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Aperture Maximization with Half-Wavelength
Spacing, via a 2-Circle Concentric Array Geometry
that 1s Uniform but Sparse

Abstract— This paper proposes a new sensor-array geometry
(the 2-circle concentric array geometry), that maximizes the
array’s spatial aperture mainly for bivariate azimuth-polar res-
olution of direction-of-arrival estimation problem. The proposed
geometry provides almost invariant azimuth angle coverage
and offers the advantage of full rotational symmetry (circular
invariance) while maintaining an inter-sensor spacing of only an
half wavelength (for non-ambiguity with respect to the Cartesian
direction cosines). A better-accurate performance in direction
finding of the proposed array grid over a single ring array
geometry termed as uniform circular array (UCA) is hereby
analytically verified via Cramér-Rao bound analysis. Further, the
authors demonstrate that the proposed sensor-array geometry
has better estimation accuracy than a single ring array.

Index Terms—antenna arrays, array signal processing,
direction-of-arrival estimation, parameter estimation, planar cir-
cular arrays.

I INTRODUCTION

The problem of estimating angle-of-arrival (AoA) of a
plane wave (or multiple plane waves) is commonly referred
to as direction finding (DF) or direction-of-arrival (DoA)
estimation problem [5]. DF finds its application in radar, sonar,
medical diagnosis and treatment, electronic surveillance, radio
astronomy [39], position location and tracing systems [30].
This is simply because it is a major method of location deter-
mination, in security services especially by reconnaissance of
radio communications of criminal organization and in military
intelligence by detecting activities of potential enemies and
gaining information on enemy’s communication order [12].
Due to its diverse application and difficulty of obtaining the
optimum estimator, the topic has attracted a significant amount
of attention over the last several decades.

Several algorithms exist to address the problem of estimat-
ing azimuth-polar AoA of multiple sources using the signal
received at the array of sensors [20]. Some of the already used
methods of DF are: Maximum likelihood (ML) [6], MUSIC
(MUttiple Slgnal Classification) which is a highly popular
eigenstructure-based direction-of-arrival estimation problem
method applicable to a non-uniformly spaced array of sensors
[3], [13], ESPRIT (Estimation of Signal Parameters via Ro-
tational Invariance Technique) [4], Cramér-Rao Bound (CRB)
which has been found to be the most accurate technique in DF
and the simplest due to its simplicity in computations [10], and

other techniques. To achieve DF, elements termed as antennas
or sensors are used. These sensors are either randomly dis-
tributed or arranged in a desired geometric pattern mainly to
improve the estimation performance. Some of the geometric
patterns which have been used include: Uniform linear array
(ULA), uniform circular array (UCA), uniform rectangular
array (URA) [5], regular tetrahedral array, collocated triad of
orthogonal dipoles [35], and L-shaped 2-dimensional array [7],
[36].

Of all array geometries, circular and concentric circular
arrays alone provides almost invariant azimuth angle coverage
and offers full rotational symmetry about the origin, thereby
realizing azimuthal invariance (with the azimuth defined on the
circular plane) as well as increasing array’s spatial aperture [9],
[13], [16], [17], [23], [26], [28], [38]. Furthermore, a sensor-
array’s spatial resolution in the azimuth and polar, increases
with the size of the array’s aperture. As evidenced in [2],
[40]-[42], recent research has focused on strategies to enlarge
this aperture without additional sensors. However, one difficult
on widening array’s aperture is to avoid side and grating
lobes in beam-forming and also to avoid cyclic ambiguities
in direction finding [8], [9], [11], [19], [31]; these problems
would be encountered if the inter-sensor spacing exceeds half a
wavelength, thereby violating the spatial version of the Nyquist
sampling theorem. This now raises an alarming question
that, how then may the circular array aperture be widened
without additional (isotropic) sensors while maintaining half-
wavelength inter-sensor spacing? The inter-sensor spacing here
equals 2Rsin (T), where L and R denotes the number of
isotropic sensors on the circumference of a circle and the
radius respectively.

As aforementioned, a new concentric circular array grid
termed as 2-circle concentric array geometry or concentric uni-
form circular array (CUCA) geometry, that maintains an inter-
sensor spacing of only half a wavelength (to avoid ambiguity
in the estimated direction-of-arrival), that provides almost
invariant azimuth angle coverage and retains the advantage of
full rotational symmetry, and that maximizes the array’s spatial
aperture, with only a small increase in the number of sensors
is proposed. Furthermore, the paper presents derivation of the
Cramér-Rao bound for the proposed array grid and compares
the performance of the proposed array grid and that of a single
ring grid in direction finding.
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Finally, the paper is organized into five sections in which
Section I is the introduction, Section II presents array man-
ifold, Section III presents the Cramér-Rao bound derivation,
Section IV presents the results analysis and discussion, and
Section V gives conclusion.

IT ARRAY MANIFOLD
II-A. A Uniform Circular Array (UCA) of Isotropic Sensors

Consider a circle centered at the Cartesian origin and of
radius Ryca. Suppose Lyca number of isotropic sensors are
uniformly spaced on the circle. See Figure 1.
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Fig. 1. A uniform circular array of isotropic sensors.
The position of the /! sensor is
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for ¢ =1,2,3,---, Luyca, where T denotes transposition; and
the ¢th entry of the Lyca X 1 array manifold vector is [1],
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where 6 € [0, %], ¢ € [0,27), and X is the wavelength which
is a prior known deterministic constant.
II-B. Concentric Uniform Circular Array (CUCA) of Isotropic
Sensors

Consider two concentric circles of radii R;, and Ry, both
centered at the Cartesian origin and on the z-y plane, as
illustrated in Figure 2.

Let L;, and L,y denote the number of isotropic sensors
placed on the inner and the outer circles respectively.

This 2-circle concentric array has an array manifold of
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Fig. 2. A 2-circle concentric array.
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III CRAMER-RAO BOUND (CRB) DERIVATION

III-A. The Data Model

Suppose the data is corrupted by additive noise. Then, the
observed data is

a(f,¢)s(m) + n(m) (6)

where, s(m) is the incident signal at time instant m and n(m)
is additive complex-valued spatio-temporal white Gaussian
noise with a mean of zero and a variance of o2 which are
both prior known [5], [13], [14], [18], [20]-[22], [24], [27],
[32]-[37].

Consider M number of discrete-time samples, then (6) can
be represented as

x(m) =

x = s®a(f,¢)+n 7
where
x =[], xE@)T,- L xOO])
s = [5(1)7 8(2)7""5(M)]T7
n = [, 0@, RO

denote the observations, the complex-valued incident signal,
and the additive noise, respectively. Moreover, ® and ©, denote
the Kronecker product and the transposition, respectively [32],
[35]-[37].

The data’s probability distribution function (PDF) is,
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where

p = Elx]

= sw®a(f, ), ©)
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= UZI(LMLW)M, (10)

and Iz, 7 . v denotes an identity matrix of size (Li, +
Lout)M X (Lin + Lout)M~

III-B. The Fisher Information Matrix (FIM)

Recall that the observed data vector is complex-valued
hence, the Fisher Information matrix (FIM) has a (k,n)""

entry of
[F(€)len = 2Re P"rr—la’“‘
e D€ 0€n

+Tr{rlarrlar} (11)

agk} afn
where &, refers to the n'" entry of &, & = {0, ¢} is the set
of the unknown but deterministic parameters to be estimated,
Re {-} symbolizes the real-valued part of the entity inside the
curly brackets, Tr {-} represents the trace of the contents inside
the curly brackets, and ¥ denotes conjugate transposition [32],
[34], [36], [37].

From (10), g—i = g—l: = 0, implying that the second term
of (11) vanishes. Inserting (10) in (11) yields
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With equation (7),
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Using (13) in (12),
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where * denotes elements not of interest for the present
purpose. From (14),
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III-C. The Signal

Define s(m) = osexp{j2nfm+¢)} for m =
1,2,3,---,M; where ¢ denotes the signal phase. For M
number of time samples, define

s = o, [efC@rITe) eilnfte) L ej(ZMﬂH@)]T(?_])
Therefore,
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III-D. Expansion of the FIM Elements:
We next find the values of F, ,, F, , = F, ,, and F, _ as
illustrated below.
From (3),
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where the /-th entries of aa‘gf"z’), and aao‘gf@) are respec-
tively given by
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From (23):
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Using (25) in (17),
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Therefore, Using (27) in (20),
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III-E. Formulation of the CRB(0) and CRB(¢) from the FIM:
Using (16),
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Consequently, the CRB(¢) and the CRB(¢) for the UCA
are given by
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IV RESULTS ANALYSIS AND DISCUSSION

The CUCA’s CRBs in (32) - (33) differ from the UCA’s
CRBs in (34) - (35) by the terms, m and
m. Suppose there is a constraint of Lyca = Lin +
Lout. Then, the smallest value of Lyca can be found such
that the UCA and the CUCA have the same performance
and as a result, the corresponding value of Ryca computed.
Now, suppose that Lyca = Loyt then clearly, it implies that
Ly, = 0. Since for the UCA and the CUCA to perform the
same we have the equation R%C rLuca = RianinJngutLout,
then the corresponding value of Ryca could be given by,

R2 Lout
RUCA = 4 L'
Lyca

Moreover, we note that, the UCA and the CUCA have equal
performance when the ratio of their CRBs is one and thus we
have the equation:

RYcaluca = (R, — R2.) Lin + RZ, Luca,
which can also be written as;
(Rtoa — R2.) Luca =

implying that,

<R12n - Rc2)ut) Lin7
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Lin out
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UCA in out

Therefore, the UCA and the CUCA performs the same, if,
Ruyca = Riy and Lyca = Ly, implying that Ly, = 0 since
Luca = Lin + Loyt

In addition, the CRBs would be smallest, if all sensors are
placed on the outer circle (i.e. Li, = 0) and Ryca = Rout —
Q.

IV-A. Special Cases

IV-A.L If Ry = (Row — %): Equations (32) and (33)
for the CRB(6) and the CRB(¢) of the CUCA respectively
become
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Equations (36) and (37) become
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IV-B. The Proposed Geometry

Imposed on the aforementioned 2-circle concentric and
uniform array geometry are these additional constraints:

(1) Rout = Rin + %

(i1) Loyt is wholly divisible by 4.

(iii) Ly, = 4.
A far-field source
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Fig. 3. The Proposed Geometry. Here, 5 denotes Lyyca — 4

Constraints (ii)-(iii) together produce four pairs of half-
wavelength-spaced sensors, with one pair each along the
positive x-axis, the negative z-axis, the positive y-axis, and
the negative y-axis.

The above ensures (a) half-wavelength spacing along each
of the two Cartesian dimensions of the present planar array
grid, (b) circular symmetry about the Cartesian origin, (c) a
maximum number of sensors on the outer circle.

Using the constraints in section IV-B:
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Since R;, > 0, then from constraint (i), Rout > % which
implies that % > %
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Fig. 4. Variation of the CRBs with respect to =5

and Loyt. Refer to (40).

From Figure 4, it is clear that the CRBs decrease with
increase in L,y and/or R;‘“, which is expected. Analytical
explanation to this observation is given below.

From the graph on Figure 4, the turning point with respect
to Ryt using (40) is given by

OCRBycs —2(Lous + 4) o2t 44
a}zou B 2 2
’ ((Lout +4) (%) o 4% + 1)
= 07
which implies that the turning point occurs when
Rout o 2
A B Lout + 4 '

However, since Lo,; > 0, then % < 0.5 which is the
minimum point of % in Figure 4. Hence the graph has

no turning point with respect to R;\“‘ and thus CRB

decreases with increase in Rf\“‘.

This observation is also clear from (40) since the numerator
. . 2 2
is a constant, and the denominator Loy, (f5:)" 44 (fgue)” —

48 1> 1 as Lot increases.

CUCA

Similarly, the turning point with respect to L, is given by
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L 2 2
0 out ((Lout + 4) (Rg\ut) _ 4% + 1)
= 07
which implies that the turning point occurs when
Rout
= 0,
A

Rom

which is infeasible since > 0.5. Hence the graph has
no turning point with respect to Loyt and thus CRB
decreases with increase in Lgyt.

CUCA




This observation is also clear from (40) since2 the numer212tor
is a constant, and the denominator Lt (R")\“t) +4 (%) —
4% + 1> 1 as Ly increases.

IV-B.1. A Single-Circle: For a single-circle with % inter-
sensor spacing with L number of sensors we have
m

Lvea = —————+
(4RUCA)

sin
Using equations (34) — (35) we obtain

(2m)2M (0) ’ cos2(§)CRB,., (0)

On
1 ~
T B e e @
2
o5\ .
= (2n)*M (0) sin®(0)CRBc, (¢)-

1IV-B.2. A 2-Circle Array: For a 2-circle geometry where

a) each circle has L number of sensors,

b) the 2-circles radii differ by 3 (i.e Rou = Rin + 3), and

¢) each sensor on the outer circle is matched with one sensor
on the inner circle.

Using the above information and equations (32) — (33) yields

mar (22 " cost (0)CRB . (9

On
= ! 1~ crB 42)
2(8e)"+ B4 L
2
os .
= (2n)’M (U) sin?(0)CRB e, (6).
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Fig. 5. CRB of (40), (41) and (42)

From Figure 5, it can be generally deduced that, the CRBs
for all the three geometries decrease gently with increase in the
number of sensors (L) at different values of %. However, the

proposed geometry (the solid, the dashed-dot and the dashed
curves) and the single-circle geometry (the dashed-hexagon,
the dashed-square, and dashed-asteriks curves) with L number
of sensors have exactly equal performance at Rg\“t =0-5
but thereafter, the proposed geometry has lower CRB for all
How > 0. 5.

Importantly, of all the three geometries, the 2-circle ge-
ometry (the dashed-cross, the dashed-circle and the dashed-
diamond curves) has the lowest CRBs for all values of Ri“t.

In all the geometries, increase in R‘j\“t reduces the CRBs.

This is due to increased aperture.

1IV-C. Further Comparisons
Define Lot = Loyt + Lin and consider the following cases.
IV-C.1. Case 1: A single circle with half-wavelength inter-
sensor spacing, i.e. 2R, sin LUTrCA = % Then, (34)-(35)
become

CRB = (21)*M <05>2cos2(9)CRB(9)

_ M ("s>2 sin2(8)CRB(¢)

= - (43)

IV-C.2. Case 2: The 2-ring grid proposed in Section IV-B:
Here, Royt and Loys = Lior — 4 and B = Beuw 1750,
(38)-(39) yield

2
CRB = (2r)*M (”) cos2(0)CRB(0)

On

= ()M ("S)QSm?(e)CRB(@

on
= ! (44)

RZ, Roy '
/\2tLt0t —4 )\t +1

IV-C.3. Case 3: A 2-ring CUCA, with:
Rin _ Rout 1

a) X =% g

b) Louwt = Li, implying that L., and L;, have the same
polar azimuth on the x-y plane.

Using the constraints in (32)-(33),

2
CRB = (21)*M (Z) cos?(0)CRB(6)
2
= (2n)*M <;’> sin2()CRB(¢)
_ 1 Rout 2 Rout 1 -
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Fig. 6. CRB of (43), (44), and (45).

Summary

Refer to Figure 6.

Case 1: Represented by the dashed-hexagon, the dashed-
square and the dashed-star curves, for different values of
Rout/ A

Case 2: Represented by the solid, the dashed-dot and the
dashed curves, for different values of Rt/

Case 3: Represented by dash-cross, the dashed-circle and
the dashed-diamond curves, for different values of Rout/A.

Observations

1) Case 3 moves away from Case 1 as Rout/A increases.
2) Case 3 moves away from Case 1 as Lt increases.

3) Case 2 approaches Case 1 as L.t increases.

4) Case 2 has the highest CRB values for all R,/

5) Case 3 has the lowest CRB values for Ro,/A > 0.5.

V CONCLUSION

A new concentric circular sensor-array grid termed as the 2-
circle concentric array geometry that increases the array’s spa-
tial aperture while maintaining only half a wavelength inter-
sensor spacing is proposed. A better-accurate performance in
direction finding of the proposed array grid over a single ring
array geometry termed as uniform circle array (UCA) has been
analytically verified via Cramér-Rao bound analysis. Further,
the performance in direction finding of the proposed array
grid and that of a single ring array termed as the uniform
circular array has been compared graphically under different
constraints of investigation. It has been found that, the Cramér-
Rao bound decreases with increase in the number of sensors
and/or the radii (increase in array’s spatial aperture). The
proposed array grid has been found to have the lowest CRB
and thus has better estimation accuracy than the single ring
array.
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