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 4 

Abstract: The development of higher education is an extremely important issue. It is the source 5 

of the country's technological innovation and the realization of innovation and development, 6 

especially in China, where higher education is still at an exploratory stage. Aiming at the 7 

shortcoming that the classical DGM (1,1) model accumulates the raw data series with the 8 

weight of constant 1, this paper proposes an adaptive variable weight accumulation 9 

optimization DGM (1,1) model, abbreviated as AVWA-DGM (1,1) model. Taking the 10 

enrollment numbers of postgraduate, master degree, undergraduate and junior college student 11 

and undergraduates students in China as numerical examples, the DGM (1,1) model and 12 

AVWA-DGM (1,1) model are established to simulate and predict respectively, and the 13 

weighted coefficients of AVWA-DGM (1,1) model are optimized and solved by particle swarm 14 

algorithm. The results show that the AVWA-DGM(1,1) model has higher simulation and 15 

prediction accuracy than the classical DGM(1,1) model in all numerical examples. The validity 16 

and practicability of the AVWA-DGM(1,1) model are verified. 17 

 18 
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 21 

1 Introduction 22 

 23 
The development of higher education is a concentrated expression of national talent 24 

competition and scientific and technological competition, and is the core element for 25 

implementing innovation-driven development and building an innovative country. Since 26 

China's higher education resumed college entrance examination enrollment and postgraduate 27 

education enrollment in 1978, China's higher education has experienced a series of 28 

extraordinary developments, and at the same time has harvested many achievements and made 29 

significant contributions to the development of all aspects of China. According to the data of 30 

the Ministry of Education of China, The enrollment scale of undergraduate and junior college 31 

students has reached 7.909 million in 2018. According to the National Graduate Enrollment 32 

Survey Report of 2019, the number of master degree students in the national masters reached 33 

2.9 million in 2019, an increase of a record high. Facing the rapid development of higher 34 

education in China, scientifically and reasonably predicting the enrollment scale of higher 35 

education in the future will further benefit the formulation of higher education system and 36 

resource allocation in China, and provide enlightenment for the future development of the 37 

country. 38 

The impact of changes in the scale of education on the development of national education is of 39 

universal significance. Therefore, many scholars at home and abroad have studied and 40 

discussed this and proposed many prediction models. Such as support vector machine [1, 2, 3], 41 



 

 

neural network [4, 5], time series analysis [6, 7, 8], gray prediction model [9, 10, 11, 42 

12].Among these prediction models, the gray model has received extensive attention because of 43 

its simple calculation and less sample data. 44 

The grey system theory was first proposed by Professor Deng in 1982 [13], which plays a 45 

crucial role in dealing with the "small sample" and "poor information" issues. Among them, the 46 

grey prediction model is the core part of the grey theory. In the predictive model, the GM (1,1) 47 

model is the most classic. At present, the grey prediction model and its improved model have 48 

been widely used in various aspects of society, such as energy [14,15], agriculture [16], 49 

technology [17], environment [18] and medical [19].In view of this, the majority of experts and 50 

scholars are constantly improving and optimizing it. For example, Wu et al. [20] proposed a 51 

fractional-order grey prediction model, which optimizes the defect that the first-order 52 

accumulation of the grey model can only be an integer. Cui et al. [21] proposed a new grey 53 

prediction model and applied it to predict the yield of the concave soil and the CSI 300 index. 54 

Wei et al. [22, 23] studied the GMP (1, 1, N) model with polynomial. Chen and Yu [24] 55 

proposed a method to improve the grey action quantity in the NGM (1,1, k, c) model with 56 

bt c . Next, Qian et al. [25] proposed a new GM (1,1, tα) model with a gray action quantity of 57 

bt c   and used it to predict ground settlement. In recent years, the GM (1, N) model and its 58 

promotion model have also received extensive attention. For example, Tien [26, 27], Zeng et al. 59 

[28, 29], Wang et al. [30], Ma [31, 32] et al. However, when the above model performs 60 

first-order accumulation processing on the raw data, the weight coefficient of the raw data is 61 

constant 1. In response to this problem, some scholars [33, 34, 35, 36] improve the prediction 62 

accuracy of the model by establishing different buffer operators to process the raw data. Some 63 

scholars [37, 38, 39] make the raw data smoother based on different data transformation 64 

techniques. The effect is also significant. 65 

Based on the above literature review, this paper proposes a discrete grey prediction model with 66 

adaptive variable weight accumulation, which is abbreviated as AVWA-DGM (1,1) model, and 67 

applies the enrollment numbers of postgraduate students, master degree students, 68 

undergraduate and junior college students and undergraduate students in China as example data 69 

to make simulation and prediction. The calculation results show that the AVWA-DGM(1,1) 70 

model is superior to the classical DGM(1,1) model.  71 

 72 

2 Traditional DGM (1,1) model 73 

 74 

Let               0 0 0 01 , 2 , , X x x x n  as a non-negative raw sequence. For satisfying a 75 

smooth conditional sequence, a grey differential equation can be established. After a 1th-order 76 

accumulation,               1 1 1 11 , 2 , , X x x x n  is generated. Call  1X  the 1th-order 77 

accumulation generating sequence(1 AGO ) of  0X , where 78 
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Let non-negative sequence  0X  and 1th-order accumulation generating sequence  1X are 79 



 

 

described above, and call  80 

       1 1
1 2ˆ ˆ1 ,x k x k     (2)

the DGM(1,1) model, or the discrete form of GM(1,1) model [40]. 81 
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Then the least squares estimation parameters  1 2
ˆ= ,   T

 of the discrete grey prediction 83 

model        1 1
1 2ˆ ˆ1    x k x k  satisfies 84 
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  (4)

Let        1 0ˆ 1 1x x  be the recursive function 85 
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3 Adaptive Variable Weight Accumulation Optimized AVWA-DGM(1,1) Model 87 

 88 

3.1 Transformation of the raw data sequence 89 

 90 

Since a developing system is often disturbed by the impact of changes in the external 91 

environment, this leads to the volatility of a certain characteristic data sequence describing the 92 

development of the system.The accuracy of prediction will be greatly affected when grey 93 

modeling is carried out on such data to predict the future change trend.Common grey prediction 94 

models are the GM (1, 1) model and the DGM (1, 1) model.These traditional grey prediction 95 

models generally use equal weight accumulation when performing 1th-order accumulation to 96 

generate 1th-order accumulation sequence (1-AGO), namely, the weight coefficients of each 97 

raw data are fixed constants 1.This accumulation method cannot fully exploit the potential 98 

information of the raw data sequence, so that the prediction result of the model is not 99 

good.Based on this, this paper proposes a variable weight accumulation method, which uses 100 

this accumulation method to generate a variable weight accumulation generation sequence 101 

(1-AVWAGO).When using this sequence for grey modeling, the variation trend of the raw data 102 



 

 

sequence is adjusted by adding a weight coefficient to each modeling data, so as to weaken the 103 

randomness of the raw data and improve the fitting and prediction accuracy of the model. 104 

Definition 1. Let the raw observation data sequence be               0 0 0 01 , 2 , , n      105 

and the adjustment weight coefficient be 106 

 1 2= , , , , 0, 1, 2, , .n k k n         (7)

Performing a linear weighted transform process on the raw data sequence, and obtaining a 107 

weighted new data sequence of               0 0 0 01 , 2 , , n     , where 108 

         0 0 , 1, 2, , .kk k k n      (8)

3.2 Establish an optimized AVWA-DGM (1,1) model 109 

 110 

Let               0 0 0 01 , 2 , , X x x x n  be the raw observation data sequence, 111 

 1 2= , , , , 0, 1, 2, ,n k k n         be the weight coefficient, and perform linear 112 

weighted transformation on  0X  according to the above formula (8) to obtain 113 

              0 0 0 01 , 2 , ,Y y y y n  , where 114 

         0 0 , 1, 2, , .ky k x k k n    (9)

Performing a 1th-order accumulation on the data sequence  0Y after the weighted 115 

transformation to obtain a weighted 1th-order accumulation sequence 116 

              1 1 1 1= 1 , 2 , ,Y y y y n , where 117 
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The data sequence  1Y  after the weighted transformation process is used to establish the 118 

DGM(1,1) model as described above. 119 

       1 1
1 2ˆ ˆ1 .y k y k     (11)

 120 

 121 

Let  1 2ˆ= ,
T    be the parameters, if 122 
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 123 

Then the least squares estimation parameters  1 2ˆ= ,
T    of the discrete grey prediction 124 

model        1 1
1 2ˆ ˆ1y k y k     satisfies 125 

  1
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  (13) 

Let        1 0ˆ 1 1y y  be the recursive function 126 
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Obtained after subtraction 127 
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After the reduction,    0ŷ k  is obtained, and then the predicted value of the model can be 128 

calculated. 129 
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Where n  represents the number of data used for modeling. 130 

 131 

3.3 Determination of the optimal weighting coefficient 132 

 133 

In order to verify the accuracy of the model and determine the weight coefficients of the 134 

weighted transformed AVWA-DGM(1,1) model, absolute percentage error (APE) and mean 135 

absolute percentage error (MAPE) are defined. The specific expression are as follows 136 
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N represents the number of sample data used for modeling.As can be seen from the above 137 

formula(17) and (18), when 1,2, ,k N  ,  APE k  is the absolute percentage error of the 138 

fitted data. When 1, 2, ,k N N n    ,  APE k  is the absolute percentage error of the 139 

test data. When 1,l m N  , MAPE  represents the mean absolute percentage error of the 140 

simulated data. When 1,l N m n   , MAPE  represents the mean absolute percentage 141 

error of the test data. When 1,l m n  , MAPE  represents the mean absolute percentage 142 

error of the overall data. 143 

From the modeling process, the unknown parameters existing in the AVWA-DGM(1,1) model 144 

are  1 2= , , , , 0, 1, 2, ,n k k n        .When the weight coefficients 145 

 1 2= , , , , 0, 1, 2, ,n k k n         are determined, the parameters  1 2ˆ= ,
T    can 146 

be solved by the least squares method.Therefore, according to the principle of minimum error, 147 

choose  1 2= , , , , 0, 1, 2, ,n k k n         as the parameters of the optimized MAPE, 148 

and establish the following mathematical optimization model. 149 
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(19)

Considering the complexity of equation (19), solving the optimal 150 

 1 2= , , , , 0, 1, 2, ,n k k n         are very difficult. Based on this, this paper uses the 151 

particle swarm optimization algorithm to find the optimal 152 

 1 2= , , , , 0, 1, 2, ,n k k n         value. 153 

The Particle Swarm Optimization (PSO) algorithm was first proposed by Kennedy and 154 

Eberhart [41]. The algorithm is based on the simulation of the social activities of the flocks, and 155 

proposes a global random search algorithm based on swarm intelligence by simulating the 156 

behavior of the flocks interacting with each other.The particle swarm algorithm first randomly 157 

initializes the particle swarm in the solution space and initializes the velocity and position.The 158 



 

 

dimension of the solution space is determined by the number of variables to be optimized.Each 159 

position of the particle in the search space is a solution to the problem to be optimized, and each 160 

particle is given a velocity, which determines the flight distance and direction of the particle, so 161 

that the particle can fly to the solution space and land on the optimal solution.Each particle in 162 

the particle swarm is determined by a fitness function to determine the fitness value to 163 

determine the pros and cons of the current position, while the particles endowed with memory 164 

function record the current optimal position searched.Through iterative optimization, each 165 

particle in the group keeps track of two extremes case.Where, the individual extremum is 166 

recorded in pbest , the group extremum is recorded in gbest , and the position and flight 167 

speed of the particle in the solution space are updated according to the two records.The particle 168 

swarm then follows the current optimal particle and continues searching in the solution 169 

space.The steps of the algorithm are specifically shown below.  170 

 171 

Step1: Initialize the population particle number M , particle dimension n , maximum 172 

iteration number maxk , learning factor 1 2,l l , inertia weight maximum value maxw  and 173 

minimum value minw ; 174 

Step2: Initialize the population particle maximum position 175 

 1, 2, ,, , ,max max max n max     , minimum position  1, 2, ,, , ,min min min n min     , 176 

maximum speed  1, 2, ,, , ,max max max n maxv v v v  , minimum speed 177 

 1, 2, ,, , ,min min min n minv v v v  , particle individual optimal position 1
ipbest  and optimal value 178 

1
ip , and particle group global optimal position 1gbest  and optimal value 1g ; 179 

Step3: calculating the fitness value  ,1 ,2 ,, , ,k k k
i i i nMAPE     of each particle in the 180 

particle group; 181 

Step 4: Compare each particle fitness value  ,1 ,2 ,, , ,k k k
i i i nMAPE     with the 182 

individual extreme value k
ip  and the particle group global optimal value kg , respectively. If 183 

 ,1 ,2 ,, , ,k k k
i i i

k
inMAP pE     , replace k

ip  with  ,1 ,2 ,, , ,k k k
i i i nMAPE     and replace 184 

the particle's individual optimal position k
ipbest . If  ,1 ,2 ,, , ,k k k

i i i
k

nMAP gE     , replace 185 

kg  with  ,1 ,2 ,, , ,k k k
i i i nMAPE     and replace the global optimal position kgbest  of the 186 

particle group; 187 

Step 5: Calculate the dynamic inertia weight w  according to the following formula; 188 

  / .max max min maxw w k w w k    189 



 

 

Step6: Update the velocity value ,
k
i jv  and the position ,

k
i j  according to the following 190 

iteration formula and perform boundary condition processing, where 1,2, ,i M  , 191 

1,2, ,j n  ; 192 
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Step7: Judge whether the algorithm termination condition is satisfied: if yes, end the 193 
algorithm and output the optimization result: otherwise return to Step3. 194 

Compared with the classical DGM (1,1) model, the AVWA-DGM (1,1) model proposed in this 195 

paper, namely the adaptive variable weight accumulation DGM (1,1) model, is more widely 196 

applicable.After combining the PSO algorithm, the classical DGM (1,1) model is optimized 197 

with a fixed weight for the first-order accumulation process, and the adaptive change of the 198 

weighting coefficients is realized.The accumulation of the raw data sequence with adaptive 199 

weights is more likely to exploit the underlying internal information of the raw data sequence 200 

than the fixed weight accumulation of the raw data sequence. Moreover, after the raw data 201 

sequence is accumulated by using the adaptive weights method, the 1th-order accumulation 202 

generation sequence can be made to conform to the characteristic requirements of the data of 203 

the DGM (1, 1) model. 204 

 205 

4 Application of AVWA-DGM(1,1) model 206 

 207 
This part will show the accuracy of the adaptive weighted optimized AVWA-DGM(1,1) model 208 

under actual data.The modeling results were compared with the classical DGM (1, 1) 209 

model.Where, the weighting coefficient  1 2= , , , , 0, 1, 2, ,n k k n         of the 210 

AVWA-DGM (1,1) model is determined by the PSO. The article uses the actual enrollment of 211 

Chinese higher education from the China Statistical Yearbook [42] 2005-2016 as an example to 212 

illustrate the superiority of the AVWA-DGM (1,1) model. This paper divides the data into two 213 

parts, namely, the modeling data from 2005 to 2011 and the test data of the model from 2012 to 214 

2016. The raw data is shown in Table 1. 215 

 216 
Table 1 Actual enrollment of Chinese higher education in 2005-2016 217 

Year postgraduate master degree 
undergraduate  

and junior college 
undergraduate 

2005 36.4831 31.0037 504.5 236.3647 

2006 39.7925 34.197 546.1 253.0854 

2007 41.8612 36.059 565.9 282.0971 

2008 44.6422 38.6658 607.7 297.0601 

2009 51.0953 44.9042 639.5 326.1081 



 

 

2010 53.8177 47.4415 661.8 351.2563 

2011 56.0168 49.4609 681.5 356.6411 

     

2012 58.9673 52.1303 688.8 374.0574 

2013 61.1381 54.0919 699.8 381.4331 

2014 62.1323 54.8689 721.4 383.4152 

2015 64.5055 57.0639 737.8 389.4184 

2016 66.7064 58.9812 748.6 405.4007 

 218 

4.1 Number of postgraduates enrolled in China 219 

 220 

This section combines the particle swarm optimization algorithm and the actual data provided 221 

by the China Statistical Yearbook to study the number of postgraduates enrollment scale in 222 

China by establishing the DGM (1,1) model and the AVWA-DGM (1,1) model.The final 223 

calculation results and weighting coefficients (both reserved for four decimal places) are given 224 

in Table 2, Table 3 and Fig.1, Fig.2.It can be seen from Table 2 that when the AVWA-DGM (1,1) 225 

model is accumulated, the weights of the raw data are not all constant 1, but the corresponding 226 

optimal weight coefficients are given according to the characteristics of the raw data sequence 227 

itself. As can be seen from Table 3 and Fig.1, both grey models reflect the changing trend of the 228 

number of postgraduates enrolled in China. As can be seen from Table 3, the simulated MAPE 229 

of the DGM (1,1) model, the MAPE of the test data and the overall MAPE were 1.6791%, 230 

13.7769% and 6.7199%, respectively, while the AVWA-DGM (1,1) was 133.53 10 %, 0.3485% 231 
and 0.1452%, respectively.These results indicate that the AVWA-DGM (1,1) model is more 232 

accurate than the DGM (1,1) model in predicting the trend of postgraduates enrollment in 233 

China.  234 

 235 
Table 2 Weighting coefficients of the two models 236 

Model Weight coefficient 

DGM(1,1)  1,1,1,1,1,1,1  

AVWA-DGM(1,1)  1.0000 1.2376 1.2123 1.1714 1.0547 1.0318 1.0215， ， ， ， ， ，  

 237 
Table 3 Calculation results and errors of the two models 238 

Year Raw data DGM(1,1) APE(%) AVWA-DGM(1,1) APE(%) 

2005 36.4831 36.4831 0.0000 36.4831 0.0000 

2006 39.7925 39.5405 0.6333 39.7925 0.0000 

2007 41.8612 42.5517 1.6494 41.8612 0.0000 

2008 44.6422 45.7921 2.5758 44.6422 0.0000 

2009 51.0953 49.2793 3.5541 51.0953 0.0000 

2010 53.8177 53.0321 1.4597 53.8177 0.0000 

2011 56.0168 57.0707 1.8814 56.0168 0.0000 

      

2012 58.9673 61.4168 4.1540 58.9673 0.0000 



 

 

2013 61.1381 66.0939 8.1059 60.7646 0.6108 

2014 62.1323 71.1271 14.4769 62.6168 0.7797 

2015 64.5055 76.5437 18.6623 64.5253 0.0308 

2016 66.7064 82.3728 23.4856 66.4921 0.3213 

simulation MAPE  1.6791   133.53 10  

forecast MAPE  13.7769  0.3485  

overall MAPE  6.7199  0.1452  

 239 

Fig.1 Comparison of simulation and prediction 

 of two models in postgraduate’s enrollment 
Fig.2 PSO algorithm fitness evolution curve 

 240 

4.2 China's master degree student’s enrollment 241 

 242 

Similar to the previous section, the AVWA-DGM (1,1) model and AVWA-DGM (1,1) model 243 

were established, and the parameters of AVWA-DGM (1,1) model were solved by particle 244 

swarm optimization.The resulting final calculation results and weighting coefficients (both 245 

reserved for four decimal places) are given in Table 4, Table 5 and Fig.3, Fig.4.Table 4 also 246 

shows that the weight coefficients of the AVWA-DGM (1,1) model are not all constant 1.It can 247 

be seen from Fig.3 that compared with the DGM (1,1) model, the AVWA-DGM (1,1) model can 248 

more accurately predict the changing trend of the number of master degree students in China. 249 

As can be seen from table 5 and table 1, the simulated MAPE of DGM (1,1), the MAPE of test 250 

data and the overall MAPE were 1.9163%, 16.0442% and 7.8029%, respectively, while the 251 

AVWA-DGM (1,1) are 114.31 10 %, 0.3764% and 0.1568%, respectively. 252 

 253 
Table 4 Weighting coefficients of the two models 254 

Model Weight coefficient 

DGM(1,1)  1,1,1,1,1,1,1  

AVWA-DGM(1,1)  1.0000 1.2682 1.2402 1.1926 1.0589 1.0335 1.0221， ， ， ， ， ，  

 255 
Table 5 Calculation results and errors of the two models 256 
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Year Raw data DGM(1,1) APE(%) AVW-DGM(1,1) APE(%) 

2005 31.0037 31.0037 0.0000 31.0037 0.0000 

2006 34.1970 33.9552  0.7070 34.1970  0.0000 

2007 36.0590 36.7624 1.9507 36.0590 0.0000 

2008 38.6658 39.8017 2.9377 38.6658 0.0000 

2009 44.9042 43.0922  4.0353 44.9042  0.0000 

2010 47.4415 46.6548 1.6583 47.4415 0.0000 

2011 49.4609 50.5119  2.1248 49.4609  0.0000 

      

2012 52.1303 54.6878 4.9061 52.1303 0.0000 

2013 54.0919 59.2091  9.4601 53.7540  0.6247 

2014 54.8689 64.1041 16.8313 55.4282 1.0193 

2015 57.0639 69.4037  21.6246 57.1546  0.1589 

2016 58.9812 75.1416  27.3992 58.9347  0.0788 

simulation MAPE  1.9163    114.31 10   

forecast MAPE  16.0442  0.3764  

overall MAPE  7.8029  0.1568  

 257 

 258 

Fig.3 Comparison of simulation and prediction of  

two models in master degree student’s enrollment 
Fig.4 PSO algorithm fitness evolution curve 

 259 

4.3 Enrollment scale of Chinese undergraduates and junior college students 260 

 261 

Similarly, the DGM(1,1) model and AVWA-DGM (1,1) model were used to model and predict 262 

the enrollment scale of undergraduate and junior college students in China, and the parameters 263 

of AVWA-DGM (1,1) model were optimized and solved by particle swarm optimization 264 

algorithm.The final calculations for both models (all retaining four decimal places) are given in 265 

Table 6, Table 7, and Fig.5, Fig.6.Table 6 shows that the weight coefficients of the 266 
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AVWA-DGM (1,1) model varies with the raw data and is not a fixed constant. As can be seen 267 

from Fig.5, when modeling and forecasting the enrollment scale of undergraduate and junior 268 

college students in China, the simulation and prediction accuracy of AVWA-DGM (1,1) model 269 

is higher than the DGM(1,1) model. In Table 5, the simulated MAPE of DGM (1,1), the MAPE 270 

of the test data, and the overall MAPE are 0.8899%, 10.1810%, and 4.7612%, respectively, 271 

while AVWA-DGM(1,1) are 135.4059 10 % , 0.3184% and 0.1327%, respectively. 272 

 273 
Table 6 Weighting coefficients of the two models 274 

Model Weight coefficients 

DGM(1,1)  1,1,1,1,1,1,1  

AVWA-DGM (1,1)  1.0000 1.1006,1.0865,1.0350,1.0062, 0.9946,0.9880，  

 275 
Table 7 Calculation results and errors of the two models 276 

Year Raw data DGM(1,1) APE(%) AVWA-DGM(1,1) APE(%) 

2005 504.5  504.5 0.0000 504.5 0.0000 

2006 546.1  548.6084 0.4593 546.1 0.0000 

2007 565.9  574.3444 1.4922 565.9 0.0000 

2008 607.7  601.2876 1.0552 607.7  0.0000 

2009 639.5 629.4948 1.5645 639.5 0.0000 

2010 661.8  659.0253 0.4193 661.8 0.0000 

2011 681.5  689.9411 1.2386 681.5  0.0000 

      

2012 688.8  722.3071 4.8646 688.8 0.0000 

2013 699.8  756.1915 8.0582 704.6215  0.6890 

2014 721.4  791.6655 9.7402 720.8065 0.0823 

2015 737.8  828.8036 12.3345 737.3632  0.0592 

2016 748.6  867.6839 15.9075 754.3002 0.7614 

simulation MAPE  0.8899   135.4059 10   

forecast MAPE  10.1810  0.3184  

overall MAPE  4.7612  0.1327  

 277 



 

 

Fig.5 Comparison of simulation and prediction of  

two models in the number of enrollment scale  

undergraduate and junior college students 

Fig.6 PSO algorithm fitness evolution curve 

 278 

4.4 Number of students enrolled in undergraduates in China 279 

 280 

In this section, we use grey theory to study the number of undergraduate enrollments scale in 281 

China. The DGM (1,1) model was established and compared with the AVWA-DGM (1,1) 282 

model. Similarly, the particle swarm algorithm is used to optimize the parameters of the 283 

AVWA-DGM (1,1) model. The final calculations for both models (all retaining four decimal 284 

places) are given in Table 8, Table 9, and Fig.7, Fig.8. The weight coefficients of the 1th-order 285 

accumulation generation sequence of the DGM (1, 1) model and the AVWA-DGM (1, 1) model 286 

are compared in Table 8.The results show that the weight coefficients of the AVWA-DGM (1,1) 287 

model are also a sequence that varies with the raw data sequence and is not a fixed constant. In 288 

Table 9, the simulation MAPE of DGM(1,1), the MAPE of the test data, and the overall MAPE 289 

are 1.6922%, 16.7266%, and 7.9565%, respectively, while AVWA-DGM(1,1) are 0.0028%, 290 

0.7061% and 0.2958%, respectively. It can be seen from Fig. 7 that the simulation accuracy and 291 

prediction accuracy of the AVWA-DGM (1, 1) model is higher than the DGM (1, 1) model. 292 

 293 
Table 8 Weighting coefficients of the two models 294 

Model Weight coefficients 

DGM(1,1)  1,1,1,1,1,1,1  

AVWA-DGM(1,1)  1.00011.3147 1.2029 1.1648 1.0819 1.0242 1.0285， ， ， ， ， ，  

 295 
Table 9 Calculation results and errors of the two models 296 

年份 真实值 DGM(1,1) APE(%) AVWA-DGM(1,1) APE(%) 

2005 236.3647 236.3647 0.0000 236.3647  0.0000 

2006 253.0854 260.4513 2.9104 253.0854 0.0000 

2007 282.0971 278.8862 1.1382 282.0834  0.0049 

2008 297.0601 298.6259 0.5271 297.0289 0.0105 
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2009 326.1081 319.7628 1.9458 326.1081  0.0000 

2010 351.2563 342.3959 2.5225 351.2563 0.0000 

2011 356.6411 366.6308 2.8011 356.6553  0.0040 

      

2012 374.0574 392.5812 4.9521 374.0574 0.0000 

2013 381.4331 420.3683 10.2076 381.4232  0.0026 

2014 383.4152 450.1223 17.3981 388.9340 1.4394 

2015 389.4184 481.9822 23.7698 396.5927  1.8423 

2016 405.4007 516.0972 27.3055 404.4023 0.2463 

simulation MAPE  1.6922   0.0028  

forecast MAPE  16.7266  0.7061  

overall MAPE  7.9565   0.2958  

 297 

Fig.7 Comparison of simulation and prediction of two 

models in undergraduate enrollment students 
Fig.8 PSO algorithm fitness evolution curve 

 298 

5 Conclusion 299 

 300 
In this paper, the 1th-order accumulation sequence of the classical DGM (1,1) model is 301 

changed by weighting, and the weighting coefficients are optimized by particle swarm 302 

optimization algorithm to obtain the optimal weight coefficients, and the AVWA-DGM (1,1) 303 

model is proposed. The results show that when the 1th-order accumulation is performed, the 304 

raw data is given an appropriate weight, and then the 1th-order accumulation is performed, 305 

which can improve the simulation and prediction accuracy of the DGM (1,1) model. According 306 

to the proposed AVWA-DGM (1,1) model, the Chinese higher education data provided by the 307 

China Statistical Yearbook is used to simulate and predict, which proves that the optimization 308 

model can improve the prediction accuracy of the DGM(1,1) model, and has certain theoretical 309 

significance and application value. 310 

 311 
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