| 1 |
|---|
| Т |
|   |

3

#### **Original Research Article**

# BIOMASS AND STOCK OF NUTRIENTS IN DIFFERENT GENOTYPES OF *Eucalyptus* IN SOUTHERN BRAZIL

4

5

Abstract: The objective of this study was to estimate the biomass, nutrient stocks, and 6 7 nutrient utilization efficiency of six genotypes of Eucalyptus. The experiment was 8 conducted in Eldorado do Sul, Rio Grande do Sul, Brazil. The selected trees were 9 fractionated into leaves, branches, stembark and stemwood. The amount of total biomass ranged from 68.40 to 117.52 Mg ha<sup>-1</sup>, with the highest production being *E. uroglobulus*, 10 11 and E. dunnii the lowest. The canopy (leaves and branches) accumulated between 17% and 52% of the total macronutrients in E. benthamii (P1) and E. uroglobulus and from 24% to 12 34% of the total micronutrients in E. dunnii and E. uroglobulus. While the stem (wood and 13 bark) accumulated between 48 to 83% and 66 to 76% of the total macro and micronutrients, 14 respectively. For the stemwood, it was observed that E. benthamii (P2) presented the 15 highest values of nutritional efficiency for N, Ca, Cu and Fe, and E. uroglobulus for P, Mg 16 and B. The different genotypes of *Eucalyptus*, under the same edaphoclimatic conditions, 17 presented different biomass production. Variations in concentration, in the allocation of the 18 19 amount of nutrients in the different genotypes, and in the different components of the same 20 genotypes were observed.

21 Keywords: *Eucalyptus* productivity, Forestry nutrition, Silviculture, Sustainability.

22

# 23 1. INTRODUCTION

*Eucalyptus* silviculture has expanded worldwide, mainly because of the increasing demand for wood and the high potential of the genus for biomass production [23]. In Brazil, the expansion of forestry was boosted by a government policy that subsidized reforestation programs from 1967 to 1989, with the aim of developing an internationally competitive logging industry [7].

29 The possibility of using eucalyptus wood for various purposes led both large and 30 small companies to establish eucalyptus plantations for multiple uses [7]. Currently, 31 eucalyptus plantations occupy 5.6 million hectares of the country's forest plantation area, 32 with an annual growth of 2.8% [11]. This rate of increase has been constant for more than 40 years [7], with growth rates strongly dependent on the genetic of clones, forestry 33 34 practices, and climate [4]. Thus, improving the use efficiency of natural resources through the creation of genotypes and using appropriate practices of site management is a 35 fundamental challenge of maintaining or increasing productivity in a sustainable manner 36 37 [7].

Biomass production varies according to the availability of resources at different sites, 38 influences 39 mainly through in the processes of photosynthesis, respiration, 40 compartmentalization of carbon, underground flow, and leaf production, among others [15]. The quantification of forest biomass allows the determination of the production potential, 41 42 or adequacy, of certain species for specific purposes, and the prediction of crop yields, thus helping to assess the loss or accumulation of biomass over time [12]. 43

44 To define management practices in forest plantations, it is important to choose 45 species that achieve maximum biomass production for a given location by maximizing the 46 uptake of nutrients [9]. For this, the prolongation of the harvest cycle is necessary. In order

to achieve maximum efficiency during nutrient cycling, it is important to reduce the
unnecessary export of nutrients [17]. In this context, the objectives of future studies on
forest biomass should reconsider traditional practices and seek new alternatives to maintain
an efficiently balanced crop [5].

51 Studies on the biomass production and the nutrient stocks of different 52 species/provenances, planted under the same edaphoclimatic conditions, are key to select 53 genotypes which are able to achieve high productivity in a sustainable way. Therefore, the 54 objective of the present studywas to estimate the biomass, nutrient stocks, and nutrient use 55 efficiency in six different genotypes of *Eucalyptus* established in Eldorado do Sul, Rio 56 Grande do Sul (RS), Brazil.

57

#### 58 **2. METHODS**

# 59 **2.1 Characterization of the site**

The experiment was conducted in Eldorado do Sul, Rio Grande do Sul, southern of
Brazil, in the Horto Florestal Terra Dura, owned by Celulose Riograndense – CMPC (30°
11'30.3"S and 51° 37'47.7"W). The approximate altitude of the place is 158 m.

The climate of the region is characterized as subtropical humid (Cfa), according to the climatic classification of Köppen presenting an average temperature of 19 °C. The average annual precipitation reaches 1,400 mm [2]. In the period from 2012 to 2016, the average rainfall was 1283.6 mm per year. The annual mean temperature was approximately 17.6 ° C (Figure 1). The soil in the experimental area is of the type Red-Yellow Argissol. Table 1 presents the clay and chemical atributes of the soil a depths from 0 to 130 cm.



| 60-90                            | 4,4                          | 25                       | 0,66                     | 15                           | 69                       | 4,8                      | 15,3               | 0,08                     | 1,0                      |
|----------------------------------|------------------------------|--------------------------|--------------------------|------------------------------|--------------------------|--------------------------|--------------------|--------------------------|--------------------------|
| 90-100                           | 4,6                          | 4                        | 0,42                     | 17                           | 64                       | 3,6                      | 12,0               | 0,06                     | 0,7                      |
| 100-130                          | 4,7                          | 6                        | 0,22                     | 20                           | 61                       | 3,1                      | 10,0               | 0,04                     | 0,6                      |
| Drof                             | K                            | Ca                       | Mg                       | S                            | В                        | Zn                       | Mn                 | Cu                       | Fe                       |
| 1101.                            |                              | cmol <sub>c</sub> dm     | - <sup>3</sup>           |                              |                          | mg dm <sup>-3</sup>      |                    |                          | g dm <sup>3</sup>        |
|                                  |                              |                          |                          |                              |                          |                          |                    |                          |                          |
| 0-30                             | 0,14                         | 3,3                      | 0,9                      | 19,4                         | 0,4                      | 0,5                      | 13                 | 0,8                      | 0,1                      |
| 0-30<br>30-60                    | 0,14<br>0,14                 | 3,3<br>0,9               | 0,9<br>0,5               | 19,4<br>32,5                 | 0,4<br>0,7               | 0,5<br>0,5               | 13<br>13           | 0,8<br>1,2               | 0,1<br>0,1               |
| 0-30<br>30-60<br>60-90           | 0,14<br>0,14<br>0,15         | 3,3<br>0,9<br>1,0        | 0,9<br>0,5<br>0,8        | 19,4<br>32,5<br>61,7         | 0,4<br>0,7<br>0,5        | 0,5<br>0,5<br>0,3        | 13<br>13<br>7      | 0,8<br>1,2<br>1,2        | 0,1<br>0,1<br>0,1        |
| 0-30<br>30-60<br>60-90<br>90-100 | 0,14<br>0,14<br>0,15<br>0,14 | 3,3<br>0,9<br>1,0<br>1,0 | 0,9<br>0,5<br>0,8<br>0,9 | 19,4<br>32,5<br>61,7<br>60,9 | 0,4<br>0,7<br>0,5<br>0,3 | 0,5<br>0,5<br>0,3<br>0,3 | 13<br>13<br>7<br>5 | 0,8<br>1,2<br>1,2<br>1,0 | 0,1<br>0,1<br>0,1<br>0,1 |

O.C: organic carbom; V = saturation by base; m = saturation by aluminum; T = total cation
exchange capacity.

80

# 81 **2.2 Planting of the experimental area**

The genotypes were planted in April 2012, with spacing each plant in a plot of 3 m 82 x 3 m. Subsoiling was performed at a depth of 60 cm, using a subsoiler with three stems, 83 and a liming treatment was applied consisting of 2 Mg ha<sup>-1</sup> of limestone, and 200 kg ha<sup>-1</sup> of 84 single superphosphate. Three different fertilizers were applied under different methods: 85 fertilization during planting, coverage fertilization, and maintenance fertilization. The 86 fertilizer used during planting consisted of, 110 g plant<sup>-1</sup> of N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O (06:30:06) + 0.3% 87 Zn and 0.2% Cu. For coverage fertilization 200 kg ha<sup>-1</sup> of N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O (12:00:20) + 0.7% 88 of B were applied, and for the maintenance fertilization, 300 kg ha<sup>-1</sup> of N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O 89 (24:00:26) + 0.5% B were applied. 90

Before planting, a chemical weeding with 2.5 kg ha<sup>-1</sup> of glyphosate was carried out.
After planting chemical weeding was carried out at 120 and 300 days, with 1.7 kg ha<sup>-1</sup> of
Scout (glyphosate) at the interow. Also, it was carried out to combat leaf-cutting ants.

The following *Eucalyptus* clones were planted: *E. benthamii* (P1), *E. benthamii* (P2), *E. saligna*, *E. dunnii*, hybrid of *E. urophylla* × *E. globulus* (*E. uroglobulus*), and hybrid of *E. urophylla* × *E. grandis* (*E. urograndis*). *E. benthamii* (P1) is a provenance originating
from Guarapuava, Paraná, Brazil and *E. benthamii* (P2) is from Telêmaco Borba, Paraná,
Brazil. At the time of data collection, the stands were 49 months old.

For each genotype of eucalyptus, a plot of 720  $m^2$  was demarcated, where the DBH 99 (diameter at breast height, measured at 1.30 m above ground level) of all individuals was 100 101 measured with diametrical tape. The heights of 20% of the plants were measured using a Vertex hypsometer; thus, the heights that were not measured in the field were estimated 102 103 through hypsometric models. According to Table 2, the mean volume varied from 73.96 to 114.99 m 3 ha (E. dunnii and E. benthamii (P2). The highest mortality of trees occurred in 104 the settlement of E. dunnii (21%). In contrast, the hybrid E. urograndis had a 100% 105 106 survival.

107

Table 2 - Dendrometric characterization of different genotypes of *Eucalyptus* at 49-monthold in Eldorado do Sul, RS, Brazil

|                                | $N^\circ$ of individuals | Basal area      | Volume                             |
|--------------------------------|--------------------------|-----------------|------------------------------------|
| Genotypes of <i>Eucalyptus</i> | per ha                   | $(m^2 ha^{-1})$ | (m <sup>3</sup> ha <sup>-1</sup> ) |

| E hanthamii (P1)  | 986     | 24,4ab | 105,19a |
|-------------------|---------|--------|---------|
| L. beninumii (11) | (192)** | (8,8)  | (51,1)  |
| E. benthamii (P2) | 1.000   | 22,7b  | 114,99a |
|                   | (216)   | (6,3)  | (48,0)  |
| E. saligna        | 972     | 23,7ab | 103,63a |
|                   | (206)   | (3,5)  | (29,8)  |
| E. dunnii         | 875     | 16,7c  | 73,96b  |
|                   | (195)   | (6,9)  | (40,62) |
| E. uroglobulus    | 903     | 22,2b  | 100,27a |
|                   | (183)   | (7,3)  | (43,56) |
| E. urograndis     | 1.111   | 26,4a  | 111,93a |
|                   | (229)   | (4,9)  | (43,24) |

Mean of each variable in different treatments (genotypes of *Eucalyptus*) followed by equal
letters, do not differ significantly by the Tukey test at the 5% level of error. \*Values in
parentheses are the standard deviation of the mean.

114

# 115 2.3 Biomass and nutrient stocks

According to the data obtained in the plot inventory, three trees with a mean diameter were sampled for each genotype of eucalyptus. The selected trees were felled and separated in the following components: leaves, branches, stembark and stemwood.

119 A sampling of the wood and bark of the stem was done by dividing the trunk into 120 three sections of equal parts, with the sampling performed on three points in the median position of each section. All biomass samples were weighed in the field with a precision scale to determine the moisture content. Subsequently they were sent to the laboratory and dried in an oven at 70 °C with circulation and air exchange until weight stabilization. Based on the dry biomass of each component and the number of trees per hectare of each genetic material, the total biomass per hectare was estimated.

For nutrient determination, the samples were milled with Wiley-type blades, with 30 126 127 mesh sieves and submitted to chemical analysis to determine N content by the Kjeldahl 128 method; Ca, Mg, Cu, Fe, Mn and Zn content by atomic absorption spectrometry; P and B 129 content by spectrophotometry; K content by flame photometry, and S content by turbidimetry. The nutrients were analyzed according to the methodology of [24,13]. The 130 131 estimates of the nutrient stock for each component was obtained by multiplying the dried biomass by the concentration of nutrients. The estimate per hectare was performed by 132 extrapolating the stock per individual based on the number of individuals present in each 133 sampling unit. 134

135

## 136 **2.4 Nutrient Use Efficiency (NUE)**

The values of nutrient use efficiency (NUE) were obtained by dividing the amount
of biomass of each component and the amount of nutrient from each biomass component,
according to the equation:

 $NUE = \frac{(Amount of biomass)}{(Amount of nutrient)}$ 

140

141

142 **2.5 Statistical procedures** 

143 Statistical analyses were performed at a 5% error probability level with the statistical 144 software Assistat 7.7 [21]. The biomass and nutrient concentration data were subjected to 145 analysis of variance and Tukey's test for comparison of means between treatments 146 (genotypes of eucalyptus).

147

#### 148 **3. RESULTS AND DISCUSSION**

#### 149 **3.1 Aboveground biomass**

150 The highest total biomass production was observed in E. uroglobulus and the lowest in *E dunnii*, with 117.52 and 68.40 Mg ha<sup>-1</sup>, respectively (Table 3). Similar values to the 151 152 genotype of the present study were reported by [19] while evaluating E. globulus in a fouryear-old plantation in Butiá, RS, Brazil (83.2 Mg ha<sup>-1</sup>). Lower values were reported by [20] 153 while evaluating *Eucalyptus* spp. in plantations of two and four years of age in Vera Cruz 154 (RS), Brazil (26.70 and 44.55 Mg ha<sup>-1</sup>); and by [16], studying *E. saligna* at 1.1 years of age 155 in Telêmaco Borba, Paraná (PR), Brazil (37.35 Mg ha<sup>-1</sup>). In a study conducted by [28], in 156 157 the Pearl River Delta region of southern China, when grouping species of eucalyptus into three age classes: < 6 years, 6-15 years, and 16 years of age, the authors found a marked 158 159 increase in the accumulation of biomass with the increase of age with values of 54.63, 136.94, and 186.43 Mg ha<sup>-1</sup>, respectively. This suggests that the production of biomass is 160 161 influenced by plant age, species specific characteristics and planting location.

In relation to the stemwood biomass, the *E. uroglobulus* hybrid produced 25 and 44% more than the *E. saligna* and *E. dunnii* clones, respectively. Genetic factors (improvement and provenance), edaphoclimatic conditions, and management practices are directly related to the production capacity of the species [8].

- 166 Table 3 Production and partition of biomass for the different components of genotypes
- *Eucalyptus* at 49-month-old established in Eldorado do Sul, RS, Brazil

|                                | Leaves              | Branches | Stembark | Stemwood | Biomass  |  |  |  |  |  |  |  |  |
|--------------------------------|---------------------|----------|----------|----------|----------|--|--|--|--|--|--|--|--|
| Genotypes of <i>Eucalyptus</i> | Mg ha <sup>-1</sup> |          |          |          |          |  |  |  |  |  |  |  |  |
|                                | 4,36b <sup>*</sup>  | 7,04a    | 8,17ab   | 73,04b   | 92,19b   |  |  |  |  |  |  |  |  |
| E. benthamu (P1)               | (4,73)**            | (7,64)   | (8,86)   | (79,23)  | (100,00) |  |  |  |  |  |  |  |  |
|                                | 3,92bc              | 5,08b    | 8,60a    | 84,44ab  | 102,04ab |  |  |  |  |  |  |  |  |
| E. benthamu (P2)               | (3,84)              | (4,98)   | (8,43)   | (82,75)  | (100,00) |  |  |  |  |  |  |  |  |
|                                | 3,22c               | 5,60b    | 7,92ab   | 72,50b   | 89,25bc  |  |  |  |  |  |  |  |  |
| E. saligna                     | (3,61)              | (6,28)   | (8,87)   | (81,24)  | (100,00) |  |  |  |  |  |  |  |  |
| E 1                            | 3,09c               | 4,59b    | 6,05c    | 54,68c   | 68,40c   |  |  |  |  |  |  |  |  |
| E. aunnu                       | (4,51)              | (6,70)   | (8,84)   | (79,94)  | (100,00) |  |  |  |  |  |  |  |  |
| E 111                          | 6,52a               | 7,47a    | 6,69bc   | 96,84a   | 117,52a  |  |  |  |  |  |  |  |  |
| E. urogiobulus                 | (5,55)              | (6,36)   | (5,69)   | (82,40)  | (100,00) |  |  |  |  |  |  |  |  |
|                                | 3,05a               | 7,41a    | 7,76ab   | 83,58ab  | 101,80ab |  |  |  |  |  |  |  |  |
| E. urograndis                  | (2,99)              | (7,28)   | (7,62)   | (82,10)  | (100,00) |  |  |  |  |  |  |  |  |

\*Averages of each fraction of biomass in different treatments (genotypes of *Eucalyptus*)
followed by equal letters, do not differ significantly by the Tukey test at the 5% level of
error. \*\*Values in parentheses refer to the percentage of each component in relation to the
total biomass of each genotype.

The greatest contribution to total biomass was from the stemwood, followed by the 174 175 stembark, branches, and leaves, except in the clone E. uroglobulus, from which the greatest 176 contribution to total biomass was from the stembark. The relative distribution of biomass, 177 considering the same components, was the same as that found by: [25] while studying E. 178 *urophylla*  $\times$  *E. globulus* at 10 years of age, in Eldorado do Sul, RS, Brazil; by [16] while 179 evaluating E. saligna at 6.7 years of age in Telemaco Borba, PR, Brazil; and by [6] while 180 studying the biomass of eucalyptus plantations of different ages in the Central-Eastern 181 Region of the State of Minas Gerais, Brazil. In plantations of E. nitens in northern Spain, the distribution trend in terms of total biomass was wood > bark > thick twigs > dried twigs 182 > leaves > fine twigs > twigs [14]. 183

184 By adding the value of the bark to that of the wood, the biomass of the stem represents from 88 to 91% of total aboveground biomass, whose the lowest value was 185 186 found in E. benthamii (P1) and the highest in E. benthamii (P2), while the canopy (leaves and branches) represents 9 to 12% of the total aboveground biomass. Some previous 187 studies have reported contrasting results: [8] while evaluating E. dunnii at 4 years of age, 188 reported that 81% of the aerial biomass was found in the wood and bark components; and 189 [19], estimating the biomass of *E. globulus*, also at 4 years of age, reported that 77% of the 190 biomass was found in the same components. 191

In an experiment with *E. saligna* and *E. urophylla*  $\times$  *E. grandis* at 18 months of age, the authors observed that even at an early age the contribution of the wood component to biomass was the largest relative to total aerial biomass, while the contribution from the bark component was the lowest. The average proportions were 41.5 and 37.4% for the wood and 7.5 and 7.1% for the bark, for *E. saligna* and *E. urophylla* x *E. grandis*, respectively [27]. Before the closure of the canopy, there is a period of intense growth in which most of the photoassimilates synthesized by the plant are channeled into the canopy and root systems. In this phase, the roots partially exploit soil volume and trees do not compete with each other for growth factors (e.g., light, water, and nutrients). After the crowning of the tree canopy, the accumulation of nutrients in the trunks occurs with more intensity, as the formation of the canopy reaches a phase of relative stability, due to auto-shading that imposes a maximum leaf area limit [20].

204

#### **3.2 Concentration of nutrients**

Nutrient concentrations varied between genotypes and between different components within the same genotype (Table 4). In general, the leaves had the highest concentrations of nutrients and the wood the lowest concentrations, while the branches and bark exhibited intermediate values. The tendency for most nutrients to accumulate in the leaves is because leaves have a higher metabolic activity than other components of the plant [25].

212

Table 4 - Nutrient concentrations in the different biomass components of genotypes of *Eucalyptus* at 49-month-old established in Eldorado do Sul, RS, Brazil

| Genotypes of Fucalyptus | Fractions | N      | Р     | К      | Ca              | Mg     | s                   | В       | Cu     | Fe      | Mn      | Zn                 |
|-------------------------|-----------|--------|-------|--------|-----------------|--------|---------------------|---------|--------|---------|---------|--------------------|
|                         |           |        |       | g kş   | g <sup>-1</sup> |        | mg kg <sup>-1</sup> |         |        |         |         |                    |
|                         | Leaves    | 22,83a | 1,38a | 8,24ab | 6,07a           | 2,85ab | 1,35a               | 19,68bc | 4,90a  | 133,63a | 460,59a | 16,10 <sup>a</sup> |
| E. benthamii (P1)       | Branches  | 1,91a  | 0,34a | 3,34a  | 5,58a           | 1,83ª  | 0,31a               | 6,20ab  | 3,72b  | 51,44a  | 307,19a | 10,77ª             |
|                         | Stembark  | 5,38a  | 0,58a | 5,92a  | 15,94a          | 3,69ab | 0,32a               | 13,97a  | 3,18a  | 32,33ab | 508,08a | 15,82ª             |
|                         | Stemwood  | 0,89a  | 0,17a | 1,97a  | 0,57ab          | 0,28bc | 0,18a               | 2,90ª   | 1,08ab | 69,03a  | 20,51a  | 4,94ª              |

|                   | Leaves   | 23,52a | 1,27ab | 6,63bc  | 5,19a  | 2,72ab | 1,28a | 24,48ab | 5,74a  | 124,37ab | 358,99a  | 13,13ab |   |
|-------------------|----------|--------|--------|---------|--------|--------|-------|---------|--------|----------|----------|---------|---|
| E handhamii (D2)  | Branches | 1,57a  | 0,26ab | 2,90a   | 2,90a  | 1,31ab | 0,29a | 5,20b   | 2,84b  | 45,03a   | 162,36ab | 9,42ª   |   |
| E. Deninamii (F2) | Stembark | 5,32a  | 0,69a  | 4,91a   | 8,08b  | 3,68ab | 0,35a | 13,14a  | 2,56a  | 27,70b   | 285,22ab | 13,29ª  |   |
|                   | Stemwood | 0,45a  | 0,11b  | 1,52bc  | 0,37b  | 0,20c  | 0,18a | 1,86ab  | 0,73b  | 20,26a   | 14,66a   | 4,58ab  |   |
|                   | Leaves   | 20,61a | 1,26ab | 8,31a   | 4,63a  | 3,11ab | 1,26a | 28,72a  | 5,45a  | 77,23b   | 179,76a  | 11,96ab | • |
| Eli               | Branches | 1,57a  | 0,29ab | 3,14a   | 5,56a  | 1,93a  | 0,34a | 7,13ª   | 6,55a  | 39,74a   | 107,19b  | 8,32ª   |   |
| E. saugna         | Stembark | 2,16bc | 0,53a  | 4,19a   | 9,10b  | 3,72a  | 0,33a | 11,25a  | 3,72a  | 32,32ab  | 238,13b  | 7,26ª   |   |
|                   | Stemwood | 0,74a  | 0,08b  | 1,32c   | 0,47b  | 0,36b  | 0,21a | 1,81ab  | 1,10ab | 27,69a   | 6,49a    | 4,25ab  |   |
|                   | Leaves   | 21,62a | 1,23ab | 6,08c   | 6,49a  | 3,55a  | 1,26a | 19,52bc | 6,38a  | 100,98ab | 300,37a  | 15,17ª  | ' |
| E dumii           | Branches | 1,89a  | 0,25ab | 2,44a   | 4,21a  | 1,79a  | 0,31a | 6,40ab  | 4,54ab | 47,51a   | 165,63ab | 7,71ª   |   |
| E. aunnu          | Stembark | 4,08ab | 0,42a  | 5,84a   | 9,17b  | 3,23ab | 0,25a | 12,83a  | 3,06a  | 32,14ab  | 288,47ab | 9,61ª   |   |
|                   | Stemwood | 0,80a  | 0,09b  | 1,37c   | 0,70a  | 0,55a  | 0,19a | 2,75ª   | 0,92ab | 23,34a   | 18,94a   | 2,84c   |   |
|                   | Leaves   | 18,46a | 0,99b  | 6,27bc  | 4,18a  | 2,13b  | 1,01b | 15,20c  | 4,27a  | 83,19ab  | 222,94a  | 10,32b  | • |
| <b>F</b> 111      | Branches | 1,54a  | 0,19b  | 3,34a   | 3,76a  | 0,99b  | 0,26a | 6,20ab  | 3,15b  | 46,76a   | 95,45b   | 7,38ª   |   |
| E. urogiobulus    | Stembark | 2,70bc | 0,42a  | 6,45a   | 7,84b  | 2,92b  | 0,35a | 14,21a  | 2,72a  | 29,16ab  | 231,58b  | 8,75ª   |   |
|                   | Stemwood | 0,91a  | 0,08b  | 1,60bc  | 0,44b  | 0,18c  | 0,23a | 1,30b   | 1,06ab | 65,58a   | 10,37a   | 3,41bc  |   |
|                   | Leaves   | 21,10a | 1,21ab | 7,67abc | 5,35a  | 3,98a  | 1,29a | 30,72a  | 6,49a  | 74,51b   | 196,63a  | 12,81ab | 1 |
| E urograndis      | Branches | 0,81a  | 0,22ab | 3,14a   | 5,08a  | 1,86a  | 0,26a | 4,87b   | 4,58ab | 48,48a   | 172,69ab | 8,55ª   |   |
| E. urogranais     | Stembark | 1,90c  | 0,59a  | 4,42a   | 9,33b  | 3,36ab | 0,34a | 8,49ª   | 3,22a  | 56,56a   | 284,29ab | 6,88ª   |   |
|                   | Stemwood | 0,87a  | 0,09b  | 1,71ab  | 0,55ab | 0,27bc | 0,18a | 3,10ª   | 1,47a  | 30,55a   | 10,20a   | 4,74ª   |   |
|                   |          |        |        |         |        |        |       |         |        |          |          |         |   |

216 Averages of each fraction of biomass in different treatments (genotype of *Eucalyptus*)

followed by equal letters, do not differ significantly by the Tukey test at the 5% level oferror.

219

This same trend, i.e., the highest concentration of nutrients in the leaves and the lowest in the wood, was also reported in populations of *E. urograndis* at 18 months of age in Piratini, RS, Brazil [25], in an *E. dunnii* stand at four years of age in Alegrete, RS, Brazil [8], and in *E. globulus* in Chile [1].

In relation to the analyzed macronutrients, N, P, K, and S were more concentrated in the leaves in most genotypes, except for *E. uroglobulus*, where K was more concentrated in the bark. Ca and Mg were found in higher concentrations in the bark in most genotypes, except for *E. dunnii* and *E. urograndis*, in which the highest Mg content occurred in the leaves. In an *E. dunnii* stand at 9 years of age in Algorta, Uruguay, the highest
concentrations of N, P, and K were found in the leaves, but the bark also accumulated high
concentrations of nutrients, mainly Ca [10].

For micronutrients, the highest concentrations occurred in the leaves, except for Cu in *E. saligna*, which the highest concentration was observed in the branches; and for Mn in *E. benthamii* (P1), *E. saligna*, *E. uroglobulus*, and *E. urograndis*, and Zn in *E. benthamii* (P2), which the highest concentrations were observed in the bark. This same trend, with higher content of micronutrients in leaves, was also found by [26] in *Eucalyptus urograndis* stands at 18 months of age in Piratini-RS municipality.

237

#### 238 **3.3 Amount of nutrients**

Nitrogen occurred in greater quantities in the leaves of most genotypes, with the exception of *E. urograndis* in which higher concentrations of N were found in the wood. P, K, and S had greater representation in the wood, and Ca and Mg in the bark in most genotypes, except in *E. dunnii*, in which the highest amount of Mg was observed in the wood (Table 5). Micronutrients were stored more in the wood, with the exception of Mn which accumulated in higher concentrations in the bark.

245

Table 5 - Amount of nutrients in the biomass components of different genotypes of
 *Eucalyptus* at 49-month-old established in Eldorado do Sul, RS, Brazil

| Genotypes of Eucalyptus | Fractions | N     | Р    | К     | Ca               | Mg    | S    | В      | Cu    | Fe     | Mn       | Zn    |
|-------------------------|-----------|-------|------|-------|------------------|-------|------|--------|-------|--------|----------|-------|
|                         |           |       |      | kg ł  | 1a <sup>-1</sup> |       |      | g ha-1 |       |        |          |       |
| F. henthamii (P1)       | Leaves    | 99,70 | 6,00 | 36,00 | 26,50            | 12,40 | 5,90 | 86,00  | 21,40 | 586,30 | 2.033,50 | 70,40 |
|                         | Branches  | 13,40 | 2,40 | 23,50 | 39,30            | 12,80 | 2,20 | 43,60  | 26,30 | 362,90 | 2.173,40 | 76,20 |

|                   | Stembark | 44,10  | 4,80  | 48,60  | 129,80 | 30,20 | 2,70  | 115,30 | 26,10  | 265,20   | 4.164,70 | 130,70 |
|-------------------|----------|--------|-------|--------|--------|-------|-------|--------|--------|----------|----------|--------|
|                   | Stemwood | 65,50  | 12,30 | 143,50 | 41,90  | 20,10 | 13,20 | 210,30 | 78,30  | 4.956,10 | 1.515,90 | 360,90 |
|                   | Total    | 222,70 | 25,60 | 251,60 | 237,60 | 75,50 | 24,00 | 455,20 | 152,20 | 6.170,60 | 9.887,50 | 638,20 |
|                   | Leaves   | 92,50  | 5,00  | 26,00  | 20,20  | 10,70 | 5,00  | 95,60  | 22,40  | 490,40   | 1.400,70 | 51,30  |
|                   | Branches | 7,70   | 1,30  | 14,60  | 14,90  | 6,70  | 1,50  | 26,40  | 14,20  | 228,60   | 835,00   | 47,00  |
| E. benthamii (P2) | Stembark | 45,60  | 6,00  | 42,30  | 70,40  | 31,80 | 3,00  | 113,20 | 21,90  | 240,50   | 2.452,30 | 113,30 |
|                   | Stemwood | 37,90  | 9,60  | 127,60 | 31,40  | 16,70 | 15,50 | 155,20 | 61,40  | 1.688,90 | 1.230,00 | 383,60 |
|                   | Total    | 183,70 | 21,80 | 210,50 | 136,90 | 65,80 | 25,00 | 390,40 | 119,70 | 2.648,50 | 5.918,00 | 595,20 |
|                   | Leaves   | 66,50  | 4,00  | 26,70  | 14,90  | 10,00 | 4,00  | 92,50  | 17,60  | 248,40   | 574,90   | 38,60  |
|                   | Branches | 8,70   | 1,60  | 17,60  | 31,30  | 10,80 | 1,90  | 39,80  | 36,60  | 221,60   | 594,70   | 46,40  |
| E. saligna        | Stembark | 17,00  | 4,20  | 33,10  | 72,10  | 29,50 | 2,60  | 89,20  | 29,50  | 255,20   | 1.882,40 | 57,50  |
|                   | Stemwood | 53,60  | 5,90  | 95,70  | 34,50  | 25,90 | 15,10 | 131,20 | 80,00  | 1.993,90 | 466,70   | 309,80 |
|                   | Total    | 145,70 | 15,70 | 173,10 | 152,80 | 76,10 | 23,70 | 352,80 | 163,80 | 2.719,10 | 3.518,70 | 452,30 |
|                   | Leaves   | 66,00  | 3,80  | 18,50  | 19,90  | 10,80 | 3,90  | 59,50  | 19,50  | 309,90   | 941,40   | 46,70  |
|                   | Branches | 8,20   | 1,10  | 10,90  | 19,30  | 8,10  | 1,40  | 29,30  | 20,40  | 217,20   | 791,90   | 34,80  |
| E. dunnii         | Stembark | 24,50  | 2,50  | 34,70  | 55,30  | 19,40 | 1,50  | 77,50  | 18,30  | 193,50   | 1.818,30 | 57,00  |
|                   | Stemwood | 41,50  | 4,80  | 74,10  | 38,20  | 30,30 | 10,40 | 150,40 | 51,00  | 1.304,20 | 1.070,80 | 155,20 |
|                   | Total    | 140,30 | 12,20 | 138,20 | 132,70 | 68,60 | 17,10 | 316,70 | 109,20 | 2.024,80 | 4.622,30 | 293,70 |
|                   | Leaves   | 120,00 | 6,40  | 40,80  | 27,30  | 14,00 | 6,60  | 99,40  | 27,60  | 548,80   | 1.457,60 | 67,80  |
|                   | Branches | 11,40  | 1,40  | 25,40  | 28,20  | 7,40  | 1,90  | 46,80  | 23,50  | 349,40   | 729,80   | 55,40  |
| E. uroglobulus    | Stembark | 17,90  | 2,80  | 43,50  | 51,90  | 19,70 | 2,40  | 95,40  | 18,40  | 198,00   | 1.556,70 | 59,20  |
|                   | Stemwood | 88,10  | 7,70  | 154,80 | 42,80  | 17,50 | 22,10 | 125,80 | 103,20 | 6.782,90 | 1.018,30 | 328,50 |
|                   | Total    | 237,40 | 18,40 | 264,50 | 150,20 | 58,70 | 33,00 | 367,40 | 172,70 | 7.879,00 | 4.762,30 | 511,00 |
|                   | Leaves   | 64,30  | 3,70  | 23,40  | 16,30  | 12,10 | 3,90  | 93,60  | 19,80  | 227,10   | 599,40   | 39,10  |
|                   | Branches | 6,00   | 1,70  | 23,20  | 37,70  | 13,80 | 1,90  | 36,10  | 33,90  | 359,20   | 1.279,60 | 63,30  |
| E. urograndis     | Stembark | 14,80  | 4,60  | 34,30  | 72,40  | 26,10 | 2,70  | 65,90  | 25,00  | 438,90   | 2.206,10 | 53,40  |
|                   | Stemwood | 73,00  | 7,30  | 143,00 | 46,10  | 22,90 | 14,80 | 259,50 | 122,50 | 2.553,30 | 852,30   | 396,40 |
|                   | Total    | 158,00 | 17,20 | 223,90 | 172,50 | 74,90 | 23,40 | 455,00 | 201,10 | 3.578,50 | 4.937,40 | 552,10 |
|                   |          |        |       |        |        |       |       |        |        |          |          |        |

The concentrations of macronutrients in the total biomass followed the order: K > Ca > N > Mg > S > P in most genotypes. In *E. benthamii* (P1), however, P content was higher than S content. In *E. benthamii* (P2) and *E. uroglobulus*, N content was higher than Ca content. For *E. dunnii*, the concentrations of macronutrients in the total biomass followed the order: N > K > Ca > Mg > S > P. In stands of *E. urograndis* at 30 and 60 months of age in Seropédica, Rio de Janeiro, Brazil, the following order was observed: K >N > Ca > Mg > P [18].

For micronutrients, the order of concentrations in most genotypes was: Mn > Fe >Zn > B > Cu, except for *E. dunnii*, whose the amount of B was greater than that of Zn; and for *E. uroglobulus*, whose the amount of Fe was higher than that of Mn.

The highest amount of P, Ca, B, Mn, and Zn was found in *E. benthamii* (P1); of N, K, S, and Fe in *E. uroglobulus*; of Mg in *E. saligna*; and of Cu in *E. urograndis*. In *E. uroglobulus* was observed with 39 and 41% more than N and 35 and 48% more of K than the *E. saligna* and *E. dunnii* clones, respectively. In *E. benthamii* (P1) P concentrations were found to be 33, 39, and 52% higher compared to *E. urograndis*, *E. saligna*, and *E. dunnii*, respectively.

The canopy (leaves and branches) accumulated between 17 and 52% of the total macronutrients in *E. benthamii* (P1) and *E. uroglobulus*, and from 24 to 34% of total micronutrients in *E. dunnii* and *E. uroglobulus*. The stem (wood and bark) accumulated between 48 to 83% and 66 to 76% of the total macro and micronutrients, respectively.

The distribution and total content of nutrients in the canopy are affected mainly by changes in the amount of biomass and by differences that occur owing to age, both of the tree and the leaves, in their different physiological stages [3].

273

# 274 **3.4 Nutrient use efficiency**

Genotypes and their different components showed variations in nutrient use efficiency (NUE) (Table 6). With the exception of Fe in *E. benthamii* (P1) and *E. uroglobulus*, in which NUE was larger in the stembark, and of N in *E. urograndis*, where the branches had the highest concentrations, the stemwood presented the highest values of NUE, which is very relevant to forest companies, because this is the main product takenfrom forest plantations.

281

282 Table 6 – Nutrient use efficiency in the biomass components of different genotypes of

283 Eucalyptus at 49-month-old established in Eldorado do Sul, RS, Brazil

284

| Genotypes of Eucalyptus | Fractions | Ν     | Р      | К   | Ca    | Mg    | s     | В       | Cu        | Fe     | Mn      | Zn      |
|-------------------------|-----------|-------|--------|-----|-------|-------|-------|---------|-----------|--------|---------|---------|
|                         | Leaves    | 44    | 723    | 121 | 164   | 351   | 740   | 50.706  | 203.368   | 7.437  | 2.144   | 61.975  |
| E. benthamii (P1)       | Branches  | 526   | 2.907  | 300 | 179   | 549   | 3.176 | 161.441 | 267.639   | 19.407 | 3.241   | 92.390  |
|                         | Stembark  | 185   | 1.699  | 168 | 63    | 271   | 3.070 | 70.875  | 312.609   | 30.799 | 1.961   | 62.494  |
|                         | Stemwood  | 1.116 | 5.939  | 509 | 1.742 | 3.634 | 5.514 | 347.279 | 933.091   | 14.737 | 48.182  | 202.399 |
|                         | Leaves    | 42    | 791    | 151 | 194   | 368   | 784   | 40.987  | 175.244   | 7.992  | 2.798   | 76.460  |
|                         | Branches  | 660   | 3.878  | 347 | 341   | 757   | 3.473 | 192.308 | 358.293   | 22.212 | 6.080   | 108.033 |
| E. benthamii (P2)       | Stembark  | 189   | 1.441  | 203 | 122   | 271   | 2.907 | 75.968  | 393.553   | 35.754 | 3.507   | 75.873  |
|                         | Stemwood  | 2.228 | 8.795  | 662 | 2.692 | 5.071 | 5.437 | 544.211 | 1.376.084 | 49.995 | 68.651  | 220.141 |
|                         | Leaves    | 49    | 798    | 121 | 216   | 322   | 797   | 34.868  | 182.763   | 12.979 | 5.608   | 83.607  |
|                         | Branches  | 645   | 3.482  | 319 | 179   | 520   | 2.981 | 140.612 | 152.949   | 25.284 | 9.421   | 120.734 |
| E. saligna              | Stembark  | 466   | 1.891  | 239 | 110   | 269   | 2.989 | 88.700  | 268.164   | 31.023 | 4.206   | 137.632 |
|                         | Stemwood  | 1.353 | 12.391 | 758 | 2.103 | 2.803 | 4.807 | 552.606 | 905.966   | 36.364 | 155.370 | 234.061 |
|                         | Leaves    | 47    | 817    | 167 | 155   | 285   | 798   | 51.850  | 158.141   | 9.962  | 3.279   | 66.107  |
| F I "                   | Branches  | 556   | 4.047  | 419 | 237   | 564   | 3.307 | 156.571 | 224.899   | 21.106 | 5.790   | 131.794 |
| E. aunnu                | Stembark  | 247   | 2.379  | 174 | 109   | 312   | 4.018 | 78.002  | 330.696   | 31.254 | 3.326   | 106.134 |
|                         | Stemwood  | 1.317 | 11.439 | 738 | 1.431 | 1.807 | 5.279 | 363.615 | 1.071.303 | 41.925 | 51.065  | 352.245 |
|                         | Leaves    | 54    | 1.014  | 160 | 239   | 465   | 988   | 65.593  | 236.128   | 11.878 | 4.472   | 96.073  |
| <b>F</b>                | Branches  | 657   | 5.269  | 294 | 265   | 1.009 | 3.892 | 159.548 | 317.854   | 21.379 | 10.236  | 134.777 |
| E. uroglobulus          | Stembark  | 374   | 2.356  | 154 | 129   | 339   | 2.823 | 70.113  | 363.003   | 33.799 | 4.299   | 112.953 |
|                         | Stemwood  | 1.100 | 12.617 | 626 | 2.265 | 5.519 | 4.376 | 770.081 | 938.682   | 14.277 | 95.103  | 294.774 |
|                         | Leaves    | 47    | 825    | 130 | 187   | 252   | 776   | 32.552  | 154.162   | 13.421 | 5.086   | 78.057  |
|                         | Branches  | 1.241 | 4.467  | 319 | 197   | 538   | 3.803 | 205.480 | 218.341   | 20.629 | 5.791   | 117.012 |
| E. urograndis           | Stembark  | 525   | 1.684  | 227 | 107   | 297   | 2.914 | 117.801 | 310.776   | 17.681 | 3.518   | 145.423 |
|                         | Stemwood  | 1.145 | 11.475 | 584 | 1.811 | 3.645 | 5.634 | 322.119 | 682.490   | 32.734 | 98.058  | 210.872 |

285

In general, the highest values of NUE were found in micronutrients, where Cu stoodout in all biomass components but presented greater values in the stemwood. However, Mn

had a lower NUE in most components, with the exception of the stemwood, in which the lowest NUE was found for Fe. For this component, nutrient use efficiency decreased in the following order: Cu > B > Zn > Mn > Fe.

291 In relation to macronutrients, P stood out as the most utilized element in the 292 stemwood. In contrast, N presented the least efficiency in the leaves. The NUE of the 293 stemwood for macronutrients decreased in the following order in most genotypes: P > S > SMg > Ca > N > K, with the exception of *E. uroglobulus* in which Mg was higher than S. 294 295 Similar results, although with inversion in the distribution of some nutrients, were reported by [18] while studying *E. urograndis* at the age of five in Seropédica, RS, Brazil (P > Mg > 296 297 Ca > N > K); by [17] while evaluating the provenance of *E. grandis* and *E. saligna* in forest 298 sites of São Paulo, Brazil (P > Mg > K > N > Ca); and by [5] while studying *E. urograndis* at two years of age in Botucatu, São Paulo, Brazil (P > Mg > S > N > K > Ca). The 299 300 variation in nutrient use efficiency can occur due to several factors, such as: the intrinsic characteristics of the genotype, the failure to obtain optimal or critical nutritional balance 301 between the soil and the plant and water conditions [17]. 302

303 In general, the lowest NUE values were found in the leaves, with the exception of 304 some elements, in which the lowest coefficients were observed in the stembark, as was the 305 case for Ca, Mg, and Mn in the clones E. benthamii (P1) and E. saligna; for K, Ca, Mg, and 306 Mn in E. uroglobulus; for Ca and Mg in E. benthamii (P2); for Ca and Mn in E. 307 *urograndis*; and for Ca in *E. dunnii*. In this context, the harvesting of the leaves will result in the greatest export of nutrients, especially N and K. In contrast, considering only the 308 309 harvesting of the stemwood with bark, Ca and Mg are the limiting nutrients in terms of the productivity of the next cycle, but this limitation may be reduced if only the wood is 310

harvested. In relation to the other biomass components, P presented the highest NUE for the leaves and branches in most genotypes, except for *E. benthamii* (P1) where S had the highest value. As for the bark of the shaft, the largest NUE was found for S.

314 Taking into account the greater commercial interest in stemwood, it was observed 315 that the highest biomass yields were accompanied with the highest values of nutritional 316 efficiency for some elements, that is, the highest efficiency values for E. uroglobulus (P, 317 Mg, and B) and E. benthamii (P2) (N, Ca, Cu, and Fe). Regarding the other genotypes, E. 318 saligna showed higher efficiency for K and Mn, E. urograndis for S, and E. dunnii for Zn. 319 The high efficiency presented by a species in the use of nutrients implies that it has a lower nutritional requirement, therefore, a parameter of great utility in the selection of species to 320 321 be used in reforestation, especially in nutrient poor soils [22].

322

### 323 4. CONCLUSIONS

324 The different genotypes of *Eucalyptus*, under the same edaphoclimatic conditions,325 present different biomass production.

There are a great variation in the concentration and allocation of the amount of nutrients in the different genotypes of *Eucalyptus* and in the different components of the same genotypes.

The highest biomass yields were accompanied with the highest values of nutritional efficiency for some elements, that is, the highest efficiency values for *E. uroglobulus* (P, Mg, and B) and *E. benthamii* (P2) (N, Ca, Cu, and Fe).

332

| 335 | 5. REFERENCES                                                                                |
|-----|----------------------------------------------------------------------------------------------|
| 336 | 1. Albaugh TJ, Rubilar RA, Maier CA, Acuña EA, Cook RL. Biomass and nutrient mass of         |
| 337 | Acacia dealbata and Eucalyptus globulus bioenergy plantations. Biomass and Bioenergy.        |
| 338 | 2017; 97: 162-171.                                                                           |
| 339 |                                                                                              |
| 340 | 2. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. Köppen's climate           |
| 341 | classification map for Brazil. Meteorologische Zeitschrift. 2013; 22 (6): 1-18.              |
| 342 |                                                                                              |
| 343 | 3. Bellote AFJ, Silva HD. Sampling techniques and nutritional evaluations in eucalypt        |
| 344 | plantations, In: Gonçalves JLM, Benedetti V. Forest nutrition and fertilization. Piracicaba: |
| 345 | IPEF; 2004.                                                                                  |
| 346 |                                                                                              |
| 347 | 4. Binkley D, Campoe OC, Alvarez C, Carneiro RL, Cegatta I, Stape JL. The interactions       |
| 348 | of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and          |
| 349 | Uruguay. Forest Ecology and Management. 2017; 405: 271-283.                                  |
| 350 |                                                                                              |
| 351 | 5. Eufrade Junior HJ, Melo RX, Sartori MMP, Guerra SPS, Ballarin AW. Sustainable use         |
| 352 | of eucalypt biomass grown on short rotation coppice for bioenergy. Biomass and               |
| 353 | Bioenergy. 2016; 90: 15-21.                                                                  |
| 354 |                                                                                              |

| 355 | 6. Gatto A, Barros NF, Novais RF, Silva IR, Leite HC, Villani EMA. Estoque de carbono        |
|-----|----------------------------------------------------------------------------------------------|
| 356 | na biomassa de plantações de eucalipto na região centro-leste do estado de Minas Gerais.     |
| 357 | Revista Árvore. 2011; 35 (4): 895-905.                                                       |
| 358 |                                                                                              |
| 359 | 7. Gonçalves JLM, Alvares CA, Higa AR, Silva LD, Alfenas AC, Stahl J et al. Integrating      |
| 360 | genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian |
| 361 | eucalypt plantations. Forest Ecology and Management. 2013; 301: 6-27.                        |
| 362 |                                                                                              |
| 363 | 8. Guimarães CC, Schumacher MV, Witschoreck R, Souza HP, Santos JC. Biomassa e               |
| 364 | nutrientes em povoamento de Eucalyptus dunnii Maiden no Pampa Gaúcho. Revista                |
| 365 | Árvore. 2015; 39 (5): 873-882.                                                               |
| 366 |                                                                                              |
| 367 | 9. Guo LB, Sims REH, Horne DJ. Biomass production and nutrient cycling                       |
| 368 | in Eucalyptus short rotation energy forests in New Zealand .: I: biomass and nutrient        |
| 369 | accumulation. Bioresource Technology. 2002; 85 (3): 273-283.                                 |
| 370 |                                                                                              |
| 371 | 10. Hernández J, Pino A, Salvo L, Arrarte S. Nutrient export and harvest residue             |
| 372 | decomposition patterns of a Eucalyptus dunnii Maiden plantation in temperate climate of      |
| 373 | Uruguay. Forest Ecology and Management. 2009; 258 (2): 92-99.                                |
| 374 |                                                                                              |
| 375 | 11. IBÁ, Indústria Brasileira de árvores: ano base 2016/IBÁ. Brasília/DF, 2016.              |
| 376 |                                                                                              |
|     |                                                                                              |

| 377 | 12. Kuyah S, Dietz J, Muthuri C, Noordwijk M, Neufeldt H. Allometry and partitioning of    |
|-----|--------------------------------------------------------------------------------------------|
| 378 | above- and Bellow-ground biomass in farmed eucalyptus species dominant in Western          |
| 379 | Kenyan agricultural landscapes. Biomass and Bioenergy. 2013; 55 (1): 276-284.              |
| 380 |                                                                                            |
| 381 | 13. Miyazawa M, Pavan MA, Muraoka T. Análises químicas de tecido vegetal. In: Silva,       |
| 382 | F.C. Manual de análises químicas de solos, plantas e fertilizantes. Brasília: Embrapa      |
| 383 | Comunicação para Transferência de Tecnologia, p. 171-224; 1999.                            |
| 384 |                                                                                            |
| 385 | 14. Pérez-cruzado C, Rodríguez-Soalleiro R. Improvement in accuracy of aboveground         |
| 386 | biomass estimation in Eucalyptus nitens plantations: Effect of bole sampling intensity and |
| 387 | explanatory variables. Forest Ecology and Management. 2011; 261(1): 2016-2028.             |
| 388 |                                                                                            |
| 389 | 15. Ryan MG, Stape JL, Binkley D, Fonseca S, Loos RA, Takahashi EM et al. Factors          |
| 390 | controlling Eucalyptus productivity: How water availability and stand structure alter      |
| 391 | production and carbon allocation. Forest Ecology and Management. 2010; 259 (9): 1695-      |
| 392 | 1703.                                                                                      |
| 393 |                                                                                            |
| 394 | 16. Salvador SM, Schumacher MV, Viera M, Stahl J, Consensa CB. Biomassa e estoque de       |
| 395 | nutrientes em plantios clonais de Eucalyptus saligna Smith. em diferentes idades. Scientia |
| 396 | Forestalis. 2016; 44 (110): 311-321.                                                       |
|     |                                                                                            |

| 398 | 17. Santana RC, Barros NF, Neves JCL. Eficiência de utilização de nutrientes e          |
|-----|-----------------------------------------------------------------------------------------|
| 399 | sustentabilidade da produção em procedências de Eucalyptus grandis e Eucalyptus saligna |
| 400 | em sítios florestais do estado de São Paulo. Revista Árvore. 2002; 26 (4): 447-457.     |
| 401 |                                                                                         |

- 402 18. Santos FM, Chaer GM, Diniz AR, Balieiro FC. Nutrient cycling over five years of
  403 mixed-species plantations of *Eucalyptus* and *Acacia* on a sandy tropical soil. Forest
  404 Ecology and Management. 2017; 384: 110-121.
- 405
- 406 19. Schumacher MV, Caldeira MVW. Estimativa da biomassa e do conteúdo de nutrientes
- 407 de um povoamento de *Eucalyptus globulus* (Labillardière) sub-espécie Maidenii. Ciência
  408 Florestal. 2001; 11(1): 45-53.
- 409

414 21. Silva FAZ, Azevedo CAV. Principal components analysis in the software assistat
415 statistical attendance. In: Word Congress on Computers in Agriculture 7, Reno-NV-USA:
416 American Society of Agricultural and Biological Engineers; 2009.

- 418 22. Silva HD, Poggiani F, Coelho LC. Eficiência de utilização de nutrientes em cinco
  419 espécies de *Eucalyptus*. Boletim de Pesquisa Florestal. 1983; (6/7): 1-8.
- 420

<sup>20.</sup> Schumacher MV, Witschoreck R, Calil FN. Biomassa em povoamentos de *Eucalyptus*spp. de pequenas propriedades rurais em Vera Cruz, RS. Ciência Florestal. 2011; 21 (1),
17-22.

| 421 | 23. Silva PHM, Poggiani F, Libaldi PL, Gonçalves AW. Fertilizer management of eucalypt         |
|-----|------------------------------------------------------------------------------------------------|
| 422 | plantations on sandy soil in Brazil: Initial growth and nutrient cycling. Forest Ecology and   |
| 423 | Management. 2013; 301: 67-78.                                                                  |
| 424 |                                                                                                |
| 425 | 24. Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ. Análise de solo, plantas       |
| 426 | e outros materiais. (2.ed.). Porto Alegre, RS: Departamento de Solos, UFRGS; 1995.             |
| 427 |                                                                                                |
| 428 | 25. Viera M, Schumacher MV, Trüby P, Araújo EF. Biomassa e nutrientes em um                    |
| 429 | povoamento de Eucalyptus urophylla x Eucalyptus globulus, em Eldorado do Sul-RS.               |
| 430 | Revista Ecologia e Nutrição Florestal. 2013; 1 (1) :1-13.                                      |
| 431 |                                                                                                |
| 432 | 26. Viera M, Bonacina DM, Schumacher MV, Calil FN, Caldeira MVW, Watzlawick LF.                |
| 433 | Biomassa e nutrientes em povoamento de Eucalyptus urograndis na Serra do Sudeste-RS.           |
| 434 | Semina: Ciências Agrárias. 2012;33 (1): 2481-2490.                                             |
| 435 |                                                                                                |
| 436 | 27. Viera M, Schumacher MV, Bonacina DM, Ramos LOO, Rodríguez-Soalleiro R.                     |
| 437 | Biomass and nutrient allocation to aboveground components in fertilized Eucalyptus             |
| 438 | saligna and E. urograndis plantations. New Forests. 2017; 47: 1-18, 2017.                      |
| 439 |                                                                                                |
| 440 | 28. Zhang H, Guan D, Song M. Biomass and carbon storage of <i>Eucalyptus</i> and <i>Acacia</i> |
| 441 | plantations in the Pearl River Delta, South China. Forest Ecology and Management. 2012:        |
| 442 | 277: 90-97.                                                                                    |
|     |                                                                                                |