
 

 

Mathematical modeling of typhoid fever disease incorporating unprotected humans 1 

in the spread dynamics. 2 

 3 

Abstract 4 

In this study we have develop a deterministic mathematical model for spread dynamics of 5 

typhoid fever disease incorporating unprotected humans. The model result into a system of 6 

ordinary differential equations which are used to study the spread dynamics of typhoid fever. 7 

The model incorporating Susceptible, unprotected, Infectious and Recovered humans which are 8 

analyzed mathematically. The existence of steady states of the mathematical model is 9 

determined. More so we show the existence and positivity of a solution and finally computed the 10 

basic reproductive number using next generation matrix. 11 

Key words: Basic reproduction number, invariant region, positivity of solution, Mathematical 12 

model, Disease Free Equilibrium, Endemic equilibrium point. 13 

Introduction 14 

 Typhoid fever is an endemic disease that is classified as an enteritis disease. The disease is 15 

caused by a bacterium called Salmonella Typhi. It is a common infectious disease in human beings 16 

and is transmitted through food and water contaminated with faeces and urine of an infected 17 

person [3].The disease is endemic in developing countries where it continuously causes illness 18 

and death. This is contributed by unsafe water supply, poor food hygiene and wanting 19 

environmental sanitation. According to World Health Organization an estimated 17 million 20 

illness cases of typhoid fever were reported per year worldwide resulting to 0.6 million deaths 21 

annually[4,5]. 22 

1. Description and model formulation 23 

  We formulated a deterministic model for spread dynamics of typhoid fever that considers 24 

human population at time t. The model is divided into four compartments as follows. 25 

Susceptible(S), Unprotected (E), Infective (I) and Recovered(R).The model has the following 26 

flow. S E I R S→ → → →  .We use the following parameters in our model.(i) µ is the natural 27 

death rate ( ii) α  is the disease induced death rate.(iii) Λ  human recruitment rate (birth). (iv) β28 

disease interaction rate .(v) Ω  unprotected symptoms showing rate(vi)γ  Infective recovery rate  29 

and finally(vii) δ  this is the rate at which recovered humans loses temporary immunity obtained 30 

through treatment and get the disease back again. All the compartments are positive in the 31 

feasible region ϕ where{ } 4
,  ,  ,  S E R RI +∈ϕ ⊂ . All the solutions are also bounded in ϕ  such that32 

0 N
µ

Λ
≤ ≤  . Thus the model is epidemiologically well posed in the region ϕ .   33 

The following flow chart shows various compartments in the model. 34 
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The model dynamics results to four differential equations as shown equation1. 44 
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2. Disease free equilibrium point and endemic equilibrium point 46 

The disease free equilibrium of the model is obtained by setting  47 

      

0
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48 

In absence of disease 49 

0, 0, 0E I R= = = . 50 

Setting the right hand side of equations of system 1 to zero we have 51 
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 52 

Hence model has a disease free equilibrium given by 53 

            ( ) ,0,0,0S E I R
µ

∗ ∗ ∗ ∗  Λ
=  
 

                                                    (3) 54 

The basic reproductive number ( 0R )which is average number of secondary infections caused by 55 

one infectious individual introduced in a completely susceptible population is obtained using 56 

next generation matrix as 
( )( )0

Ω

Ω µ α µ

S
R

β

γ
=

+ + +
 where at disease free equilibrium 57 

( )( )0
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+ +
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+
.  58 
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 60 

Theorm1 61 

 If
( )

( )

2
α µ

Ω<
α µu

µ γ

β γ

+ +

Λ − + +
, there disease free equilibrium will be stable and typhoid disease will not 62 

have a hand in the population. 63 

Proof 64 

When 1R <  ; this means that 
�ʌ�

�������	���
�
< 1. 65 

Making Ω   the subject,
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α µu

µ γ

β γ

+ +

Λ − + +
 

66 

Disease free equilibrium point therefore is locally asymptotically stable if the basic reproduction 67 

number 0( )R  less than one 0( 1)R <    and unstable if the basic reproduction number is greater 68 

than 0( 1)R > . 69 

3. Endemic equilibrium point 70 

 Endemic equilibrium  
2E
∗  ; disease exists. Evaluating the state variables of equations of the 71 

system 2, the endemic equilibrium points are in this form 72 
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4.4.4.4. SSSStability of endemic equilibriumtability of endemic equilibriumtability of endemic equilibriumtability of endemic equilibrium    76 

    Proof: By the use of lyapunov function defined by LaSalle [1976] 77 

( )
** ** ** **

** ** ** ** ** ** ** ** ** ** ** **, , , (S S S ln( ) ln( ln( )  ln( )
S E I R

L S E I R E E E I I I R R R
S E I R
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= − − + − − + − − − − 

 
+78 

 computing the derivative of L along the solutions of the system is directly:79 
** ** ** ** 
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Substituting the equations of system 1 in equation 5, the equation becomes 81 
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Expanding equation 6, it produces 83 
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Further simplification result to 85 
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   From equation it’s clear that   ; 
dL

A B
dt

= − .Where A  are the positive terms and B are the 89 

negative ones, such that; 90 
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 If A B<   then  0
dL

dt
≤   92 

 0
dL
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Only if ** ** ** **, , ,S S E E I I R R= = = =    93 

The largest invariant set in ( ) ,  ,  ,  { 0}:
dL

S E I R
dt

ϕ =∈    is a singleton 2E∗  .Where 2E∗  is the 94 

endemic equilibrium. Therefore, the endemic equilibrium is globally asymptotically stable 95 

in the invariant regionϕ   if A B< [1,2]. 96 

Conclusion. 97 

From our finding if
( )

( )

2
α µ

Ω<
α µu

µ γ

β γ

+ +

Λ − + +
, there disease equilibrium will be stable and typhoid 98 

disease will not have a hand in the population. However if
( )

( )

2
α µ

Ω>
α µ

µ γ

β µ γ

+ +

Λ − + +
, then disease 99 

will be dependent on prevailing circumstances. We also performed numerical simulations to 100 

determine the changes in various compartments with time using MATLAB ode solve software. 101 

There is direct variation relationship between the unprotected and infectious compartments, 102 

therefore the unprotected humans contribute significantly to the spread dynamics of typhoid 103 

fever disease.  104 
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