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Geometrical Properties and exact solutions of Three (3+1)-dimensional 

nonlinear evolution equations in Mathematical Physics using different 

expansion methods 

  

Abstract: In this article, A Variation of (𝑮′ 𝑮⁄ )-Expansion Method and (𝑮′ 𝑮𝟐⁄ )-Expansion Method 

have been applied to find the traveling wave solutions of the (3+1)-dimensional Zakhrov-Kuznetsov 

(ZK) equation, the (3+1)-dimensional Potential-YTSF Equation and the (3+1)-dimensional 

generalized Shallow water equation. The efficiency of these methods for finding the exact solutions 

have been demonstrated. As a result, some new exact traveling wave solutions are obtained which 

include solitary wave solutions. It is shown that the methods are effective and can be used for many 

other nonlinear evolution equations (NLEEs) in mathematical physics. 

Keywords: Nonlinear partial differential equations, A Variation of  (𝐺′ 𝐺⁄ )-expansion method, 

(𝐺′ 𝐺2⁄ )-expansion method, travelling wave solutions, the (3+1)-dimensional Zakhrov-Kuznetsov 

equation , the (3+1)-dimensional Potential-YTSF Equation and the (3+1)-dimensional generalized 

Shallow water equation ,Gaussian curvature, Mean curvature . 

1.Introduction: 

  Nowadays NLEEs have been the subject of all-embracing studies in various branches of nonlinear 

sciences. A special class of analytical solutions named traveling wave solutions for NLEEs have a lot 

of importance, because most of the phenomena that arise in mathematical physics and engineering 

fields can be described by NLEEs. NLEEs are frequently used to describe many problems of 

chemically reactive materials, in physics the heat flow and the wave propagation phenomena, 

quantum mechanics, fluid mechanics, plasma physics, propagation of shallow water waves, optical 

fibers, biology, solid state physics, chemical kinematics, geochemistry, meteorology, electricity etc. 

Therefore investigation traveling wave solutions are becoming more and more attractive in 

nonlinear sciences day by day.there are different methods for solving these equations such as  the 

inverse scattering transform method [1], the exp-function method [2-4], the Hirota’s bilinear 

operators [5], the Weierstrass elliptic function method [6], the Jacobi elliptic function method [7, 8],  

the homogeneous balance method [9],  the variation of (G'/G)-Expansion Method [10]. 

        Zayed [11,12] proposed an alternative approach of the (𝐺′ 𝐺⁄ )-expansion method, A. R. 

Shehata[13]used the modified (G′ G⁄ )-expansion method.  
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 Guo and Zhou [14] presented the extended the (𝐺′ 𝐺⁄ )-expansion method . Liu and Niuj [15]  A 

generalized (𝐺′ 𝐺⁄ )-expansion method .Zhang [16] proposed the modified (𝐺′ 𝐺⁄ )-expansion 

method . Recently we have considered the (2+1)-Dimensional Broer-Kaup-Kuperschmidt Equation 

and have obtained several new exact solutions using an extension of (𝐺′ 𝐺⁄ )-expansion method[17].      

There is (𝐺′ 𝐺2⁄ )-expansion method [18] that has been recently proposed, this can be applied to 

various nonlinear equations and this also gives a few new kinds of solutions. 

      In this paper, by using a variation of the(𝐺′ 𝐺⁄ )-expansion method and   (𝐺′ 𝐺2⁄ )-expansion 

method, we applied them on some nonlinear partial differential equations, namely the (3+1)-

dimensional Zakhrov-Kuznetsov equation , the (3+1)-dimensional Potential-YTSF Equation and the 

(3+1)-dimensional generalized Shallow water equation and find out the exact  travelling wave 

solutions then we study its geometrical properties. 

2. Analysis for the variation of (𝑮′ 𝑮⁄ )-expansion method: 
Suppose we have the following  nonlinear partial differential equation: 

       𝐹(𝑢 , 𝑢𝑡  , 𝑢𝑥  , 𝑢𝑡𝑡 , 𝑢𝑥𝑡 , 𝑢𝑥𝑥 , 𝑢𝑥𝑦 , 𝑢𝑦𝑦 , 𝑢𝑦𝑡  , 𝑢𝑧𝑧 , 𝑢𝑧𝑡  , 𝑢𝑧𝑥  , 𝑢𝑧𝑦 , … ) = 0,                        (2.1) 

where  𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) is an unknown function, 𝐹 is polynomial in 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) and its various 

partial derivatives, in which the highest order derivatives and nonlinear terms are involved. The 

method is given in the following steps. 

Step 1. The travelling wave variable : 

                  𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝜉),    𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝑉𝑡 ,                                                                 (2.2) 

where 𝑉 is a constant represents the speed of the traveling wave transformation to be determined 

later, the traveling wave transformation permits us reducing  Eq. (2.1) into an ordinary differential 

equation in the form: 

                    𝑃(𝑢 , 𝑢′, 𝑢′′, 𝑢′′′, … ) = 0.                                                                                             (2.3) 

Where prime stands for ordinary derivative with respect to 𝜉 and 𝑃 is a polynomial in         

  𝑢 = 𝑢(𝜉) and its derivatives. 

Step 2. For simplicity , if it is possible we integrate Eq.(2.3) term by term one or more times yields 

constant(s) of integration. 

Step 3. Assume  that the solution of  Eq.(2.3) can be expressed in the following form: 

𝑢(𝜉) = ∑ 𝑎𝑖(𝐺
′/𝐺)𝑖 + ∑ 𝑏𝑖(𝐺

′/𝐺)𝑖−1(𝐹′/𝐹)𝑚
𝑖=1

𝑚
𝑖=0 ,                                                                 (2.4) 

where 𝐺 = 𝐺(𝜉) and 𝐹 = 𝐹(𝜉)  expresses the solution of the coupled Riccati equation,   

                                 𝐺′(𝜉) = −𝐺(𝜉). 𝐹(𝜉),                                                                                       (2.5) 

                                 𝐹′(𝜉) = 1 − 𝐹(𝜉)2  ,                                                                                          (2.6) 
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where prime denotes derivative with respect to 𝜉 , 𝑎𝑖(𝑖 = 0, 1, … ,𝑚), 𝑏𝑖(𝑖 = 1, 2, … ,𝑚) are constants 

to be determined later. 

These governing equations lead us two types of general solutions: 

                                       𝐺(𝜉) = ± sech(𝜉), 𝐹(𝜉) = tanh(𝜉),                                                      (2.7) 

                                        𝐺(𝜉) = ±csch(𝜉) , 𝐹(𝜉) = coth(𝜉).                                                     (2.8) 

Step 4.  By considering the homogeneous balance between the highest order derivatives and the 

nonlinear terms appearing in Eq.(2.3) we can find the positive integer 𝑚  as follows: 

If 𝐷[𝑢(𝜉)] = 𝑚, then 𝐷 [𝑢𝑟 (
𝑑𝑞𝑢

𝑑𝜉𝑞)
𝑠

] = 𝑚𝑟 + 𝑠(𝑞 + 𝑚), where 𝐷 denotes the degree of the expression. 

Step 5. Substituting Eq.(2.4) into Eq.(2.3) and using Eq.(2.5) and Eq.(2.6), collecting all terms with 

the same order of (𝐺′ 𝐺) ⁄ or (𝐹) together, left-hand side of Eq.(2.3) is converted into another 

polynomial in (𝐺′ 𝐺⁄ ) or (𝐹). Equating each coefficient of this polynomial to zero, yields a set of 

algebraic equations for 𝑎𝑖(𝑖 = 0, 1, … ,𝑚), 𝑏𝑖(𝑖 = 1, 2, … ,𝑚), and  V . 

Step 6. Determining the constants 𝑎𝑖(𝑖 = 0, 1, … ,𝑚), 𝑏𝑖(𝑖 = 1, 2, … ,𝑚) and 𝑉 by solving the 
algebraic equations in step 5. As the general solutions of Eq.(2.5) and Eq.(2.6) are already known to 
us ,then substituting 𝑎𝑖(𝑖 = 0, 1, … ,𝑚), 𝑏𝑖(𝑖 = 1, 2, … ,𝑚), V and the general solutions of Eq.(2.5) and 
Eq.(2.6), we obtain the travelling wave solutions of Eq.(2.1). 

3. Analysis for the (
𝐆′

𝐆𝟐
)-expansion method: 

Suppose we have the following  nonlinear partial differential equation: 

       𝐹(𝑢 , 𝑢𝑡  , 𝑢𝑥  , 𝑢𝑡𝑡 , 𝑢𝑥𝑡 , 𝑢𝑥𝑥 , 𝑢𝑥𝑦 , 𝑢𝑦𝑦 , 𝑢𝑦𝑡  , 𝑢𝑧𝑧 , 𝑢𝑧𝑡  , 𝑢𝑧𝑥  , 𝑢𝑧𝑦 , … ) = 0,                        (3.1) 

where  𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) is an unknown function, 𝐹 is polynomial in 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) and its various 

partial derivatives, in which the highest order derivatives and nonlinear terms are involved. The 

method is given in the following steps. 

Step 1. The travelling wave variable : 

                  𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝜉),    𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝑉𝑡 ,                                                                 (3.2) 

where 𝑉 is a constant represents the speed of the traveling wave transformation to be determined 

later, permits us reducing  Eq. (2.1) into an ordinary differential equation in the form: 

                    𝑃(𝑢 , 𝑢′, 𝑢′′, 𝑢′′′, … ) = 0.                                                                                               (3.3) 

Where prime stands for ordinary derivative with respect to 𝜉 and 𝑃 is a polynomial in         

  𝑢 = 𝑢(𝜉) and its derivatives. 

Step 2. For simplicity , if it is possible we integrate Eq.(3.3) term by term one or more times yields 

constants of integration. 

UNDER PEER REVIEW



4 
 

 

Step 3. The formal solution of ODE can be written as follows: 

                 𝑢(𝝃) = 𝒂𝟎 + ∑ 𝒂𝒏 (
𝑮′

𝑮𝟐)
𝒏

+ 𝒃𝒏 (
𝑮′

𝑮𝟐)
−𝒏

𝑵
𝒏=𝟏 ,                                                                 (3.4) 

                (
𝐺′

𝐺2)
′

= 𝜇 + 𝜆 (
𝐺′

𝐺2)
2

                                                                                                   (3.5) 

In Eq. (3.4), 𝜆 ≠ 0, 𝜇 ≠ 1 are integers and 𝑎0, 𝑎𝑛, 𝑏𝑛, (𝑛 = 1,2, … ,𝑁) are constants to be determined. 

The value of positive integer N is easy to find by balancing the highest order derivative and nonlinear 

terms appearing in Eq.(3.3). 

step 4. substituting Eq. (3.4) and use Eq. (3.5) into Eq.(3.3),collect the coefficients with the same 

order of (
𝐺′

𝐺2)
𝑖

, (𝑖 = 0,±1,±2,… ) and set the coefficients to zero, nonlinear  all powers algebraic 

equations are acquired. Solutions to the resulting algebraic system are derived by using the (
𝐆′

𝐆𝟐)-

expansion method  with the aid of Maple. 

step 5. On the basis of the general solutions to Eq.(3.5), the ratio (𝐆′

𝐆𝟐) can be divided into three 

cases, i.e. 

      
𝐆′

𝐆𝟐 = √
𝜇

𝜆
(
𝐶 cos√𝜇𝜆𝜉+𝐷 sin√𝜇𝜆𝜉

𝐷 cos√𝜇𝜆𝜉−𝐶 sin√𝜇𝜆𝜉
) , 𝜇𝜆 > 0,                                                                        (3.6) 

     
𝐆′

𝐆𝟐 = −
√|𝜇𝜆|

𝜆
(

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)+𝐷

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)−𝐷
) , 𝜇𝜆 < 0,                                         (3.7) 

     
𝐆′

𝐆𝟐 = −
𝐶

𝜆(𝐶𝜉+𝐷)
 , 𝜇 = 0, 𝜆 ≠ 0                                                                                             (3.8)  

In the above expressions 𝐶 and 𝐷 are nonzero constants. Three types of solution for Eq. (3.1) can be 

obtained by putting the values of  𝑎0, 𝑎𝑛, 𝑏𝑛, (𝑛 = 1,2,… ,𝑁)   and the ratios (3.6)-(3.8) into Eq.(3.4). 

4. Applications of the methods: 

  Here we use the above two methods respectively  

4.1  Example 1: The (3+1)-dimensional Zakhrov-Kuznetsov equation: 

Here, we study the (3+1)-dimensional Zakhrov-Kuznetsov equation in the form: 

                     𝑢𝑡 + 𝑎𝑢𝑢𝑥 + 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 0 ,                                                                   (4.1.1) 

where 𝑎 is a positive constant. 

The traveling wave transformation equation 𝑢(𝜉) = 𝑢(𝑥, 𝑦, 𝑧, 𝑡), 𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝑉𝑡 transform 

Eq.(4.1.1) to the following ordinary differential equation: 

                     −𝑉𝑢′ + 𝑎𝑢𝑢′ + 3𝑢′′ = 0.                                                                                     (4.1.2) 
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Now integrating Eq.(4.1.2) with respect to 𝜉  once, we have         

                   𝑐 − 𝑉𝑢 +
1

2
𝑎𝑢2 + 3𝑢′ = 0,                                                                                      (4.1.3) 

Where 𝑐 is a constant of integration. Balancing the highest-order derivative  𝑢′ and the nonlinear 

term 𝑢2, from Eq.(4.1.3), yields 2𝑚 = 𝑚 + 1 which gives 𝑚 = 1. 

Hence for 𝑚 = 1 Eq.(2.4) reduces to  

                     𝑢(𝜉) = 𝑎0 + 𝑎1 (
𝐺′

𝐺
) + 𝑏1 (

𝐹′

𝐹
) ,                                                                            

                              = 𝑎0 − 𝑎1𝐹 + 𝑏1(𝐹
−1 − 𝐹) ,                                                                       (4.1.4) 

Substituting Eq. (4.1.4) into Eq. (4.1.3) , collecting the coefficients of (𝐹)𝑖(𝑖 = 0,±1,±2),and letting 

it be zero,  yields a set of simultaneous algebraic equations for 𝑎0, 𝑎1, 𝑏1, 𝑉 and  𝑐  

To solve this set of algebraic equations for  𝑎0, 𝑎1, 𝑏1, 𝑉  and  𝑐 by using of Maple, we get, 

Case 1: 

       𝑐 =
1

2

𝑎2𝑎0
2−36

𝑎
 , 𝑎1 = −

6

𝑎
 , 𝑏1 = 0, 𝑉 = 𝑎𝑎0 ,                                                            (4.1.5) 

where 𝑎0 is arbitrary. 

Case 2: 

             𝑐 =
1

2

𝑎2𝑎0
2−144

𝑎
 , 𝑎1 = −

12

𝑎
 , 𝑏1 =

6

𝑎
, 𝑉 = 𝑎𝑎0 ,                                                   (4.1.6) 

where 𝑎0 is arbitrary. 

Substituting Eqs.(4.1.5),(4.1.6) into Eq.(4.1.4) we  get two types of the travelling wave solutions of 

Eqs.(4.1.1) as follows: 

According to case 1. 

Type 1: 

Class I:                           𝑢11(𝑥, 𝑡) = 𝑎0 +
6

𝑎
tanh(𝑥 + 𝑦 + 𝑧 − 𝑎𝑎0𝑡)                     (4.1.7)                                           

Class II:                               𝑢12(𝑥, 𝑡) = 𝑎0 +
6

𝑎
coth(𝑥 + 𝑦 + 𝑧 − 𝑎𝑎0𝑡),            (4.1.8) 

According to case 2. 

Type 2: 

Class I:   𝑢21(𝑥, 𝑡) = 𝑎0 +
6

𝑎
tanh(𝑥 + 𝑦 + 𝑧 − 𝑎𝑎0𝑡) +

6

𝑎
coth(𝑥 + 𝑦 + 𝑧 − 𝑎𝑎0𝑡) (4.1.9) 

 Class II: 𝑢22(𝑥, 𝑡) = 𝑎0 +
6

𝑎
coth(𝑥 + 𝑦 + 𝑧 − 𝑎𝑎0𝑡) +

6

𝑎
tanh(𝑥 + 𝑦 + 𝑧 − 𝑎𝑎0𝑡) (4.1.10) 
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The solutions for  
𝐺′

𝐺2 − expansion method can be expressed as follows: 

             𝑢(𝝃) = 𝒂𝟎 + 𝒂𝟏 (
𝑮′

𝑮𝟐) + 𝒃𝟏 (
𝑮′

𝑮𝟐)
−𝟏

,                                               (4.1.11) 

Where 𝑎0, 𝑎1, 𝑏1 are unknown constants. We substitute Eq.(4.1.11) into (4.1.3) along with Eq.(3.5) 

to collect all the coefficients with the same power of  (
𝐺′

𝐺2)
𝑖

, (𝑖 = 0,±1,±2,… ). From Eq.(4.1.11) 

each coefficient of  (
𝐺′

𝐺2)
𝑖

 is set to zero, and system of algebraic equations about 𝑎0, 𝑎1, 𝑏1 is attained 

as follows: 

The following results are obtained upon solving the above system of algebraic equations using 

Maple 

Case 1:  

 𝒄 =
𝟏

𝟐

𝒂𝟐𝒂𝟎
𝟐+𝟑𝟔𝝁𝝀

𝒂
 , 𝑽 = 𝒂𝒂𝟎 , 𝒂𝟎 = 𝒂𝟎  , 𝒂𝟏 = 𝟎 , 𝒃𝟏 =

𝟔𝝁

𝒂
 

Case 2:  

 𝒄 =
𝟏

𝟐

𝒂𝟐𝒂𝟎
𝟐+𝟑𝟔𝝁𝝀

𝒂
 , 𝑽 = 𝒂𝒂𝟎 , 𝒂𝟎 = 𝒂𝟎  , 𝒂𝟏 = −

𝟔𝝀

𝒂
 , 𝒃𝟏 = 𝟎 

Case 3:  

 𝒄 =
𝟏

𝟐

𝒂𝟐𝒂𝟎
𝟐+𝟏𝟒𝟒𝝁𝝀

𝒂
 , 𝑽 = 𝒂𝒂𝟎 , 𝒂𝟎 = 𝒂𝟎  , 𝒂𝟏 = −

𝟔𝝀

𝒂
 , 𝒃𝟏 =

𝟔𝝁

𝒂
 

In Eq.(4.1.11) we substitute the above cases along with ratios (3.6)-(3.8), and three groups of 

solutions for Eq.(3.1) exist. 

Solution 1:  When 𝝁𝝀 > 0, the trigonometric solution corresponding to case 1 can be expressed 

as 

         𝑢11 = 𝑎0 +
𝟔𝝁

𝒂
(√

𝜇

𝜆
(
𝐶 cos√𝜇𝜆𝜉+𝐷 sin√𝜇𝜆𝜉

𝐷 cos√𝜇𝜆𝜉−𝐶 sin√𝜇𝜆𝜉
))

−1

                                       (4.1.12) 

When 𝝁𝝀 < 0 the hyperbolic solution corresponding to case 1 can be expressed as 

         𝑢12 = 𝑎0 +
𝟔𝝁

𝒂
(−

√|𝜇𝜆|

𝜆
(

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)+𝐷

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)−𝐷
))

−1

      (4.1.13) 

When 𝜇 = 0 , 𝜆 ≠ 0, the rational solution corresponding to case 1 can be expressed as 
              
             𝑢13 = 𝑎0                                                                                                  (4.1.14) 
Where 𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝑎𝑎0𝑡 

Solution 2: 
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When 𝝁𝝀 > 0, the trigonometric solution corresponding to case 2 can be expressed as 

       𝑢21 = 𝑎0 −
𝟔𝝀

𝒂
(√

𝜇

𝜆
(
𝐶 cos√𝜇𝜆𝜉+𝐷sin√𝜇𝜆𝜉

𝐷 cos√𝜇𝜆𝜉−𝐶 sin√𝜇𝜆𝜉
))                                         (4.1.15) 

When 𝝁𝝀 < 0 the hyperbolic solution corresponding to case 2 can be expressed as 

      𝑢22 = 𝑎0 −
𝟔𝝀

𝒂
(−

√|𝜇𝜆|

𝜆
(

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)+𝐷

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)−𝐷
))            (4.1.16) 

When 𝜇 = 0 , 𝜆 ≠ 0, the rational solution corresponding to case 2 can be expressed as 
              

          𝑢23 = 𝑎0 −
𝟔𝝀

𝒂
(−

𝐶

𝜆(𝐶𝜉+𝐷)
)                                                                      (4.1.17) 

Where 𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝑎𝑎0𝑡 
 

Solution 3: 
When 𝝁𝝀 > 0, the trigonometric solution corresponding to case 3 can be expressed as 

𝑢31 = 𝑎0 −
𝟔𝝀

𝒂
(√

𝜇

𝜆
(
𝐶 cos√𝜇𝜆𝜉+𝐷sin√𝜇𝜆𝜉

𝐷 cos√𝜇𝜆𝜉−𝐶 sin√𝜇𝜆𝜉
)) +

𝟔𝝁

𝒂
(√

𝜇

𝜆
(
𝐶 cos√𝜇𝜆𝜉+𝐷 sin√𝜇𝜆𝜉

𝐷 cos√𝜇𝜆𝜉−𝐶 sin√𝜇𝜆𝜉
))

−1

(4.1.18) 

When 𝝁𝝀 < 0 the hyperbolic solution corresponding to case 3 can be expressed as 

    𝑢22 = 𝑎0 −
𝟔𝝀

𝒂
(−

√|𝜇𝜆|

𝜆
(

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)+𝐷

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)−𝐷
)) +

 
𝟔𝝁

𝒂
(−

√|𝜇𝜆|

𝜆
(

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)+𝐷

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)−𝐷
))

−1

,                                                   (4.1.19) 

when 𝜇 = 0 , 𝜆 ≠ 0, the rational solution corresponding to case 3 can be expressed as 
              

       𝑢23 = 𝑎0 −
𝟔𝝀

𝒂
(−

𝐶

𝜆(𝐶𝜉+𝐷)
)  ,                                                                                       (4.1.20) 

where 𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝑎𝑎0𝑡 
 

4.2    Example 2: The (3+1)-dimensional Potential-YTSF Equation 

We start the (3+1)-dimensional Potential-YTSF Equation in the following form 
             −4𝒖𝒙𝒕 + 𝒖𝒙𝒙𝒙𝒛 + 𝟒𝒖𝒙𝒖𝒙𝒛 + 𝟐𝒖𝒙𝒙𝒖𝒛 + 𝟑𝒖𝒚𝒚 = 𝟎.                                      (4.2.1) 

This equation was called the Potential-YTSF Equation and it was developed by using the strong 

symmetry. The traveling wave variable (2.2) permits us converting Eq.(4.2.1) 

 into the following ODE.  After integrating once, we have the following form: 

                         𝒄 + 𝟒𝑽𝒖′ + 𝒖′′′ + 𝟑𝒖′𝟐 + 𝟑𝒖′ = 𝟎,                                                          (4.2.2) 

where 𝒄 is a constant of integration . Now by considering the homogeneous balance between the 

order of 𝒖′′′ and 𝒖′𝟐 in Eq.(4.2.2), we obtain  𝒎 = 𝟏.  

By using step 3 the solution of Eq. (4.2.2), can be written as, 

                                             𝑼(𝝃) = 𝒂𝟎 + 𝒂𝟏(𝑮′ 𝑮⁄ ) + 𝒃𝟏(𝑭′ 𝑭⁄ ) 
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                                                       = 𝒂𝟎 − 𝒂𝟏𝑭 + 𝒃𝟏(𝑭
−𝟏 − 𝑭),                                             (4.2.3) 

Substituting Eq. (4.2.3) into Eq. (4.2.2) , collecting the coefficients of (𝑭)𝒊(𝒊 = 𝟎,±𝟐,±𝟒),and letting 

it be zero,  yields a set of simultaneous algebraic equations for 𝒂𝟎, 𝒂𝟏, 𝒃𝟏 , 𝑽 and 𝒄    

After solving these algebraic equations for  𝒂𝟎, 𝒂𝟏, 𝒃𝟏, 𝑽 and  𝒄 with the help of software Maple, 

yields the following results. 

Case 1:   

        c= 𝟎 ,   𝑽 =
−𝟕

𝟒
 , 𝒂𝟏 = −𝟐 , 𝒃𝟏 = 𝟐 ,                                                                       (4.2.4) 

where  𝒂𝟎   is arbitrary. 

Case 2:  

           𝒄 = 𝟎 ,   𝑽 =
−𝟏𝟗

𝟒
 , 𝒂𝟏 = −𝟒 , 𝒃𝟏 = 𝟐  ,                                                                (4.2.5)    

where  𝒂𝟎  is arbitrary. 

Substituting Eqs.(4.2.4),(4.2.5) into Eq.(4.2.3) we get two types of the exact solutions of Eq.(4.2.1) 

as follows: 

According to case 1. 

Type 1:  

Class I:         𝒖𝟏𝟏(𝒙, 𝒕) = 𝒂𝟎 + 𝟐 𝒄𝒐𝒕𝒉( 𝒙 + 𝒚 + 𝒛 +
𝟕

𝟒
𝒕) .                                       (4.2.6) 

Class II:       𝒖𝟏𝟐(𝒙, 𝒕) = 𝒂𝟎 + 𝟐𝒕𝒂𝒏𝒉(𝒙 + 𝒚 + 𝒛 +
𝟕

𝟒
𝒕) .                                        (4.2.7) 

According to case 2. 

Type 2: 

Class I:   𝒖𝟐𝟏(𝒙, 𝒕) = 𝒂𝟎 + 𝟐𝒕𝒂𝒏𝒉(𝒙 + 𝒚 + 𝒛 +
𝟏𝟗

𝟒
𝒕) + 𝟐𝒄𝒐𝒕𝒉( 𝒙 + 𝒚 + 𝒛 +

𝟏𝟗

𝟒
𝒕)  .      

                                                                                                                                                  (4.2.8)                                                    

Class II:   𝒖𝟐𝟐(𝒙, 𝒕) = 𝒂𝟎 + 𝟐𝒄𝒐𝒕𝒉(𝒙 + 𝒚 + 𝒛 +
𝟏𝟗

𝟒
𝒕) + 𝟐 𝒕𝒂𝒏𝒉(𝒙 + 𝒚 + 𝒛 +

𝟏𝟗

𝟒
𝒕).                                                  

                                                                                                                                                  (4.2.9) 

The solutions can be expressed as follows: 

             𝑢(𝝃) = 𝒂𝟎 + 𝒂𝟏 (
𝑮′

𝑮𝟐) + 𝒃𝟏 (
𝑮′

𝑮𝟐)
−𝟏

,                                                                  (4.2.10) 

Where 𝑎0, 𝑎1, 𝑏1 are unknown constants. We substitute Eq.(4.2.10) into (4.2.2) along with Eq.(3.5) 

to collect all the coefficients with the same power of  (
𝐺′

𝐺2)
𝑖

, (𝑖 = 0,±1,±2,… ). From Eq.(4.2.10) 

each coefficient of  (
𝐺′

𝐺2)
𝑖

 is set to zero, and system of algebraic equations about 𝑎0, 𝑎1, 𝑏1 is attained 

as follows: 
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The following results are obtained upon solving the above system of algebraic equations using 

Maple 

Case 1:  

 𝒄 = 𝟎 , 𝑽 = 𝝀𝝁 −
𝟑

𝟒
  , 𝒂𝟎 = 𝒂𝟎  , 𝒂𝟏 = 𝟎 , 𝒃𝟏 = 𝟐𝝁 

Case 2: 

 𝒄 = 𝟎 , 𝑽 = 𝝀𝝁 −
𝟑

𝟒
 , 𝒂𝟎 = 𝒂𝟎  , 𝒂𝟏 = −𝟐𝝀  , 𝒃𝟏 = 𝟎 

Case 3: 

 𝒄 = 𝟎 , 𝑽 = 𝟒𝝀𝝁 −
𝟑

𝟒
 , 𝒂𝟎 = 𝒂𝟎  , 𝒂𝟏 = −𝟐𝝀 , 𝒃𝟏 = 𝟐𝝁 

In Eq.(4.2.10) we substitute the above cases along with ratios (3.6)-(3.8), and three groups of 

solutions for Eq.(4.2.1) exist. 

Solution 1:  When 𝝁𝝀 > 0, the trigonometric solution corresponding to case 1 can be expressed 

as 

      𝑢11 = 𝑎0 + 2𝜇 (√
𝜇

𝜆
(
𝐶 cos√𝜇𝜆𝜉+𝐷sin√𝜇𝜆𝜉

𝐷 cos√𝜇𝜆𝜉−𝐶 sin√𝜇𝜆𝜉
))

−1

                                                 (4.2.11) 

When 𝝁𝝀 < 0 the hyperbolic solution corresponding to case 1 can be expressed as 

      𝑢12 = 𝑎0 + 2𝜇 (−
√|𝜇𝜆|

𝜆
(

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)+𝐷

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)−𝐷
))

−1

                  (4.2.12) 

When 𝜇 = 0 , 𝜆 ≠ 0, the rational solution corresponding to case 1 can be expressed as 
              
           𝑢13 = 𝑎0                                                                                                              (4.2.13) 

Where 𝜉 = 𝑥 + 𝑦 + 𝑧 − (𝜆𝜇 −
𝟑

𝟒
) 𝑡 

 

Solution 2: 
When 𝝁𝝀 > 0, the trigonometric solution corresponding to case 2 can be expressed as 

       𝑢21 = 𝑎0 − 2𝜆 (√
𝜇

𝜆
(
𝐶 cos√𝜇𝜆𝜉+𝐷 sin√𝜇𝜆𝜉

𝐷 cos√𝜇𝜆𝜉−𝐶 sin√𝜇𝜆𝜉
))                                                (4.2.14) 

When 𝝁𝝀 < 0 the hyperbolic solution corresponding to case 2 can be expressed as 

      𝑢22 = 𝑎0 − 2𝜆 (−
√|𝜇𝜆|

𝜆
(

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)+𝐷

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)−𝐷
))               (4.2.15) 

When 𝜇 = 0 , 𝜆 ≠ 0, the rational solution corresponding to case 2 can be expressed as 
              

         𝑢23 = 𝑎0 − 2𝜆 (−
𝐶

𝜆(𝐶𝜉+𝐷)
)                                                                      (4.2.16) 
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 Where  𝜉 = 𝑥 + 𝑦 + 𝑧 − (𝜆𝜇 −
3

4
) 𝑡 

 

Solution 3: 
When 𝝁𝝀 > 0, the trigonometric solution corresponding to case 3 can be expressed as 

𝑢31 = 𝑎0 − 2𝜆 (√
𝜇

𝜆
(
𝐶 cos√𝜇𝜆𝜉+𝐷sin√𝜇𝜆𝜉

𝐷 cos√𝜇𝜆𝜉−𝐶 sin√𝜇𝜆𝜉
)) + 2𝜇 (√

𝜇

𝜆
(
𝐶 cos√𝜇𝜆𝜉+𝐷sin√𝜇𝜆𝜉

𝐷 cos√𝜇𝜆𝜉−𝐶 sin√𝜇𝜆𝜉
))

−1

     (4.2.17) 

When 𝝁𝝀 < 0 the hyperbolic solution corresponding to case 3 can be expressed as 

𝑢22 = 𝑎0 − 2𝜆 (−
√|𝜇𝜆|

𝜆
(

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)+𝐷

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)−𝐷
)) +

2𝜇 (−
√|𝜇𝜆|

𝜆
(

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)+𝐷

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)−𝐷
))

−1

                                                    (4.2.18) 

When 𝜇 = 0 , 𝜆 ≠ 0, the rational solution corresponding to case 3 can be expressed as 
              

    𝑢23 = 𝑎0 − 2𝜆 (−
𝐶

𝜆(𝐶𝜉+𝐷)
)                                                                                            (4.2.19) 

 Where  𝜉 = 𝑥 + 𝑦 + 𝑧 − (4𝜆𝜇 −
𝟑

𝟒
) 𝑡 

 

4.3    Example 3: The (3+1)-dimensional generalized Shallow water equation 

We consider the following (3+1)-dimensional generalized Shallow water equation 

                   𝒖𝒙𝒙𝒙𝒚 − 𝟑𝒖𝒙𝒙𝒖𝒚 − 𝟑𝒖𝒙𝒖𝒙𝒚 + 𝒖𝒚𝒕 − 𝒖𝒙𝒛 = 𝟎.                                        (4.3.1) 

The traveling wave variable (2.2) permits us converting Eq.(4.3.1) into the following ODE: 

                                  𝒄 + 𝒖′′′ − 𝟑𝒖′𝟐 − (𝑽 + 𝟏)𝒖′ = 𝟎.                                                (4.3.2) 

Where 𝒄 is a constant of integration. Consider the homogenus balance between  𝒖′′′ and 𝒖′𝟐 in 

(4.3.2), we get 𝒎 = 𝟏. Using the same idea in Sec 3.1, we may choose the solution of Eq.(4.3.2) in 

the form 

                                             𝑼(𝝃) = 𝒂𝟎 + 𝒂𝟏(𝑮′ 𝑮⁄ ) + 𝒃𝟏(𝑭′ 𝑭⁄ ) 

                                                       = 𝒂𝟎 − 𝒂𝟏𝑭 + 𝒃𝟏(𝑭
−𝟏 − 𝑭),                                             (4.3.3) 

Substituting Eq. (4.3.3) into Eq. (4.3.2) , collecting the coefficients of (𝑭)𝒊(𝒊 = 𝟎,±𝟐,±𝟒),and letting 

it be zero,  yields a set of simultaneous algebraic equations for 𝒂𝟎, 𝒂𝟏, 𝒃𝟏 , 𝑽 and 𝒄    

After solving these algebraic equations for  𝒂𝟎, 𝒂𝟏, 𝒃𝟏, 𝑽 and  𝒄 with the help of software Maple, 

yields the following results. 

Case 1:   
         𝒄 = 𝟎 ,   𝑽 = 𝟏𝟓 , 𝒂𝟏 = 𝟒 , 𝒃𝟏 = −𝟐 ,                                                                           (4.3.4) 

where  𝒂𝟎   is arbitrary. 
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Case 2:  

           𝒄 = 𝟎 ,   𝑽 = 𝟑 , 𝒂𝟏 = 𝟐 , 𝒃𝟏 = −𝟐  ,                                                                           (4.3.5)    
where  𝒂𝟎  is arbitrary. 

Substituting Eqs.(4.3.4),(4.3.5) into Eq.(4.3.3) we get two types of the exact solutions of Eq.(4.3.1) 

as follows: 

According to case 1. 

Type 1:  

Class I: 𝒖𝟏𝟏(𝒙, 𝒕) = 𝒂𝟎 − 𝟐𝒕𝒂𝒏𝒉(𝒙 + 𝒚 + 𝒛 − 𝟏𝟓𝒕) − 𝟐 𝒄𝒐𝒕𝒉( 𝒙 + 𝒚 + 𝒛 − 𝟏𝟓𝒕). (4.3.6)                                 

Class II:𝒖𝟏𝟐(𝒙, 𝒕) = 𝒂𝟎 − 𝟐 𝒄𝒐𝒕𝒉( 𝒙 + 𝒚 + 𝒛 − 𝟏𝟓𝒕) − 𝟐 𝒕𝒂𝒏𝒉(𝒙 + 𝒚 + 𝒛 − 𝟏𝟓𝒕).(4.3.7) 

According to case 2. 

Type 2: 

Class I:   𝒖𝟐𝟏(𝒙, 𝒕) = 𝒂𝟎 − 𝟐𝒄𝒐𝒕𝒉( 𝒙 + 𝒚 + 𝒛 − 𝟑𝒕)  .                                             (4.3.8)                                                                                                                                                                                                       

Class II:   𝒖𝟐𝟐(𝒙, 𝒕) = 𝒂𝟎 − 𝟐𝒕𝒂𝒏𝒉(𝒙 + 𝒚 + 𝒛 − 𝟑𝒕).                                             (4.3.9)    

The solutions can be expressed as follows: 

             𝑢(𝝃) = 𝒂𝟎 + 𝒂𝟏 (
𝑮′

𝑮𝟐) + 𝒃𝟏 (
𝑮′

𝑮𝟐)
−𝟏

,                                               (4.3.10) 

Where 𝑎0, 𝑎1, 𝑏1 are unknown constants. We substitute Eq.(4.3.10) into (4.3.2) along with Eq.(3.5) 

to collect all the coefficients with the same power of  (
𝐺′

𝐺2)
𝑖

, (𝑖 = 0,±1,±2,… ). From Eq.(4.3.10) 

each coefficient of  (
𝐺′

𝐺2)
𝑖

 is set to zero, and system of algebraic equations about 𝑎0, 𝑎1, 𝑏1 is attained 

as follows: 

 
The following results are obtained upon solving the above system of algebraic equations using 

Maple 

Case 1:  
 𝒄 = 𝟎 , 𝑽 = −𝟒𝝀𝝁 − 𝟏  , 𝒂𝟎 = 𝒂𝟎  , 𝒂𝟏 = 𝟎 , 𝒃𝟏 = −𝟐𝝁 

Case 2:  
 
 𝒄 = 𝟎 , 𝑽 = −𝟒𝝀𝝁 − 𝟏   , 𝒂𝟎 = 𝒂𝟎  , 𝒂𝟏 = 𝟐𝝀  , 𝒃𝟏 = 𝟎 

Case 3:  
 
 𝒄 = 𝟎 , 𝑽 = −𝟏𝟔𝝀𝝁 − 𝟏 , 𝒂𝟎 = 𝒂𝟎  , 𝒂𝟏 = 𝟐𝝀 , 𝒃𝟏 = −𝟐𝝁 

In Eq.(4.3.10) we substitute the above cases along with ratios (3.6)-(3.8), and three groups of 

solutions for Eq.(4.3.1) exist. 
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Solution 1:  When 𝝁𝝀 > 0, the trigonometric solution corresponding to case 1 can be expressed 

as 

      𝑢11 = 𝑎0 − 2𝜇 (√
𝜇

𝜆
(
𝐶 cos√𝜇𝜆𝜉+𝐷sin√𝜇𝜆𝜉

𝐷 cos√𝜇𝜆𝜉−𝐶 sin√𝜇𝜆𝜉
))

−1

                                                            (4.3.11) 

When 𝝁𝝀 < 0 the hyperbolic solution corresponding to case 1 can be expressed as 

     𝑢12 = 𝑎0 − 2𝜇 (−
√|𝜇𝜆|

𝜆
(

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)+𝐷

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)−𝐷
))

−1

                           (4.3.12) 

When 𝜇 = 0 , 𝜆 ≠ 0, the rational solution corresponding to case 1 can be expressed as 
              
         𝑢13 = 𝑎0                                                                                                                         (4.3.13) 
Where 𝜉 = 𝑥 + 𝑦 + 𝑧 − (−4𝜆𝜇 − 1)𝑡 
 

Solution 2: 
When 𝝁𝝀 > 0, the trigonometric solution corresponding to case 2 can be expressed as 

        𝑢21 = 𝑎0 + 2𝜆 (√
𝜇

𝜆
(
𝐶 cos√𝜇𝜆𝜉+𝐷 sin√𝜇𝜆𝜉

𝐷 cos√𝜇𝜆𝜉−𝐶 sin√𝜇𝜆𝜉
))                                                         (4.3.14) 

When 𝝁𝝀 < 0 the hyperbolic solution corresponding to case 2 can be expressed as 

     𝑢22 = 𝑎0 + 2𝜆 (−
√|𝜇𝜆|

𝜆
(

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)+𝐷

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)−𝐷
))                            (4.3.15) 

When 𝜇 = 0 , 𝜆 ≠ 0, the rational solution corresponding to case 2 can be expressed as 
              

      𝑢23 = 𝑎0 + 2𝜆 (−
𝐶

𝜆(𝐶𝜉+𝐷)
)                                                                                  (4.3.16) 

 Where  𝜉 = 𝑥 + 𝑦 + 𝑧 − (−4𝜆𝜇 − 1)𝑡 
 

Solution 3: 
When 𝝁𝝀 > 0, the trigonometric solution corresponding to case 3 can be expressed as 

  𝑢31 = 𝑎0 + 2𝜆 (√
𝜇

𝜆
(
𝐶 cos√𝜇𝜆𝜉+𝐷 sin√𝜇𝜆𝜉

𝐷 cos√𝜇𝜆𝜉−𝐶 sin√𝜇𝜆𝜉
)) − 2𝜇 (√

𝜇

𝜆
(
𝐶 cos√𝜇𝜆𝜉+𝐷 sin√𝜇𝜆𝜉

𝐷 cos√𝜇𝜆𝜉−𝐶 sin√𝜇𝜆𝜉
))

−1

(4.3.17) 

When 𝝁𝝀 < 0 the hyperbolic solution corresponding to case 3 can be expressed as 

𝑢22 = 𝑎0 + 2𝜆 (−
√|𝜇𝜆|

𝜆
(

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)+𝐷

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)−𝐷
)) −

2𝜇 (−
√|𝜇𝜆|

𝜆
(

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)+𝐷

𝐶 sinh(2√|𝜇𝜆| 𝜉)+𝐶 cosh(2√|𝜇𝜆| 𝜉)−𝐷
))

−1

                                                     (4.3.18) 

When 𝜇 = 0 , 𝜆 ≠ 0, the rational solution corresponding to case 3 can be expressed as 
              

   𝑢23 = 𝑎0 + 2𝜆 (−
𝐶

𝜆(𝐶𝜉+𝐷)
)                                                                                          (4.3.19) 
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 Where  𝜉 = 𝑥 + 𝑦 + 𝑧 − (−16𝜆𝜇 − 1)𝑡 

5. Geometry of the exact solution: 

     The geometry of the exact solutions of various equations has been intensely studied by different 

authors in various ways[19-24]. In this section, we are going to investigate the exact solution and 

the numerical solutions in the 3-dimensional space-time known as Lorentz-Minkowski space ℝ1
3. 

The main reason for choosing to work in this space is that the Lorentz-Minkowski space plays an 

important role in both special relativity and general relativity with space coordinates and time 

coordinates. 

First, we need to recall some basic facts and notations in ℝ1
3 [25-29]. 

Let  𝑿 = (𝒙𝟏, 𝒙𝟐, 𝒙𝟑)  and  𝒀 = (𝒚𝟏, 𝒚𝟐, 𝒚𝟑) be any two vector fields in  ℝ1
3. Then inner product of  𝑋  and  

𝑌  is defined by  

            〈𝑿, 𝒀〉 = 𝒙𝟏𝒚𝟏 + 𝒙𝟐𝒚𝟐 − 𝒙𝟑𝒚𝟑.                                                                                     (5.1) 

Note that a vector field  𝑋 is called  

(i) a timelike vector if  〈𝑿, 𝑿〉 < 𝟎 , 

(ii) a spacelike vector if  〈𝑿, 𝑿〉 > 𝟎 , 

(iii) a lightlike (or degenerate) vector if 〈𝑿,𝑿〉 = 𝟎 and 𝑿 ≠ 𝟎. 

Thus, the inner product in ℝ1
3  splits each vector field into three categories, namely  

(i) spacelike, (ii) timelike, and (iii) lightlike (degenerate) vectors. The category is known as causal 

character of a vector. The set of all lightlike vectors is called null cone. Furthermore, the norm of a 

vector 𝑋 is defined by its causal character as follows: 

(i) ‖𝑋‖ = √〈𝑋, 𝑋〉  if  𝑋 is a spacelike vector, 

(ii) ‖𝑋‖ = −√〈𝑋, 𝑋〉  if  𝑋 is a timelike vector. 

Let  𝑋 be a unit timelike vector and 𝑒 = (0,0,1) in ℝ1
3. Then 𝑋 is called  

(i) a timelike future pointing vector if 〈𝑋, 𝑒〉 > 0, 

(ii) a timelike past pointing vector if 〈𝑋, 𝑒〉 < 0. 

Now, let  𝑟(𝑥, 𝑡) be a surface in ℝ1
3. Then the normal vector 𝑁 at a point in 𝑟(𝑥, 𝑡) is given by 

                  𝑵 =
𝒓𝒙 ∧ 𝒓𝒕

‖𝒓𝒙 ∧ 𝒓𝒕‖
 ,                                                                                                            (5.2) 

Where ∧ denotes the wedge product in  ℝ1
3. A surface is called  

(i) a timelike surface if  𝑁 is spacelike, 

(ii) a spacelike surface if  𝑁 is timelike, 

(iii) a lightlike (or degenerate) surface if  𝑁 is lightlike. 

We note that a point is called regular if  𝑁 ≠ 0 and singular if  𝑁 = 0. 

Now, let us consider a surface given by  

UNDER PEER REVIEW



14 
 

                             𝒓(𝒙, 𝒕) = (𝒙, 𝒕, 𝒖(𝒙, 𝒕)),                                                                               (5.3) 

Where 𝒖(𝒙, 𝒕) is the exact solution of the (3+1)-dimensional Zakhrov-Kuznetsov (ZK) equation, the 

(3+1)-dimensional Potential-YTSF Equation and the (3+1)-dimensional generalized Shallow water 

equation given by (4.1.7) , (4.2.8) , (4.3.8)  respectively 

In view of (5.2), the normal vector field of  𝒓(𝒙, 𝒕) becomes 

𝑵(𝒙, 𝒕) = −
𝟔

√𝟏+
𝟑𝟔

𝒂𝟐 𝐜𝐨𝐬𝐡(𝒂𝒕𝒂𝟎−𝒙−𝒚−𝒛)
𝟒+

𝟑𝟔𝒂𝟎
𝟐

𝐜𝐨𝐬𝐡(𝒂𝒕𝒂𝟎−𝒙−𝒚−𝒛)
𝟒  𝐚𝐜𝐨𝐬𝐡(𝒂𝒕𝒂𝟎−𝒙−𝒚−𝒛)𝟐

 𝒆𝒙 +

𝟔𝒂𝟎

√𝟏+
𝟑𝟔

𝒂𝟐 𝐜𝐨𝐬𝐡(𝒂𝒕𝒂𝟎−𝒙−𝒚−𝒛)
𝟒+

𝟑𝟔𝒂𝟎
𝟐

𝐜𝐨𝐬𝐡(𝒂𝒕𝒂𝟎−𝒙−𝒚−𝒛)
𝟒  𝐜𝐨𝐬𝐡(𝒂𝒕𝒂𝟎−𝒙−𝒚−𝒛)𝟐

 𝒆𝒚 +
𝟏

√𝟏+
𝟑𝟔

𝒂𝟐 𝐜𝐨𝐬𝐡(𝒂𝒕𝒂𝟎−𝒙−𝒚−𝒛)
𝟒+

𝟑𝟔𝒂𝟎
𝟐

𝐜𝐨𝐬𝐡(𝒂𝒕𝒂𝟎−𝒙−𝒚−𝒛)
𝟒

 𝒆𝒛                                                                        

(5.4) 

𝑵(𝒙, 𝒕) =
𝟒

√
𝟒+

𝟑𝟕𝟕

𝐜𝐨𝐬𝐡(𝒙+𝒚+𝒛+
𝟏𝟗
𝟒

𝒕)
𝟒
(𝐜𝐨𝐬𝐡(𝒙+𝒚+𝒛+

𝟏𝟗
𝟒

𝒕)
𝟐
−𝟏)

𝟐  𝐜𝐨𝐬𝐡(𝒙+𝒚+𝒛+
𝟏𝟗

𝟒
𝒕)

𝟐
(𝐜𝐨𝐬𝐡(𝒙+𝒚+𝒛+

𝟏𝟗

𝟒
𝒕)

𝟐
−𝟏) 

𝒆𝒙 +

𝟏𝟗

√
𝟒+

𝟑𝟕𝟕

𝐜𝐨𝐬𝐡(𝒙+𝒚+𝒛+
𝟏𝟗
𝟒

𝒕)
𝟒
(𝐜𝐨𝐬𝐡(𝒙+𝒚+𝒛+

𝟏𝟗
𝟒

𝒕)
𝟐
−𝟏)

𝟐  𝐜𝐨𝐬𝐡(𝒙+𝒚+𝒛+
𝟏𝟗

𝟒
𝒕)

𝟐
(𝐜𝐨𝐬𝐡(𝒙+𝒚+𝒛+

𝟏𝟗

𝟒
𝒕)

𝟐
−𝟏)

𝒆𝒚 +

𝟐

√
𝟒+

𝟑𝟕𝟕

𝐜𝐨𝐬𝐡(𝒙+𝒚+𝒛+
𝟏𝟗
𝟒

𝒕)
𝟒
(𝐜𝐨𝐬𝐡(𝒙+𝒚+𝒛+

𝟏𝟗
𝟒

𝒕)
𝟐
−𝟏)

𝟐 

𝒆𝒛                                                                                         (5.5) 

 𝑵(𝒙, 𝒕) = −
𝟐

√𝟏+
𝟒𝟎

(𝐜𝐨𝐬𝐡(−𝒙−𝒚−𝒛+𝟑𝒕)𝟐−𝟏)
𝟐   (𝐜𝐨𝐬𝐡(−𝒙−𝒚−𝒛+𝟑𝒕)𝟐−𝟏)

 𝒆𝒙 +

𝟔

√𝟏+
𝟒𝟎

(𝐜𝐨𝐬𝐡(−𝒙−𝒚−𝒛+𝟑𝒕)𝟐−𝟏)
𝟐   (𝐜𝐨𝐬𝐡(−𝒙−𝒚−𝒛+𝟑𝒕)𝟐−𝟏)

 𝒆𝒚 +
𝟏

√𝟏+
𝟒𝟎

(𝐜𝐨𝐬𝐡(−𝒙−𝒚−𝒛+𝟑𝒕)𝟐−𝟏)
𝟐 

 𝒆𝒛                   (5.6) 

Form (5.4), (5.5), (5.6) it is clear that  𝒓(𝒙, 𝒕) is a regular surface, that is, every point of it is a regular 

point. 

6. Gaussian curvature and Mean curvature of node points 
      Another important fact for a surface is to compute the Gaussian curvature and Mean curvature 

which are an intrinsic character of it. The Gaussian curvature is the determinant of the shape 

operator. For a surface 𝒓(𝒙, 𝒕), we shall apply the following useful way to compute the Gaussian 

curvature: 

Consider 〈𝑵,𝑵〉 = 𝜺‖𝑵‖, where  𝜺 = ∓𝟏. Let us define 

𝑬 = 〈𝒓𝒙, 𝒓𝒙〉,         𝑭 = 〈𝒓𝒙, 𝒓𝒕〉,              𝑮 = 〈𝒓𝒕, 𝒓𝒕〉                                                                    
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and                                                                                                                                                    (6.1) 

𝒆 = 〈𝒖𝒙𝒙, 𝑵〉,                 𝒇 = 〈𝒖𝒙𝒕, 𝑵〉,              𝒈 = 〈𝒖𝒕𝒕, 𝑵〉.  

Then the Gaussian curvature 𝐾(𝑝) at a point   𝑝 of a surface satisfies 

                         𝑲(𝒑) = 𝜺
𝒆𝒈−𝒇𝟐

𝑬𝑮−𝑭𝟐 .                                                                                                       (6.2) 

We note that 

(i) 𝑲(𝒑) > 𝟎 means that the surface 𝒓(𝒙, 𝒕) is shaped like an elliptic paraboloid near  𝒑 . In 

this case, 𝒑 is called an elliptic point. 

(ii) 𝑲(𝒑) < 𝟎 means that the surface 𝒓(𝒙, 𝒕) is shaped like a hyperbolic paraboloid near  𝒑. 

In this case, 𝒑 is called a hyperbolic point. 

(iii) 𝑲(𝒑) = 𝟎 means that the surface 𝒓(𝒙, 𝒕) is shaped like a parabolic cylinder or a plane 

near  𝒑 . In this case, 𝒑 is called a parabolic point. 

Now, let us consider the surface given in (5.3). Form (6.1) and (6.2), by a straightforward 

computation, we get  𝑲 = 𝟎  for equations (4.1.7) ,(4.2.8) ,(4.3.8)  . 

            Another important kind of curvatures is mean curvature which measures the surface tension 

from the surrounding space at a point. The mean curvature is a trace of the second fundamental 

form. For a surface  𝒓(𝒙, 𝒕), we shall apply the following useful way to compute the mean curvature 

𝑯(𝒑): 

                       𝑯(𝒑) = 𝜺
𝟏

𝟐

𝒆𝑮−𝟐𝒇𝑭+𝒈𝑬

𝑬𝑮−𝑭𝟐  .                                                                         (6.3)    

If   𝑯(𝒑) = 𝟎  for all points of  𝒓(𝒙, 𝒕),  then the surface is called minimal. Furthermore, if the value 

of the mean curvature at a point  𝒑  receives at least a possible amount of tension from the 

surrounding space, then  𝒑  is called ideal point. That is, if a point in a surface is affected as little as 

possible from the external influence, then it becomes ideal.   

From (6.3), for equation (4.1.7) we obtain 

𝑯 =
𝟔 𝐬𝐢𝐧𝐡(𝒂𝒕𝒂𝟎−𝒙−𝒚−𝒛) 𝒂𝐜𝐨𝐬𝐡(𝒂𝒕𝒂𝟎−𝒙−𝒚−𝒛)(𝒂𝟐𝒂𝟎

𝟐+𝟏)

√
𝐜𝐨𝐬𝐡(𝒂𝒕𝒂𝟎−𝒙−𝒚−𝒛)

𝟒
+𝟑𝟔𝒂𝟎

𝟐𝒂𝟐+𝟑𝟔

𝒂𝟐 𝐜𝐨𝐬𝐡(𝒂𝒕𝒂𝟎−𝒙−𝒚−𝒛)
𝟒 +( 𝐚𝟐𝐜𝐨𝐬𝐡(𝒂𝒕𝒂𝟎−𝒙−𝒚−𝒛)𝟒+𝟑𝟔𝒂𝟎

𝟐𝒂𝟐+𝟑𝟔)

  

From (6.3), for equation (4.2.8)   we obtain 

 𝑯 = (𝟑𝟕𝟕 𝐬𝐢𝐧𝐡 (𝒙 + 𝒚 + 𝒛 +
𝟏𝟗

𝟒
𝒕) (𝟐 𝐜𝐨𝐬𝐡 (𝒙 + 𝒚 + 𝒛 +

𝟏𝟗

𝟒
𝒕)

𝟐

− 𝟏) 𝐜𝐨𝐬𝐡 (𝒙 + 𝒚 + 𝒛 +
𝟏𝟗

𝟒
𝒕)) / 
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[
 
 
 
 
 
 
 
 

 

√𝟒 𝐜𝐨𝐬𝐡 (𝒙 + 𝒚 + 𝒛 +
𝟏𝟗

𝟒
𝒕)

𝟖

− 𝟖𝐜𝐨𝐬𝐡 (𝒙 + 𝒚 + 𝒛 +
𝟏𝟗

𝟒
𝒕)

𝟔

+𝟒𝐜𝐨𝐬𝐡 (𝒙 + 𝒚 + 𝒛 +
𝟏𝟗

𝟒
𝒕)

𝟒

+ 𝟑𝟕𝟕 .

(𝟒 𝐜𝐨𝐬𝐡 (𝒙 + 𝒚 + 𝒛 +
𝟏𝟗

𝟒
𝒕)

𝟖

− 𝟖𝐜𝐨𝐬𝐡 (𝒙 + 𝒚 + 𝒛 +
𝟏𝟗

𝟒
𝒕)

𝟔

+𝟒𝐜𝐨𝐬𝐡 (𝒙 + 𝒚 + 𝒛 +
𝟏𝟗

𝟒
𝒕)

𝟒

+ 𝟑𝟕𝟕)

/(√𝐜𝐨𝐬𝐡 (𝒙 + 𝒚 + 𝒛 +
𝟏𝟗

𝟒
𝒕)

𝟒

(𝐜𝐨𝐬𝐡 (𝒙 + 𝒚 + 𝒛 +
𝟏𝟗

𝟒
𝒕)

𝟐

− 𝟏)

𝟐

) 

]
 
 
 
 
 
 
 
 

 

From (6.3), for equation (4.3.8)   we obtain 

 𝑯 =
𝟐𝟎 𝐜𝐨𝐬𝐡(−𝒙−𝒚−𝒛+𝟑𝒕)𝐬𝐢𝐧𝐡(−𝒙−𝒚−𝒛+𝟑𝒕)

√
𝐜𝐨𝐬𝐡(−𝒙−𝒚−𝒛+𝟑𝒕)𝟒−𝟐𝐜𝐨𝐬𝐡(−𝒙−𝒚−𝒛+𝟑𝒕)𝟐+𝟒𝟏

(𝐜𝐨𝐬𝐡(−𝒙−𝒚−𝒛+𝟑𝒕)𝟐−𝟏)
𝟐  (𝐜𝐨𝐬𝐡(−𝒙−𝒚−𝒛+𝟑𝒕)𝟒−𝟐𝐜𝐨𝐬𝐡(−𝒙−𝒚−𝒛+𝟑𝒕)𝟐+𝟒𝟏) 

 

7. Numerical solutions for the exact solutions for  the  above NPD equations: 
      We can study the behavior of the travelling wave solutions which obtained above by illustrating 

the following figures: 

 

                    
Figure 1.The plot of the solution(4.1.7)    Figure 2.The plot of the solution(4.1.9) 

When 𝒂𝟎 = 𝟎. 𝟑,𝒂 = 𝟏 , 𝒚 = 𝟎 , 𝒛 = 𝟎                      when 𝒂𝟎 = 𝟎. 𝟑,𝒂 = 𝟏 , 𝒚 = 𝟎 , 𝒛 = 𝟎 
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Figure 3.The plot of the solution(4.2.7)  Figure 4.The plot of the solution(4.2.8) 

When 𝒂𝟎 = 𝟎. 𝟑 , 𝒚 = 𝟎, 𝒛 = 𝟎                        when 𝒂𝟎 = −𝟎.𝟓 , 𝒚 = 𝟎, 𝒛 = 𝟎  

 

       

Figure 5.The plot of the solution(4.3.6)  Figure 6.The plot of the solution(4.3.9) 

When 𝒂𝟎 = −𝟎. 𝟓 , 𝒚 = 𝟎, 𝒛 = 𝟎                                   when 𝒂𝟎 = 𝟎. 𝟑 , 𝒚 = 𝟎, 𝒛 = 𝟎 

7. Conclusions: 
      In this article, the variation of the (𝑮′ 𝑮⁄ )-expansion method is developed , by knowing the 

advantage solution of the coupled Riccati equation and the  (
𝑮′

𝑮𝟐)-expansion method,  

 are used to find new exact solutions of the (3+1)-dimensional Zakhrov-Kuznetsov equation , the 

(3+1)-dimensional Potential-YTSF Equation and the (3+1)-dimensional generalized Shallow water 

equation, then we can find its geometrical properties by calculating its Gaussian Curvature and 

Mean curvature . Our results show that the methods can be used for solving many nonlinear partial 

differential equations in mathematical physics. 
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