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A Family of High Order One-Block Methods for the Solution of Stiff Initial Value 

Problems 
 

 
Abstract.  

In this paper, we construct a family of high order self-starting one-block numerical methods for 

the solution of stiff initial value problems (IVP) in ordinary differential equations (ODE). The 

Reversed Adams Moulton (RAM) methods, Generalized Backward Differentiation Formulas 

(GBDF) and Backward Differentiation Formulas (BDF) are used in the constructions. The E-

transformation is applied to the triples and a family of self-starting methods are obtained. The 

family is stableL  for 7k  . The numerical implementation of the methods on some stiff 

initial value problems are reported to show the effectiveness of the methods. The computational 

rate of convergence tends to the theoretical order as h tends to zero.  
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1.0 Introduction 

In this presentation, we show the construction of a family of block methods for the numerical 

solution y(t) of the initial value problem  
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The Reversed Adams Moulton (RAM) methods are generally written as   
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(see [4]). They are therefore generally zero stable. The determination of the coefficients  k
r 0  

is done by imposing the maximum order 1k  on the method (2). This leads to the matrix 

equations  
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which is solved simultaneously for the coefficients (see [4], [1]). 

 

1.1 The Backward Differentiation Formulas (BDF) 

A k-step BDF introduced in [5] is a linear multistep formula that has order p = k and error 

constant 
1

1
1 


 k

C p when the coefficient of the derivative function is normalized to one. They 

are popular for the solution of stiff differential equations (1). They have the general formula 
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The coefficients 
k
jj 1}{    are uniquely determined by imposing the order k on (4) which leads 

to the matrix equation 
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which are solved simultaneously. The methods have been shown in ([1], [3], [8]) to be zero 

stable for 6k , and zero unstable for 7k . 

1.2 The Generalized Backward Differentiation Formulae (GBDF): 

This class of methods introduced in [4] has the form 
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for all 1k , where 
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It implemented by coupling it with some set of initial and final additional methods. While BDF 

are 0-unstable, for k > 6, GBDF though cannot be used as single integrator, provide 

Stablejkj ,0 , StableA jkj ,  methods for all 32k .  

 

2. Construction of the new self-starting block methods 

The methodology for the construction is captured in the following theorem [2]: 

 
 



 

 

Theorem 

Let the multi-family of LMF   Km

kj
j

k
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with  ][][ , j
k

j
k   for a fixed j forming a family of variable order jkp ,  of variable step number 

k. Then the resultant system of composite LMF 
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 arising from the E-operator transformation of  (8) can be composed as the block method 

)( 011011 nnnn FBFBhYAYA   ; 0)det( 1 A                                    (10) 

if k is chosen such that l is an integer given as  
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   where ,1nY ;nY andFn 1 nF
   

...,2,1,0n   are vectors as defined below and 

0101 ,,, BBAA  are square matrices also defined below for a fixed m. 
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Proof: 

Notice that the E-operator is effectively applied k-l times on the system of LMF   jk
j

k
j

k ,
][][ ,  . 

Thus there are 2k-l unknown solution points captured in the block of solution 

T
lknnnn yyyY ).,..,,( 2211   .  By this the block definition in (11) is realized if the 

coefficient matrices  0101 ,,, BBAA  are square matrices of dimension )2()2( lklk  .  

This simply imply that lklkmm  2)(  so that l is as in (12) and for a fixed m the k is 

then chosen such that 0 lk   

In particular: 

 (1.) 2m  ; 2l  ...,4,3,2k    

 (2.) 3m  ; 
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 (3.) 4m  ; 
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When 0 lk  , the method requires no shifting, this is so if km . However, the case of 

interest in this paper is when m = 3. 

Consider the triple of k-step LMF defined by ],[ 11  , ],[ 22  and ],[ 33    Shifting this (k-

l) times, where 
2

3
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k
l , we have a set of 2k-l equations in 2k-l unknowns which can be 

written in the block form (10).  



 

 

3  Stability of the Implicit Block Methods 

When (10) is applied to test equation 
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 it yields the characteristics equation.    
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The region of absolute stability AR  associated with (10) is the set 
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  If we let 0z  in (15), the difference system becomes 
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All the proposed block methods can be cast in the form  
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Note that for all the block methods,   eaA T  1...111ˆ1
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To see this, assume order 1p for all the LMF that constitute the block, then by consistency,  
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where 
Te )1...111( . From (20) it follows that 
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The above ensures zero-stability of the implicit block methods (10). Method (10) applied to test 

equation can also be written as 
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is the amplification matrix. If as z tends to infinity (23) tends to zero (that is 0)( M  ), it 

means that an A-stable (10) is L-stable. If we take ],[ 11  , ],[ 22  and ],[ 33   to be RAM, 

GBDF and BDF respectively, then the coefficients of order 3 method 
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The stability function )(zP  is  
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The stability domain S of this family is    
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The )(zD  (the only non-zero value of R(z)) for this family of methods are given as a rational 

function 
)(

)(
)(

zQ

zP
zD  . where P{z) and Q(z) are polynomials. 
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Case of order p = 5 
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Case of order p = 7 

 

Definition1: A block method is said to be pre-stable if the roots of )(zQ  are contained in
C . 

For the cases of orders 3, 5 and 7 above )(zD  has no negative pole on
C . In all the cases, the 

roots of )(zQ  are contained in
C as shown below: 

 

roots for case: k=3 are  ሼሼݖ → 1.0187340384857744 െ 0.8263451688443794݅ሽ, ሼݖ →

1.0187340384857744 ൅ 0.8263451688443794݅ሽ, ሼݖ → 1.6708652563617843ሽሽ 

 

roots for case: k=5 are ሼሼݖ → 0.5496503163387506 െ 1.3267991841349167݅ሽ, ሼݖ →

0.5496503163387506 ൅ 1.3267991841349167݅ሽ, ሼݖ → 1.151541041151053 െ

0.6310368906999217݅ሽ, ሼݖ → 1.151541041151053 ൅ 0.6310368906999217݅ሽ, ሼݖ →

1.4230274032805632 െ 0.24822115565736874݅ሽ, ሼݖ → 1.4230274032805632 ൅

0.24822115565736874݅ሽሽ 

 

D HzL=I985165161473748003840+ 4402051392159709142400z+ 9312055882371249355800z2 +

12274578010036761849000z3 + 11100796369466865874824z4 + 7050165866520364682640z5

+ 2955348233158592799595z6 + 519376147126246691525z7 +1449168336336045000z8M I985165161473748003840- 4464435061104022892160z+ 9592782392620661229720z2 -

12948410667896644552560z3 + 12238139385652807891884z4 - 8515729260833432221944z5

+4431438472960053812404z6 - 1675273338089451901240z7 + 415880799121310628000z8 -

51054324417768672000z9M



 

 

roots for case: k=7 are  ሼሼݖ → 0.12805543041947612 െ 1.6041775714692936݅ሽ, ሼݖ →

0.12805543041947612 ൅ 1.6041775714692936݅ሽ, ሼݖ → 0.7828629304247531 െ

0.9771613463405875݅ሽ, ሼݖ → 0.7828629304247531 ൅ 0.9771613463405875݅ሽ, ሼݖ →

1.052641898979391 െ 0.30282200428785017݅ሽ, ሼݖ → 1.052641898979391 ൅

0.30282200428785017݅ሽ, ሼݖ → 1.2966180420834268 െ 0.8693941685370542݅ሽ, ሼݖ →

1.2966180420834268 ൅ 0.8693941685370542݅ሽ, ሼݖ → 1.6254920361214837ሽሽ 

 

The one step block method is A-stable if and only if it is stable on the imaginary axis (I-stable): 

1)( iyD  for all y , and D(z) is analytic for 0)( zD  (i.e., )(zQ  does not have roots 

with  negative or zero real parts), I-stability is equivalent to the fact that the Norsett polynomial 

defined by  

)()()()()()()(
22

iyPiyPiyQiyQiyPiyQyE    (26) 

satisfies 0)( yE  for all y , see  [7]. In each of the cases of order p = 3, 5, 7, (26) is 

satisfied and 0)( zD as z implying that the methods are L-stable for 7k   

4 Numerical implementation 

Problem 1: (cf: [4]) 
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The theoretical solution of the problem is:  
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Problem 2: (cf: [6]) 

                    
);(yf

dt

dy
   ],0[ Tt  

The function f is defined by 
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Problem 1 is solved using order p=3, 5, 7 and 9. The error and rate of computational convergence 

are displayed in table 1. It can be seen that the rate of computational convergence is tending 

towards the theoretical order as h tends to 0 except for the method of order 9 which exhibit order 

reduction The error in order 3 when used to solve problem 1 is plotted against the step size h and 

displayed in  figure 1. 

 

Table 1: Error and order of convergence of RAM/GBDF/BDF p=3, 5, 7, 9  

h Error rate Error Rate Error Rate Error rate 

1e-2 2.697e-02  6.136e-02  4.641e-02  7.166e-02  

5e-3 4.879e-03 2.47 2.735e-03 4.49 3.231e-03 3.84 1.047e-03 6.10 

2.5e-3 6.510e-04 2.91 7.608e-05 5.17 3.889e-05 6.38 6.234e-06 7.39 

1.25e-3 8.363e-05 2.96 2.357e-06 5.01 3.909e-07 6.64 3.803e-08 7.36 

6.25e-4 1.061e-05 2.98 7.192e-08 5.03 3.431e-09 6.83 2.753e-10 7.11 



 

 

 

Figure 1: Error in the proposed method of order p=3 for problem 1 versus h. 

 

Figure 2: Slope for order 3 method. 

Comparing figures 1 and 2, it is observed that the computational convergence rate and the 

theoretical rate of convergence have the same slope for order 3 method. 
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Problem 2 is a Chemical Kinetics Problem. It is solved using order 5 of the proposed method and 

constant step size h = 0.0001. The error tolerance for accuracy in the Newton-Raphson iteration 

is set at 10-2. The errors in the table 2 are the maximum absolute values of the difference between 

approximate solution of the proposed method and that of MATLAB ODE15s (which is assumed 

to be the exact solution of the problem).  

Table 2: Errors from proposed method, k=5; p=5 when applied to problem 2 

T 2.00 5.00 7.5 10.00 

Errors 2.30e-006 4.20e-006 4.41e-005 7.19e-005 

 

5 Conclusion:  

We have constructed a family of high order self-starting one-block methods using multistep 

triple. This family is zero stable for all 3k , l-stable for 7k and exhibit order reduction for

9k  . The numerical examples considered showed that the methods are comparable to the 

existing ones.  
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