DIFFERENT LIGHT RADIATION INTENSITIES ON COTTON: A PHYSIOLOGICAL APPROACH

3

5

6 7

8

9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24

1

2

Abstract: The luminosity and the temperature are factors that act directly in the photosynthetic process, where the elevation of the luminous intensity can cause a reduction in the assimilation of carbon, which consequently the development of the cotton. The objective of this work was to know the physiological parameters of cotton when subjected to different artificial light intensities. A randomized complete block design was used in a 2x5 factorial scheme, with two varieties of cotton: IMA5801B2RF e IACRDN, interacting with five artificial light intensities, being interacting with 5 densities of light: 0 (control); 500; 1000; 1500 e 2000 µmol m⁻² s⁻¹ of photosynthetically active radiation (PAR) provided by LED bulbs. The following variables were set: rate of CO₂ assimilation (A); transpiration (E); stomatal conductance (GS); inner CO₂ concentration in the substomatic chamber (Ci) and efficient use of water (EUW) in which a portable device of gas exchange was used (Infra-Red Gas Analyzer - IRGA, marca ADC BioScientific Ltd, modelo LC-Pro). The cotton varieties responded positively under different luminous intensities until reaching the point of maximum saturation between 1400 a 1600 µmol m⁻¹ s⁻¹ of light, which provides a better rate of CO₂ assimilation (A); concentration of CO₂ in the substamatic chamber (Ci) and efficient use of water (EUW). Leaf transpiration (E) and stomatal conductance of the cotton showed a positive linear response with increasing light intensity. The ideal luminous intensity for the use of Infra-Red Gas Analyzer - IRGA was 1500 µmol m⁻¹ s⁻¹ in the cotton crop.

2526

Keywords: Gossypium L .; brightness; CO₂ assimilation; photosynthesis rate

27 28

29

30

31

32 33

34

Introduction

Belonging to the Malvaceae family, cotton (*Gossypium* L.) is cultivated as a fiber source for the production of fabrics, as well as crushing of its seeds for the production of linoleic and linolenic oils that are used in the cosmetics or animal feed industry. Because it is an important crop for the Brazilian agricultural scenario, since it makes an alternative in crop rotation in the production of large crops such as corn and soybeans, cotton can suffer

interference during its developmental stages due to climatic factors such as water stresses, pests and diseases and even light intensity, especially in the establishment and reproduction phases [1].

Light is the primary source of energy related to photosynthesis and morphogenetic phenomena, it is one of the main factors that influence plant growth and development [2; 3; 4]. With the increase in light intensity can reduce the photosynthetic activity through photoinhibition, this response can be variable between plant species and varieties [5; 6]. The luminous intensity and the temperature are factors that can cause the limitation of the photosynthetic process and also contribute to the reduction of the carbon acquisition, that consequently causes a reduction in its rate of growth [7].

The plants when submitted to medium intensity light show less transpiration when compared to plants that are exposed to more intense light intensity, that is, the less light is a limiting factor for leaf transpiration [8], which evidences the importance of its in the physiological process of the plant, since its action is directly linked in the activation of enzymes related to carbon fixation and in the control in the opening and closing in the stomatal cleft [9; 10; 11].

It is important to emphasize that the understanding in the balance of intensity levels and the duration of exposure to light that plants can be submitted makes it an important factor to know the responses of plants when subjected to this light stress. When exposed to direct low-intensity radiation, the plants become more efficient in carrying out their photosynthesis, since the process is started in a gradual way, which does not compromise the pathways of the electrons by the photosystems, but with the increase of this intensity of photons that affect the leaves, the plants present an elevation in the photolysis of the water, which results in a saturation of electrons, that happens to cause a reduction in the rate of assimilation of CO₂ and in the efficient use of water [12; 13].

In view of the above, this work had as objective to know the physiological parameters of different intensities of light radiation on the cotton.

Material e Methods

 The experiment was carried out in December 2018, at the Paulista Agribusiness Technology Agency (APTA), located in the city of Adamantina, State of São Paulo, with geographic coordinates 21°40'24.024"S and 51°8'31.088"W, with an altitude of approximately 420 m. The climate of the region is characterized as Aw according to Köppen, with rainy summers and dry winters; with an annual average temperature of 22.1°C and 1204 mm of rain accumulated in the year.

The experiment was carried out in randomized blocks, in a factorial scheme of 2x5, being 2 cultivars of cotton, IMA5801B2RF and IAC-RDN, interacting with 5 densities of light: 0 (control); 500; 1000; 1500 e 2000 μ mol m⁻² s⁻¹ of photosynthetically active radiation (PAR) provided by LED bulbs.

The area soil was classified as Red-yellow Latosol [14] and presented the following chemical attributes (Table 1).

Table 1: Chemical attributes of the soil of the experiment area at the time of sowing of cotton.

or sowing or cotton.										
pН	OM	Р	K	Ca	Mg H+Al	Al	SB	CTC	V%	m%
CaCl ₂	g dm ⁻	mg dm ⁻³				- mmol	dm ⁻³ -			
4.6	12.0	26.0	2.9	8.0	4.0 20.0	1.0	14.9	34.9	43.0	6.0

SB: Sum of bases; V%: Saturation per bases; m%: Saturation per aluminum.

Each block consisted of five rows of five meters in length, spaced 0.9 m between rows, where the cotton was sown with a population intensity of 45 thousand plants per hectare. Soil was fertilized as the needs of cotton culture [15]. During the experiment, the cotton was watered until reaching the field capacity, and the phytosanitary treatments of the crop were made.

Thirty days after the sowing, five plants were randomly selected within each replicate, where four readings were performed on the leaves fully expanded from the apex of the plant, totaling 20 readings for each light intensity in the different cotton varieties, the following parameter were set: rate of CO_2 assimilation (A – μ mol CO_2 m⁻² s⁻¹); transpiration (E – mmol H_2O m⁻² s⁻¹); stomata conductance (GS – mol H_2O m⁻² s⁻¹); inner CO_2 concentration in the substomatic chamber (Ci – μ mol mol⁻¹), with 380 ppm of CO_2 , under 28° C temperature of chamber, a portable device of gas exchange was used (Infra-

Red Gas Analyzer - IRGA, ADC BioScientific Ltd, modelo LC-Pro); and efficient use of water (EUW) by applying the following mathematical formula:

97 98

96

$$EUW = \frac{A}{E}$$

99 100

101

102

103

104

All variables were submitted to the F test (p<0.05) and analyses of regression were applied to the intensities of artificial light, in which their standards were tested: linear, quadratic and cubic. Cotton varieties were submitted to Scott&Knott Test, at 5% probability [16]. Statistic program R was used [17].

105

106

107

108

Results

IMA5801B2RF showed higher mean values for CO₂ assimilation (A) and water efficiency (EUW), with a difference of 4.68% and 5.79%, respectively, in relation to the IAC-RDN variety, as demonstrated in Table 2.

109110

Table 2: Mean values of rate of CO_2 assimilation (A – μ mol CO_2 m⁻² s⁻¹); transpiration (E – mmol H_2O m⁻² s⁻¹); stomata conductance (GS – mol H_2O m⁻² s⁻¹); inner CO_2 concentration in the substomatic chamber (Ci – μ mol mol⁻¹) and the efficient use of water (EUW - mol CO_2 mol H_2O^{-1}) and analysis of variance of the cotton regressions when exposed to different intensities of light radiation, where the models were tested: linear,

quadratic and cubic.							
Variety (V)			Α	E	GS	Ci	EUW
IMA5801B2RF			16.66a	3.48	0.53	275.63b	4.49a
IAC-RDN			15.88b	3.45	0.53	282.24a	4.23b
CV%			12.07	11.54	26.20	6.21	14.38
OM			16.27	3.46	0.53	278.93	4.36
Variety (V) of F	8.04**	0.28Ns	0.06Ns	7.28**	8.47**		
Radiation (R) of F			1320.22**	84.09**	42.27**	639.20**	954.15**
VxR of F			5.36**	0.76Ns	1.73Ns	4.06**	4.36**
	VF	DF		Regressions middle square			
	Radiation	4	2394.8730	26.7034	1.7038	137064.375	264.5401
IMA5801B2RF	Residue	96	2.8655	0.1641	0.0201	264.7738	0.3051
	Regression	_1	Q**	L**	L**	Q**	Q**
	Radiation	4	1628.0518	24.4440	1.5699	88253.0035	188.8543
IAC-RDN	Residue	96	5.7066	0.1602	0.0192	378.7123	0.5611

CV: Coefficient of variation. OM: Overall mean. F: value of F calculated in the analysis of variance; Ns p=0.05; *0.01=<p<0.05; **p<0.01. The averages in the column followed by the same letter do not differ statistically from each other. The Scott&Knott test was applied at a 5% probability level. Ns- p>=0.05;

Q**

Q**

Q**

Regression

There was no difference between the varieties in the transpiration (E) and stomatal conductance (GS) parameters when the cotton was exposed to different light intensities (Table 2). However, the IAC-RDN variety showed a greater mean in the internal CO₂ concentration in the substamatic chamber (Ci) than a difference of 2.34% more in relation to IMA5801B2RF.

When the light intensities are taken into account, the varieties responded in a similar way in all parameters evaluated as shown in Table 2. The varieties presented a positive quadratic response to the CO_2 assimilation rate, as shown in Figure 1, where the IMA5801B2RF variety presented a maximum point up to 1521 μ mol m⁻² s⁻¹ while the IAC-RDN variety had a maximum point of 1673 μ mol m⁻² s⁻¹.

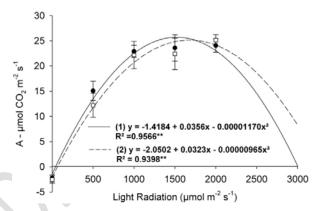


Fig 1. CO₂ assimilation rate (A) of the cotton when exposed to different intensities of light radiation.

(1) IMA5801B2RF e (2) IAC-RDN.

While there was an increase in light intensity, the cotton varieties presented a positive linear response to the transpiration parameter of the leaf (E) as shown in Figure 2, which allows further studies to find out the maximum incidence of light for this variable.

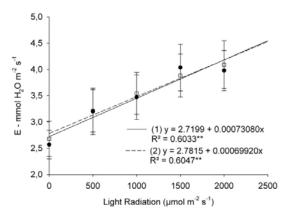


Fig. 2. Transpiration of cotton leaf (E) when exposed to different intensities of light radiation.

(1) IMA5801B2RF e (2) IAC-RDN.

Similarly, the varieties exhibited a positive response to the increase in light intensity on leaf perspiration (E), as shown in Figure 3. Again, the understanding of these responses regarding leaf water loss when occurring the increase in the luminous intensity, since the determination of the point of maximum response of this variable becomes an important tool in the decision making in the cotton cultivation, since it can guarantee a better understanding of the water availability requirements.

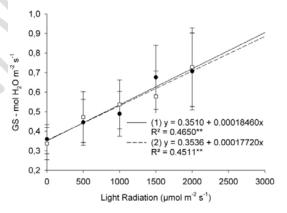


Fig. 3. Stomatal conductance (GS) of cotton when exposed to different intensities of light radiation.

(1) IMA5801B2RF e (2) IAC-RDN.

In contrast, the internal CO_2 concentration in the sub-static chamber (Ci) of the cotton cultivars presented negative quadratic responses when there was an increase in light intensity, where a minimum point of 1385 μ mol m⁻² s⁻¹ was observed in the variety IMA5801B2RF and 1528 μ mol m⁻² s⁻¹ for the IAC-RDN variety, as shown in Figure 4.

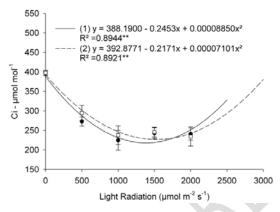


Fig. 4. Internal CO₂ concentration in the substamatic chamber (Ci) of the cotton when exposed to different intensities of light radiation.

(1) IMA5801B2RF e (2) IAC-RDN.

With the increase in the intensity of the light radiation on the leaves, the cotton varieties presented a quadratic positive response in the parameter EW (water efficient use) as shown in Figure 5, where the maximum points of 1375 μ mol m⁻² s⁻¹ in the variety IMA5801B2RF and 1489 μ mol m⁻² s⁻¹ in the IAC-RDN.

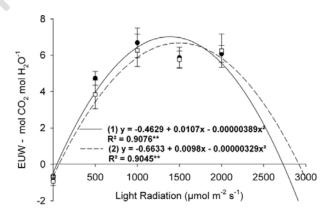


Figure 5: Uso eficiente da água (EUW) do algodoeiro quando exposto em diferentes intensidades de radiação luminosa.

(1) IMA5801B2RF e (2) IAC-RDN.

Negative correlations were observed between the internal CO2 concentration variable in the subestomatic chamber (Ci) interacting with leaf transpiration (E); stomatal conductance (GS); rate of assimilation of CO2 (A) and water efficiency (EUW) as shown in Table 3.

Table 3: Pearson correlation coefficient *r* values among the analyzed variables of cotton when submitted to different light intensity.

	rando or cotton mich calcinition to annothing in michaely.							
	Ci	Е	GS	Α				
E	-0.5733**							
	< 0.0001							
GS	-0.3943**	0.94156**						
	< 0.0001	< 0.0001						
Α	-0.9432**	0.79094**	0.64496**					
	< 0.0001	< 0.0001	< 0.0001					
EUW	-0.9955**	0.61386**	0.44222**	0.96071**				
	< 0.0001	< 0,0001	< 0.0001	< 0.0001				

Ns-p>=0.05; *0.01=<p<0.05; **p < 0.01. rate of CO₂ assimilation (A – μ mol CO₂ m^{-2} s⁻¹); transpiration (E – μ mol H₂O μ 0 m⁻² s⁻¹); stomata conductance (GS – μ 0 mol H₂O μ 0 mol concentration in the substomatic chamber (Ci – μ mol mol and the efficient use of water (EUW - μ 0 mol CO₂ mol H₂O⁻¹).

However, positive correlations were observed between the variable leaf transpiration (E) interacting with the stomatal conductance (GS); rate of assimilation of CO_2 (A) and efficient use of water (EUW). In the same way, stomatal conductance (GS) presented a positive correlation with CO_2 assimilation rate (A) and water efficiency (EUW) and, finally, the rate of assimilation of CO_2 (A) with the efficient use of water (EUW) showed a positive correlation as shown in Table 3.

DISCUSSION

The plant can respond in different ways with the change of the environment in which it was inserted, where the luminosity is restrictive to the development of this plant, since the quality and the luminous intensities that affect the leaves alter the responses in the PSII and PSI complexes of the photosystem. leaves, which can cause changes in the photolysis of the water,

which consequently in the release of electrons during photosynthesis due to the increase or restriction of the photons that are affecting the plant [13], in this way, the ideal intensity observed is approximately 1500 μ mol m⁻¹ s⁻¹ light falling on the leaves of the cotton plant.

It is worth noting that, even at different periods of the day, a variation occurs in the incidence of light energy, which influences the CO₂ assimilation rate of the leaves [18] demonstrate this phenomenon that occurs naturally during the day.

The significant negative correlation between the internal concentration of CO₂ in the sub-static chamber (Ci) and the other variables as shown in Table 4 was already expected, since the internal concentration of CO₂ is reduced while the carbon fixation in the dry matter of the cotton occurs via Rubisco molecule, which results in the elevation of the CO₂ assimilation rate (A). In this way, this interaction can be verified when one observes Figure 1 and Table 2, where the absence of light on the leaves caused a negative assimilation rate (A), while the internal CO₂ concentration was high (Figure 4). and with the increase in light radiation, the stomatal were opened, which consequently there was an increase in the transpiration rate (E) (Figure 2) and the stomatal conductance (GS) (Figure 3) and thus led to a reduction in concentration (Ci) due to a possible dilution effect, where CO₂ at high internal concentrations was released to the environment due to the stomatal opening and its fixation to dry mass [13].

It is worth mentioning that the understanding of the mechanism of opening and closing the stomatal cleft can be compromised or enhanced with nutritional stress factors; (Table 1), and the availability of H₂O in the soil-plant-atmosphere system [10; 11] and even internal morphology of the leaves of each species and varieties [3; 4; 5; 6]. As previously mentioned, stomatal conductance presents a positive correlation with the other variables (Table 3).

The positive correlation between the CO_2 assimilation rate (A) interacting with the use of leaf transpiration (E) was already expected, since the relationship between these two variables yields the efficient use of water (EUW), which was elevated with the increase of light radiation between 1300 and 1500 μ mol m⁻² s⁻¹ (Figure 5). When gas exchange occurs through the stomatal, the plant needs a hydrostatic pressure (Kleaf) to efficiently use water (EUW) in the photosynthetic system, where water stress directly influences the

development of different plant species in the initial phase [5; 11; 7]. Thus, more in-depth studies are needed on the relationship between these variables, since species and varieties present different responses between them.

CONCLUSIONS

Cotton varieties responded positively under different light intensities until reaching the maximum saturation point between 1400 and 1600 µmol m⁻¹ s⁻¹ of light, which provides a better rate of assimilation of CO₂ (A); concentration of CO₂ in the substamatic chamber (Ci) and efficient use of water (EUW).

Leaf transpiration (E) and stomatal conductance of the cotton showed a positive linear response with increasing light intensity.

The ideal luminous intensity for the use of Infra-Red Gas Analyzer - IRGA was 1500 μ mol m⁻¹ s⁻¹ in the cotton crop.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

COMPETING INTERESTS DISCLAIMER:

Authors have declared that no competing interests exist. The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

REFERENCES

- 1. Echer FR, Zanfolin PRL, Moreira ACM, Santos ACP, Gorni PH. Root growth and carbohydrate partitioning in cotton subjected to shading in the initial phase. Ciência Rural. 2016; 49(1):1-8. http://dx.doi.org/10.1590/0103-8478cr20180749
- 2. Holt JS. Plant response to light: a potencial tool for weed management. Weed Science. 1995; 43: 474-482.

- 3. Stewart, JJ, Polutchko SK, Adams Iii, WW, Cohu CM, Coleman A, Wenzl
 CA, Demmig-Adams B. Light, temperature and tocopherol status
 influence foliar vascular anatomy and leaf function in Arabidopsis
 thaliana. Physiologia Plantarum. 2017; 160(1):98-110.
 http://dx.doi.org/10.1111/ppl.12543
- 4. Feldman AB, Leung H, Baraoidan M, Elmido-Mabilangan A, Canicosa I, 247 Quick WP, Sheehy J, Murchie EH. Increasing leaf vein density via 248 249 mutagenesis in rice results in an enhanced rate of photosynthesis, 250 smaller cell sizes and can reduce interveinal mesophyll cell number. Frontiers In Plant Science. 2017; 8:1-10. 251 http://dx.doi.org/10.3389/fpls.2017.01883 252
- 5. Xiong D, Douthe C, Flexas J. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Plant, Cell & Environment. 2018; 41(2):436-450. http://dx.doi.org/10.1111/pce.13111
- 6. Rockwell FE, Holbrook NM. Leaf Hydraulic Architecture and Stomatal Conductance: A Functional Perspective Plant Physiology. 2017; 174(4):1996-2007. http://dx.doi.org/10.1104/pp.17.00303
- 7. Araújo SAC, Deminicis BB. Photoinhibition of the Photosynthesis. Brazilian Journal of Biosciences. 2006; 7(4): 463-472. In Portuguese
- 263 8. Vieira TO, Degli-Esposti MSO, Souza GM, Rabelo GR, Vitória AP.
 264 Photoacclimation capacity in seedling and sapling of *Siparuna*265 *guianensis* (Siparunaeae): Response to irradiance gradient in tropical
 266 forest. Photosynthetica. 2015; 53(1):11-22.
 267 http://dx.doi.org/10.1007/s11099-015-0073-x
- 9. Teixeira MC, Vieira TO, Almeida TCM, Vitória AP. Photoinhibition in Atlantic Forest native species: short-term acclimative responses to high irradiance. Theoretical And Experimental Plant Physiology. 2015; 27(3-4):183-189. http://dx.doi.org/10.1007/s40626-015-0043-5
- 10. Bellasio C, Quirk J, Buckley TN, Beerling DJ. A dynamic hydromechanical and biochemical model of stomatal conductance for C4 photosynthesis. Plant Physiology. 2017; 175(1):104-119. http://dx.doi.org/10.1104/pp.17.00666

- 276 11.Li Y, Li H, Li Y, Zhang S. Improving water-use efficiency by decreasing 277 stomatal conductance and transpiration rate to maintain higher ear 278 photosynthetic rate in drought-resistant wheat. The Crop Journal. 2017; 279 5(3):231-239. http://dx.doi.org/10.1016/j.cj.2017.01.001
- 12. Atroch EMAC, Soares AM, Alvarenga AA, Castro EM. Growth, chlorophyll content, biomass distribution and anatomical characteristics of young plants of *Bauhinia forficata* link submitted to shading. Ciência e Agrotecnologia. 2001; 25(4):853-862. In Portuguese
- 13. Taiz L, E Zeiger. Fisiologia vegetal. 5. ed. Porto Alegre: Artmed. 2013;
 918p.
- 14. Embrapa Empresa Brasileira de Pesquisa Agropecuária. Sistema brasileiro de classificação de solos. 3.ed. Brasília. 2013; 353p.
- 15. Raij B, Cantarella H, Quaggio JÁ, Furlani AMC. Recomendações de adubação e calagem para o Estado de São Paulo. 2.ed. Campinas: IAC. 1996; 285p.
- 16. Banzatto DA, Kronka SN. Experimentação Agrícola. 4.ed. Funep. 2013; 237p.
- 17.R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2009. ISBN 3-900051-07-0, URL http://www.R-project.org
- 18. Kim S, Nusinow DA, Sorkin ML, Pruneda-Paz J, Wang X. Interaction and regulation between lipid mediator phosphatidic acid and circadian clock regulators in Arabidopsis. The Plant Cell. 2019; 1-58. http://dx.doi.org/10.1105/tpc.18.00675