffner et al., 2014). Johnson et al. (2005) found that 92 

seed priming with both B and Zn increased the seed Zn and B content of chickpea and lentil respectively 93 

(table 2). Zinc and selenium biofortification is most fruitful with agronomic interventions (Cakmak, 2014).  94 

Table 2. Effect of seed priming on Zn, B and Mo content of chickpea and lentil  95 

Treatments 

Seed content (mg kg-1) 

Chickpea Lentil 

Zn B Mo Zn B Mo 

(purchased)  40 9 3 50 6 2 

water  60 10 4 50 6 2 

B  60 100 3 50 100 2 

Zn  700 7 3 630 5 2 

1/2(B + Zn)**  400 50 2 400 50 2 

B + Zn  800 80 3 660 100 2 

B, 12 h  40 100 3    

Zn, 12 h  500 8 2    

Mo  60 4 300    

(Source: Johnson et al., 2005) **Priming times were 8 h and 12 h for chickpea and lentil respectively. 96 

Solutions used were 0.004M ZnSO4·7H2O (for Zn), 0.008 M H3BO3(for B), 0.0026M Na2MoO4·2H2O (for 97 

Mo). 98 

4.1.1 ZINC FORTIFICATION 99 
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Application of zinc to the pulse crops greatly helps in enhancing the level of zinc in harvested 100 

(economic) plant parts. Zinc fertilization increases bioavailability of Zn in human by increasing phytate 101 

content (Hussain et al., 2013). Guillén-Molina et al. (2016) concluded that application of zinc chelate (7 102 

and 14 mM L-1 of Zn-EDTA) increase grain zinc and iron concentration in cowpea. Shivay et al. (2015) 103 

reported that foliar spray of zinc at three different stages of chickpea had significant influence on zinc 104 

uptake both in grain and straw during 2011-12 and 2012-13 (Table 3). Foliar spray of Zn-EDTA at active 105 

vegetative, flowering and grain filling stages had greatest crop recovery of applied Zn (17.33%) during 106 

2011-12 (table 2). Zinc fertilization improves zinc bioavailability in bean and pea (Cakmak et al. 2010, 107 

Zhang et al. 2010). Zinc content in seed helps in significant liner increase of protein biosynthesis (Martre 108 

et al. 2003). Maximum Fe content was recorded with application of 50µM Zn-DTPA (183.7±2.16 ppm) and 109 

100 µM ZnSO4 (197.9±3.45 ppm) whereas highest Zn with 100µM Zn-DTPA (46.3±3.87 ppm) and 100 110 

µM ZnSO4 (49.6±2.54 ppm) of bean in hydroponic situation (Table 4). Hidoto et al. (2016) stated that 111 

maximum grain Zn content and Zn yield in chickpea were noted in soil application of 25 kg ha-1 Zn which 112 

had an advantage of 7% over control (table 5).  113 

Table 3. Zinc content by grain and straw of Chickpea  114 

Treatment 
Zn uptake in grain (g ha−1) Zn uptake in straw (g ha−1) 

2011-12 2012-13 2011-12 2012-13 

Check (no Zn) 78.5 71.3 78.0 68.5 

ZnSHH soil at 5 kg Zn ha−1 102.3 93.9 104.2 93.9 

ZnSHH one spray (V)  96.3 87.9 103.3 92.8 

ZnSHH two sprays (V + F) 112.3 103.2 128.6 116.2 

ZnSHH, three sprays (V + F + G) 124.9 114.8 166.8 152.0 

Zn-EDTA soil at 2.5 kg Zn ha−1 102.7 93.9 114.5 103.5 

Zn-EDTA one spray (V) 98.8 90.9 117.0 106.0 

Zn-EDTA two sprays (V + F) 125.4 115.8 139.2 126.6 

Zn-EDTA three sprays (V + F + G) 162.8 135.4 181.0 148.9 

LSD (P = 0.05) 14.93 15.52 10.45 20.25 
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ZnSHH= Zn sulfate hepta hydrate V= active vegetative stage, F= flowering stage, G= grain filling stage (Source: 115 

Shivay et a.,l 2015) 116 

Table 4. Iron and zinc concentration of bean in hydroponic situation  117 

Dose Micronutrient concentration 

Zn-DTPA (µM)   Fe   Zn  
0  146.5±0.41  28.4±1.12  
25  174.4±1.45  45.7±2.35  
50  183.7±2.16  42.8±3.55  

100  153.0±1.63  46.3±3.87  
ZnSO4 (µM)  Fe   Zn  

0  146.5±0.41  28.4±1.12  
25  189.2±2.89  42.3±3.11  
50  162.1±2.03  42.6±2.87  

100  197.9±3.45  49.6±2.54  
Source: (Sida-Arreola et al., 2017) 118 

Table 5. Effect of zinc sulphate soil application on Chickpea 119 

Zn rate  Straw Zn  Grain Zn  Zn yield  
ZnSO

4
.7H

2
O   

(kg ha-1)  
(mg kg-1)   (mg kg-1)  (g ha-1)  

0  20.63  37.05  91.0  
5  20.48  37.54  98.3  
10 23.24  34.20  87.7  
15  22.15  33.11  86.2  
20  21.82  35.52  86.3  
25  21.57  39.55  99.7  
30  22.31  39.18  98.0  

Source: Hidoto et al., 2016.  120 

4.1.2 IRON FORTIFICATION 121 

Iron is another most important micronutrient which improves human health. Supply of iron through 122 

fortification of pulses is helpful and economic for major portion of Indian population. Iron content of 123 

cowpea bean seed increased 29.4% with application of 100µM L-1 ferrous sulphate and 32% with 50µM L-124 
1 ferrous chelate over control (Mirquez- Quiroz et al., 2015). Ali et al. (2014) observed that application of 125 

1.5% FeSO4 at branching and flowering resulted 55%, 66% and 81% increase in iron content in leaf, stem 126 

and grain in mungbean over control respectively (Table 6). Khalid et al. (2015) reported that application of  127 

PGPR along with iron (@ 5.6 kg ha-1) resulted grain, root and shoot iron content 4.6 mg, 3.16 mg and 1.7 128 

mg in 100 g chickpea seed respectively (Table 7). According to Salih (2013), foliar fertilization of 2 ppm 129 

Fe and 2 ppm Zn reported maximum increase in Fe (154 mg kg-1) and Zn (42 mg kg-1) content of cowpea 130 
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seed respectively (Table 8). Nandan et al. (2018) pointed out that foliar spray of Fe @ 0.05% along with 131 

recommended dose of fertilizer resulted significantly higher iron content in seed (66.46 mg kg-1) and 132 

stover (66.83 mg kg-1) whereas, maximum zinc content in seed (44.98 mg kg-1) and straw (44.08 mg kg-1) 133 

was noted with Zn (0.5%) and Fe (0.05%).  134 

Table 6. Iron content in leaves, stems and grains in mungbean 135 

Treatment 
Iron content (mg kg-1) 

Leaves Stems Grains 

Control  511.37 380.07 78.50 

0.5% FeSO4 at branching  601.73 470.42 90.43 

0.5% FeSO4 at flowering  623.70 488.17 96.10 

0.5% FeSO4 at branching + 0.5% FeSO4 at flowering 675.43 520.24 101.50 

1.0% FeSO4 at branching  654.07 515.22 96.83 

1.0% FeSO4 at flowering  668.37 505.16 99.60 

1.0% FeSO4 at branching + 1.0% FeSO4 at flowering  717.17 585.54 127.80 

1.5% FeSO4 at branching  672.60 550.33 115.73 

1.5% FeSO4 at flowering  698.70 559.51 121.43 

1.5% FeSO4 at branching + 1.5% FeSO4 at flowering  794.90 634.27 146.43 

Source: Ali et al., 2014 136 

Table 7. Iron uptake in different plant parts of chickpea 137 

Treatment Fe Concentration (mg 100 g-1) 

Grains Shoot Root 

Absolute control  1.20 0.66 0.14 

Fe @ 5.6 kg ha-1  2.40 1.80 0.86 

S1  3.26 2.23 1.40 
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S2  3.30 2.50 1.30 

S3  3.36 2.26 1.33 

S4  3.20 2.36 1.36 

S5  3.40 2.40 1.30 

S1+Fe  @ 5.6 kg ha-1  3.60 2.73 1.70 

S2+Fe @ 5.6 kg ha-1  4.36 3.16 1.56 

S3+Fe @ 5.6 kg ha-1  3.50 2.80 1.50 

S4+Fe @ 5.6 kg ha-1  3.53 2.70 1.50 

S5+Fe @ 5.6 kg ha-1  3.63 2.63 1.46 

Source: Khalid et al., 2015 138 

Table 8: Effect of foliar fertilization on Fe, B and Zn content of cowpea 139 

 
Treatment 

Fe B Zn 

 Mg kg-1 

 Control, 0 pmm 40.00 16.00 8.00 

 Fe, 1 ppm 90.00 31.00 25.00 

 Fe, 2 ppm 154.00 47.00 42.00 

 B, 1 ppm 51.00 31.00 18.00 

 B, 2 ppm 58.00 40.00 24.00 

 Zn, 1 ppm 47.00 26.00 13.00 

 Zn, 2 ppm 50.00 37.00 17.00 

Tukey’s 

HSD 

Treatment and concentration 1.28 1.35 1.35 

Interaction 2.61 2.94 2.94 

Source: Salih, 2013 140 

4.1.3 SELENIUM FORTIFICATION 141 

Selenium fertilization by means of inorganic fertilizer results increased selenium concentration in 142 

diet (White and Broadley, 2009; Alfthan et al., 2015). Unlike selenite (SeO3
2–), selenate (SeO4

2–) provides 143 

immediate availability to plants when added to soil (Broadley et al., 2006; Fordyce, 2013; Pilbeam et al., 144 
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2015). Selenium foliar application increases concentration in pea and common bean from 21 μg kg-1 to 145 

743 μg kg-1 (Smrkolj et al., 2005) and 30 to 2379 μg kg-1 (Smrkolj et al., 2007) respectively. 146 

Further credibility of agronomic biofortification requires much more research on micronutrient 147 

bioavailability, including metabolic pathways that affect absorption and health benefits of different 148 

chemical forms of micronutrients. 149 

4.2 BREEDING INTERVENTIONS 150 

When utilizable genetic variability is present in a species then genetic biofortification is 151 

conductible, but when there is no variability, transgenic approaches are well qualified (Garg et al., 2018). 152 

Initially reduction of Phytic acid and polyphenols are used to be the fundamental approach of 153 

biofortification as these compounds are known to narrow down iron bioavailability. But recent studies 154 

implies that priority should be given to increase iron concentration rather than Phytic acid and Plyphenol 155 

reduction because those also have some beneficial properties and resist cancer cell (Pixley et al., 2011, 156 

Murgia et al., 2012). Zein protein over expression on soybean increases methionine and cysteine content 157 

(Dinkins et al., 2001) and methionine content by cystathionine γ-synthase (Song et al., 2013, Hanafy et 158 

al., 2013). Increase in beta carotene and oleic acid in soybean has been attended by introducing 159 

bacterial PSY gene (Schmidt et al., 2015) and siRNA-mediated gene silencing had been used to reduce 160 

α-linolenic acids (Flores et al., 2008). Similarly, linoleic acid and palmitic acid content of soybean was 161 

reduced by antisense RNA technology (Zhang et al., 2014).  Storage albumin of Brazil nut which is rich 162 

source of methionine has been used to increase common bean methionine content (Aragao et al., 1999) 163 

whereas, lupines methionine has been intensified by albumin of Sunflower (Molvig et al., 1997). A 164 

sensitive approach to understand the escalated zinc uptake is DNA strand breakage (King et al., 2015).  165 

Field trials regarding genetic effect on selenium concentration reported significant difference 166 

among genotypes (Thavarajah et al., 2010; Garrett et al., 2013; Ray et al., 2014). 94 pea genotypes 167 

were grown in Saskatchewan field (University of Saskatchewan) and not a single nucleotide 168 

polymorphism (SNP) marker was noted to affect seed Se concentration (Diapari et al., 2015). In 169 

contrast, lentil and chickpea revealed genotypic variation associated with selenium concentration in 170 

Saskatchewan (Thavarajah et al., 2008 ; Thavarajah, 2012; Ray et al., 2014; Rahman et al., 2015). Field 171 

experiments conducted in Morocco, Nepal, Syria, Australia and Turkey were also ensured significant 172 

genetic variance in lentil Se concentration (Thavarajah et al., 2011). Mungbean (Nair et al., 2015) and 173 

soybean (Yang et al., 2003) also shown genetic variation.  Bean has a potential to increase zinc content 174 

by 50% and iron by 60-80% as it evidence high heritability in zinc and iron content (Blair et al., 2009; 175 

Beebe et al., 2000; Petry et al., 2015). 176 

4.3 MICROBIAL INTERVENTIONS 177 
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Phytoavailability of micronutrients can be increased by soil microorganisms like Rhizobium, 178 

Bacillus, Pseudomonas etc (Rengel et al., 1999; Smith, 2007). PGPR can be an alternate approach to 179 

biofortify pulses as it increases disease resistance (Phi et al., 2010; Dary et al., 2010), solubility of 180 

phosphorus (Richardson, 2001; Wani, 2007) and root growth (Glick, 1995, Zhang et al., 2010). But the 181 

implication of PGPR and other microorganisms in biofortification of pulses are sparse (De et al., 2011). 182 

Rhizobacteria produce siderophores which promote iron fortification in crop as well as revamps soil 183 

fertility directly by enhancing iron availability at rhizosphere or indirectly by reducing pathogen effect 184 

(Rana et al., 2012; Srivastava et al., 2013).  185 

Grain protein concentration of chickpea ranged from 180 to 309 mg g −1  with inoculation of 186 

 Bacillus PSB1 and  M. ciceri RC3 + A. chroococcum A4 + Bacillus PSB10 respectively with 25% yield 187 

advantage (Wani, 2007).  188 

Fungi and bacteria improves bioavailability of zinc at rhizosphere zone (Fasim et al., 2002; Biari 189 

et al., 2008) due to decline in soil pH (Koide and Kabir, 2000; Subramanian et al., 2000), chelation 190 

(Whiting et al., 2001) and increased root sphere (Burkert and Robson, 1994). 191 

Some biofortified pulse crop varieties were released across the world helping to combat the 192 

present situation of malnutrition and hidden hunger of mineral nutrients among the people (table 9 and 193 

10). 194 

Table 9. Several Lentil released varieties that possess high iron and zinc levels (The 2nd Global 195 
Conference on Biofortification: Getting Nutritious Foods to People, Ashutosh Sarker (ICARDA)) 196 

Country Variety 
Content (ppm) 

Fe Zn 

Bangladesh 

Barimusur-4 86.2 --- 

Barimusur-5 86 59 

Barimusur-6 86 63 

Barimusur-7 81 --- 

Nepal 

Sisir 98 64 

Khajurah-2 100.7 59 

Khajurah-1 --- 58 

Shekhar 83.4 --- 

India 

Pusa Vaibhav 102 --- 

L4704 125 74 

IPL 220 73-114 51-64 
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Pusa Ageti Masoor 65.0 --- 

Syria 
Idlib-2 73 --- 

Idlib-3 72 --- 

Ethiopia Alemaya 82 66 

Table 10. Iron biofortified bean variety released by Harvest Plus (Garg et al., 2018)  197 

Rwanda Democratic Republic of Congo 

RWR 2245, RWR 2154, MAC 42, MAC 44, CAB 2, 
RWV 1129, RWV 3006, RWV 3316, RWV 3317, 
and RWV 2887 

COD MLB 001, COD MLB 032, HM 21-7, RWR 
2245, PVA 1438, COD MLV 059, VCB 81013, Nain 
de Kyondo, Cuarentino, Namulenga. 

 198 

5. CONCLUSION 199 

Largest number of hungry people especially children and women live in India which is quite 200 

alarming. In a developing country like India, where maximum people does not have sufficient access to 201 

afford commercially fortified food, diversified diet and food suppliments, biofortification is an acceptable 202 

cost effective way to eliminate malnutrition. And evidences revealed that a nutritious food like pulse is 203 

one of the good options to fortify. 204 
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