1	Original Research Article
2	
3	CHEMICAL PROCESS ABSORPTION COLUMN DESIGN FOR
4	CO ₂ SEQUESTRATION
5	
6	Abstract
7	The design of a prototype chemical process absorption column was carried out to facilitate the
8	sequestration of CO ₂ from flue gas emanating from an exhaust point of a power generating set.
9	Factors such as ambient temperature and atmospheric pressure where factored into consideration
10	before the fabrication of the absorption column. The rate of the absorbing liquid is 0.1056kg/min
11	and contains 5% mole/mole carbon (iv) oxide. Also the energy and material balance of the entire
12	sequestration process was done. Finany the equipment design for the process was carried out.
14	Keyword: material balance, energy balance, CO ₂ sequestration, ammonia, equipment design,
15	absorption column, knockout drum, absorber, evaporative gas cooler, solution cooler, solution
16	heat exchanger, flash drum, stripper, and reboiler.
17	
18	1. Introduction
19	Plant design is a technical term that embraces all engineering aspects involved in the
20	development of either a new, modified, or expanded industrial plant (Coulson and Richardson,
21	1968). It involves the making of economic evaluations of new processes, design industrial pieces
22	of equipment for the proposed new venture or developing a plant layout for co-ordination of the
23	overall operation. The development of a process involves many different steps starting from the
24	inception of the basic idea. The atmospheric concentration of carbon (IV) oxide, i.e., the most
25	critical greenhouse gas, has increased from 280 ppm in the pre-industrial age to more than 370
26	ppm now, and is expected to increase above 500 ppm by the end of this century, Watson R.T
27	(2001). This is recognized to be due to anthropogenic activities, particularly burning of fossil
28	fuels and land used changes, and has been accomplished by a corresponding increase of the
29	earth's average temperature.

Present strategies rely on improving the efficiency in energy use, on reducing fossil fuel consumption, and on using renewable energy sources or nuclear power plants. However, the continuing increase in the world population together with concomitant growth in energy consumption and the industrial development in developing countries like china and India has posed a challenge in the efforts to reduce greenhouse gas emissions. Thus, the inevitable way to keep within this country the overall CO_2 load of the atmosphere and hydrosphere below unbearable levels is that of complementing emission reduction efforts by techniques to capture CO_2 from point sources before emission or to capture it from the air stream after emission, and to store it permanently outside the atmosphere.

39

40 2. Materials and Methods

41 **2.1 Materials**

The materials made up of glass wares were purchased at science apparatus market; they were put together alongside other components fabricated to make a complete reactor. The equipment has an absorption column, flask containing the ammonia solution, reservoir to house the content of the mixture in the aftermath of the reaction, openings for flue gas entrant and exit point after the reaction, non-heat sensitive pipe connected to the entry point of the absorption column and the exhaust pipe of the gasoline generating set.

48 **2.2 Methodology**

Due to the nature of the equipment made of glassware and in order to control the experiment, 49 50 standard conditions of ambient temperature and atmospheric pressure were adopted for the process and also for the flow rate of the solution into the absorption column. Three 51 52 parameters/independent variables were used which are concentration of solvent, contact time and 53 volume of solvent. Due to the nature of the equipment made of glassware and in order to control the process, standard conditions of ambient temperature and atmospheric pressure were adopted 54 for the process. Three independent variables were used; which are concentration of solvent 55 ranging from 2-10 mol/dm³, contact time of 20-100 seconds and volume of solvent between 40-56 57 200 ml.

For the carbon sequestration to be achieved, 10 mol/dm³ concentration of aqueous ammonia was 58 prepared and poured into a flask containing ammonia solution which supplies the solution to the 59 absorber, the aqueous ammonia was evenly distributed across the inner surface of the column 60 while in contact with the plates. The petrol generating set was turned on while the gas analyzer 61 detected the components and quantity of gases before it being charged into the heat exchanger. 62 The heat exchanger helped to attain the desired temperature of 40° C before the flue gas was 63 charged into the absorption column from the entry point near the base of the absorption column. 64 The flue gas in the column contacted with the aqueous ammonia in a counter current form for a 65

period of 60 seconds after which the tap at the exit point close to the top of the absorption column was opened and gas analyzer was used to determine the amount of CO_2 and CO leaving the column. The chemical solution is charged into the column from the top and is evenly distributed across the inner surface of the column while in contact with the plates. Gas enters through an opening at the base of the column, counter-currently contacting with the liquid as it flows up and reacts with the ammonia solution as it is beneficial to make CO_2 and aqueous contact and react vigorously.

73 Equation for the reaction:

i) CO₂ Absorption 74 $2CO_2(g) + 2NH_3(aq) + H_2O \rightarrow NH_2COONH_4(aq) + H_2CO_3$ 75 76 Ammonia Regeneration ii) 77 $NH_2COONH_4^+(aq) + H_2O \rightarrow H_2CO_3 + 2NH_3$ 78 79 About 98% recovery of CO₂ occurs and the recovery liquid is a 20% w/w NH₃ 80 **Assumptions:** The rate of the absorbing liquid is 0.1056kg/min and contains 5% mole/mole carbon 1) 81 (iv) oxide. 82 The spent air effluent analysis, 0.000347ft³/s at 30^oC, 1atm with % composition on 2) 83 dry basis of carbon (IV) oxide (3.5%), nitrogen (79%) and oxygen (17.5%). The exit 84 air is saturated with water vapour at the absorbing liquid inlet temperature of 40^{9} C. 85 Recovery of 85% CO₂. 3) 86 4) **Reaction** equation 87 **Process Details:** 88 Basis: 1 minute operation 89 **Feed Stream** 90 Stream 2: Spent air effluent (dry basis) 91 $CO_2 = 3.5\%$ 92 93 Nitrogen = 79%Oxvgen = 17.5%94 **Total volume** of spent air effluent = 0.000347Ft³/s 95 96

97 **3. Results and Discussions**

Fig.1 Experimental set-up for absorption using the prototype semi-batch column

The capturing of CO₂ from spent air effluent was achieved through the absorption of CO₂ with 102 103 ammonia solution to form ammonia carbamate which was later regenerated to recover the ammonia and CO₂. The raw gas (air effluent from a generating set) was cooled to about 40° C 104 (reaction temp.) and separated to remove any condensed water from the raw gas. Dry air effluent 105 was charged to the adsorption column. The absorber is into two sections, the absorption section 106 and wash section. In the absorption section the air was charged counter currently with ammonia 107 solution from the top and the CO₂ was absorbed to form ammonium carbamate. The off air from 108 absorption section is water washed in the wash section to remove any entrained liquid. The 109 scrubbed gas recovered as overhead is sent to the knock-out drum to recover any entrained 110 ammonia solution from the absorption column. The rich-amine solution from the bottom of the 111

112 absorber is passed to energy recovery system and a solution heat exchanger where it is preheated to about 150^oC (regeneration temperature). The spent ammonia solution exchange heat 113 with incoming regenerated ammonia solution from bottom of the regenerator. Pre-heated spent 114 ammonia solution is separated to remove any gas associated with the spent ammonia solution. 115 Regeneration of ammonia solution is carried out in the regenerator by the application of heat 116 supplied by steam generated in the reboiler at the base of the regenerator. The top product of 117 regenerator contains mainly CO₂ and steam which is cooled in the cooler 5 to condense them. 118 The steam is separated and returned to the reboiler. 119

120 The bottom product of regenerator containing regenerated ammonia solution is passed through

solution heat exchanger where it exchanges heat with spent ammonia solution from the absorber.

122 It is further cooled to bring its temperature to about 40° C (absorption temperature).

123 **3.1 Material Balance Results**

124 CALCULATIONS

- 125 **To get the volumetric flow rate:**
- 126 Volume = $\pi r^2 h$
- 127 The absorption column specifications are:
- Length of column: 40cm
- 129 Diameter of column: 5cm
- 130 Number of plates: 10
- 131 Distance between plates: 2cm
- Distance between outlet and plates in the column: 5cm
- Distance between outlet and bottom of column: 5cm
- 134 Distance between inlet and plate contact: 5cm

135

138

Radius =
$$\frac{Diameter}{2} = \frac{5}{2} = 2.5 \text{cm} (0.025 \text{m})$$

136 Volume = $\pi \times 0.025^2 \times 0.4 = 7.8539 \times 10^{-4} m^3$

137 Convert to feet: where $1 \text{ft}^3 = 0.0283 \text{m}^3$

$\frac{0.0007845}{0.3048^3} = 0.0277 ft^3 \ x \ 60 = 1.6642 \ ft^3 / hr$

Assuming 75% absorption capacity for CO and converting the calculated values from ft³/hr to ft³/sec

 $\frac{1.24815}{2.000} = 0.0003467 \, \text{ft}^3/\text{sec}$ 140 141 To get the mass flow rate: At optimum condition: Vol. of solvent = 120ml 142 Multiply by the density; $120 \ge 0.88 \ge 1$ gram = 105.6 g/min = 0.1056 kg/min 143 **Balance around the absorber** 144 CO_2 in $F_3 = 0.0000364$ kg (0.00000827kmol) 145 For 85% recovery, CO₂ scrubbed 146 $= 0.85 \text{ X C}_{2}$ Fed in F₃ = 0.0000309 kg147 Kmol of CO_2 scrubbed = 0.000000701kmol 148 149 Reaction equation in Absorber $NH_2COONH_4(aq) + H_2CO_3$ $2CO_2(g) + 2NH_3(aq) + H_20 \rightarrow$ 150 151 Ammonium carbomate From above equation 152 153 $= (0.00000701 \text{ x } 2) \text{ kmol of } \text{CO}_2 \text{ required } (0.000000701 \text{ x } 2) \text{ kmol } \text{NH}_3$ Total mole of liquid consumed 154 = 0.000001402 + 0.000000701 = 0.000002103 kmol 155 Total mole of absorbing liquid = 0.1056kmol/min 156 157 Recovery liquid is a 20% w/w NH₃ Average molecular weight of recovery 158 $\text{Liquid} = \frac{20(17)}{100} + \frac{60(18)}{100} - 17.8$ 159 Total mole of recovery liquid 160 $=\frac{0.1086}{17.8}=0.0059$ kmol 161 Mole of NH_3 in recovery liquid = 0.00118kmol 162 Mass of Ammonia in recovery liquid = 0.02006 kg/min 163 Kmol of H_20 in recovery liquid = 0.00472kmol 164 Mass of H_20 in recovery liquid = 0.08496 kg/min 165 Unreacted $NH_3 = 0.00118$ kmol 166

167 Unreacted $H_20 = 0.004719$ kmol

168	Balance	check
100	Dulunce	cheek

- 169 Flow stream F_3 (kg)
- 170 Total $F_3 = 0.0006954$ kg/min
- 171 Flow stream F₈
- 172 $CO_2 = 0.0000118$ kmol x 44 = 0.0005192kg
- 173 Total $F_8 = 0.02006 + 0.08496 + 0.0005192 = 0.1055 \text{kg/min}$
- 174 Flow stream F₄
- 175 Unscrubbed $CO_2 = 0.000484$ kg/min
- 176 From specifications, the exit air is saturated at 40° C.
- 177 Vapour pressure of water at 40° C, 760mmHg.
- 178 $\ln \rho^{e} w = \frac{A-B}{T+C} = Antions's equation$
- 179 Where A, B and C are Antione's constant, T = Temperature
- 180 $\rho_{\rm w}^0 = 232.293 \, \rm mmHg$

181 Mole fraction of water vapour in flow F₄

Vapour pressure of water vapour Total pressure

- 183 Total $F_4 = 0.000887 + 0.000526 + 0.000133 + 0.000484 = 0.00203$
- 184 NH₃ solution = $1 \times 10^{-6} \times 0.00203 = 0.0000000203$ kg
- 185 Flow stream F₅ (spent amine solution)
- 186 $CO_2 = 0.0005192 kg$

187 Flow stream F_3^1

188 Water used for washing = 0.5 X total gas washed = 0.001015kg

189 Flow stream F_4^1

- 190 Let assume H_20 in $F_4^{\ 1} = H_20$ in $F_3^{\ 1} = 0.001015$ kg
- 191 H_2O in $F_5 = H_2O$ in $F_8 + H_2O$ in $F_3^1 H_2O$ in = 0.08406
- 192 Total $F_5 = 0.000053 + 0.000043 + (0.00118 x 17) + 0.08406 + 0.0005192 = 0.1047 kg$
- 193 Balance
- 194 At steady state
- 195 Total input = total output
- **196** $F_3 + F_8 + F_3^1 = F_4 + F_4^1 + F_5$
- 197 0.1072104 = 0.107745
- 198 **3.1.1 Material Balance Summary Tables**

199 **3.1.1.1 Absorber**

208 Table 1: Absorber Input Streams

		F ₃		F ₈		$\mathbf{F_3}^1$	
Comp	Mol.	Mole	Mass	Mole	Mass	Mole	Mass kg/hr
	Wt	kmol/ hr	kg/hr	kmol/ hr	kg/hr	kmol/ hr	
CO ₂	44	0.0000118	0.0000364	0.000011	0.0005192	-	-
				8		$\langle \rangle$	
O ₂	32	0.000526	0.000133	-	-		-
N ₂	28	0.000133	0.000526	-	-		-
NH ₃	17	-	-	0.00118	0.02006	-	-
H ₂ O	18	-	-	0.08496	0.08496	-	0.001015
H ₂ CO ₃	61	-	-		-	-	-
Carbamate	62	-	-01		-	-	-
Total			0.0006954		0.01055		0.001015

220 Table 2: Absorber Output Streams

		\mathbf{F}_4	1		F ₄	F ₅	
Comp	Mol.	Mole	Mass	Mole	Mass kg/hr	Mole kmol/	Mass
	Wt	kmol/ hr	kg/hr	kmol/ hr		hr	kg/hr
CO_2	44	-	-	0.02006	0.000484	0.0000118	0.0005192
O ₂	32	-	-	0.08406	0.000526		-
N ₂	28	-	-	0.000043	0.000133		-
NH ₃	17	-	-	-	0.0005713	0.0000118	0.02006
	10		0.001015		0.000000	0.000000501	0.00407
H ₂ O	18	-	0.001015	-	0.000286	0.000000701	0.08406
H ₂ CO ₃	61	-	-	\sim	-	0.000000701	0.000043
0.1	(0)					0.00000701	0.000050
Carbamat	62	-	-		-	0.000000701	0.000053
e							
Total			0.001015		0.00203		0.1047

222 3.1.1.2 Knock-Out Drum 1

229 Table 3: Knock-Out Drum 1 Calculation Details

	INPUT (F ₄)			OUTPUT	OUTPUT (F ₆)		OUTPUT (F7)	
Comp	Mol.	Mole	Mass	Mole	Mass	Mole	Mass	
	/wt	Kmol/h	kg/hr	kmol/hr	Kg/hr	Kmol/hr	Kg/hr	
CO ₂	44	0.000484	0.000484	-	-	0.000484	0.0005192	
O ₂	32	0.000526	0.000133	-	-	0.000526	0.000133	
N ₂	28	0.000133	0.000133	-	-	0.000133	0.000133	
NH ₃	17	-	-	-	0.0029		-	
H ₂ O	18	-	-	-	0.00116		-	
Total			0.000203		0.0000000203		0.0011782	

3.1.1.3 Flash Drum

INPUT STREAM	OUTPUT STREAM

	F ₁₃		F ₁₅		F ₁₆	
Comp	Mole	Mass	Mole	Mass	Mole	Mass
	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	kg/hr
CO ₂	-	0.0005192	-	0.0005192	-	-
NH ₃	-	0.02006	-	-	0.86	0.02006
H ₂ O	0.00000701	0.08406	-	-	0.00000701	0.08406
H ₂ CO ₃	0.00118	0.000043	-	-	0.00118	0.000043
Carbamate	0.00118	0.000053	-	-	0.00118	0.000053
Total		0.1047		0.0005192		0.104216

3.1.1.4 Stripper

INPUT STREAMS					OUTPUT STREAMS			
	F ₁₆		F ₁₈		F ₁₇		F ₁₉	
Comp	Mole kmol/ hr	Mass kg/hr	Mole kmol/ hr	Mass kg/hr	Mole kmol/ hr	Mass kg/hr	Mole kmol/ hr	Mass kg/hr
NH ₃	-	0.02006	-	-	-	0.02006	1	-
H ₂ O	0.00000701	0.08406	-	0.00004326	-	0.1690	-	0.00004326
H ₂ CO ₃	0.00118	0.000043	-	-	-	-		-
Carbamate	0.00118	0.000053	-	-			-	-
CO ₂	-	-	-	-		0.0005192	-	0.00055004
Total		0.104216		0.00004326		0.1896		0.0005933

256 3.1.1.5 Knock-Out Drum 2

Fig. 6: Material Balance diagram for Knock Out Drum 2

INPUT STREAMS				OUTPUT	STREAMS		
	F ₂₁			F ₂₂		F ₂₃	
Comp	Mole/ wt	Mole kg/hr	Mass kg/hr	Mole kmol/hr	Mass kg/hr	Mole kmol/hr	Mass kg/hr
CO ₂	44	-	0.0005501	-	0.0005501	-	-
H ₂ O	18	-	0.00004326	-	-		0.00004326
Total			0.0005933		0.0005501		0.00004326

267 **3.2 Energy Balance Results**

The conservation of energy differs from that of mass in that energy is generated (or consumed) in a chemical process. Material can change form; new molecular species was formed by chemical reactions where the total mass flow into a process unit must be equal to the flow out at the steady state. The same is not true of energy. The total enthalpy of the outlet streams will not equal that of the inlet streams if energy is generated or consumed in the processed, such as that due to heat of reaction.

274 **3.2.1 Energy Balance Summary Tables**

275 **3.2.1.1 Absorber**

- 284 Where Qp = heat of the process, in this case Qp = 0 (Adiabatic process)
- 285 Qr = Heat of the reaction = $\Sigma \Delta Hr^0$)
- 286 Total heat input = $H_3 + H_3^1 + H_8$
- 287 Total heat output $= H_5 + H_4 + H_4^1$

288 Enthalpy input, $H_3 = \int_{T_{ref}}^{T_3} \epsilon_n C_p dT$

289 Table 7: Absorber Energy Balance Summary

ENERGY	INPUT (KJ/hr)	OUTPUT (KJ/hr)
H ₃	0.1704	
H ₄	-	0.3329
H_4^1	-	0.1705
H ₈	3.9952	
H ₅	-	102.4708
Qr	98.8085	
Total	102.9741	102.9741

290

291 **3.2.1.2 Stripper**

ENERGY	INPUT (KJ/hr)	OUTPUT (KJ/hr)
H ₁₆	47.4869	-
H ₁₈	0.1326	-
H ₁₇	-	127.77
H ₁₉	-	- 76.5845
Qr		- 98.805
Total	47.6195	- 47.6195

310 Table 9: Gas Cooler 5 Energy Balance Summary

ENERGY	INPUT (KJ/hr)	OUTPUT (KJ/hr)
H ₂₀	5.0624	-
H ₂₁		2.5312
Q _{VAP}	0.09769	-
Q5	-	2.62889
TOTAL	5.16009	5.16009

311

312

313

314 3.2.1.4 Solution Heat Exchanger

333 **3.2.1.5 Solution Cooler 4**

 H_9

339 Hence $Q_4 = (H_{12} = H_{11}) - H_9$

340Table 11: Solution Cooler 4 Energy Balance Summary

ENERGY	INPUT (KJ/hr)	OUTPUT (KJ/hr)
H9	-	3.9952
H ₁₁	182.7006	
Q4	-	178.7054
Total	182.7006	182.7006

341

342 **3.2.1.6 Evaporative Gas Cooler 2**

ENERGY	INPUT (KJ/Hr)	OUTPUT (KJ/Hr)
H ₁ ¹	0.8712	-
H ₂	-	0.1704
Q ₂	-	0.7008
TOTAL	0.8712	0.8712

355 **3.3 Process Equipment Specifications**

356 **3.3.1 Absorber Specifications**

- 357 Absorption of CO_2 in 20% w/w NH₃ solution
- $358 \qquad \quad G\partial y = KGa \left(P_A P_{AC} \right) \partial h$
- P_{Ae} = partial pressure that would be in equilibrium with the bulk of liquid, because the liquid is a concentrated solution of NH₃, the partial pressure of CO₂, P_{Ae} in equilibrium with it is virtually zero. Also PA = yp where P is the total pressure.
- 362 $G\partial y = KGayp\partial h$
- 363 Rearranging and integrating

$$\frac{1}{K_{Qa}} = \frac{1}{K_{Qa}} + \frac{H}{K_{La}}$$

- 364 365
- 366 Table 13: Results Summary of Absorber Specifications

Equipment name	Absorber
Туре	Wetted wall column
Packing type	Ceramic intallox paddle
Packing size	38mm
Packing factor	170m ⁻¹
Column area	0.0003142 m²
Column diameter	0.01m
Height of absorption section	1.0m
Height of wash section	0.2m
Bottom liquid depth	0.000044m
Top gas disengagement height	0.3048m
Packing height	0.235m
Column material	Stainless steel
Design temperature	50°C
Design pressure	1.1atm

Column wall thickness	5mm
Column cover thickness	5mm (terrispherical)

367 The design of wet scrubbers or any air pollution control device depends on the industrial process conditions and the nature of the air pollutants involved. Inlet gas characteristics and dust 368 properties are of primary importance. Scrubber was designed to collect particulate matter and/or 369 gaseous pollutants (Coulson and Richardson, 2005). Wet scrubbers remove dust particles by 370 371 capturing them in liquid droplets. Wet scrubbers remove pollutant gases by dissolving or absorbing them into the liquid. Droplets that are in the scrubber inlet gas were separated from the 372 outlet gas stream by means of another device referred to as a mist eliminator or entrainment 373 374 separator.

375 **3.3.2 Evaporative Gas Cooler 2 specifications**

UΔζm

376

377 Area of cooler A = $\underline{\phi}$

378

The evaporative cooler (also swamp cooler, desert cooler and wet air cooler) is a device that was designed to cool air through the evaporation of water. Evaporative cooling differs from typical air conditioning systems which use vapour-compression or absorption refrigeration cycles. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapour, which requires much less energy than refrigeration.

- 385 386
- 387

Table 14: Results summary of Evaporative Gas Cooler 2 specifications

Equipment name	Gas Cooler 2
Туре	Horizontal C & R
Sub-type	Split-ring floating Head
Shell type	Split-flow
Number of tubes	130
Number of tubes per pass	65
Surface area of exchange	$0.003m^2$
Heat load	0.7008KJ/min
Tube bundle diameter	37.5mm
Shell inside diameter	48.5mm
Bundle clearance	11mm

Overall heat coefficient	$0.082 \text{w/m}^2 ^{\circ}\text{C}$
Tube-side heat coefficient	11.935 w/ m² °C
Shell-side heat coefficient	3.1391 w/m ² °C
Tube-side fouling factor	5000w/m ² ⁰ C
Shell-side fouling factor	5000w/m ²⁰ C
Tube pitch	25mm
Tube arrangement pattern	Triangular
Baffle spacing	9.7mm
Baffle cut	25%
Baffle type	Segmented
Baffle height	76.275mm
No of support place nods	8
Diameter of nods	9.5mm
Tube-side design press	2.2atm
Tube-side design temp.	70 °C
Tube-side pressure drop	0.215kpa
Shell-side design press	1.1atm
Shell-side design temp.	90 °C
Shell-side design pressure Drop	169.77 kpa
Tube material	Mild steel
Shell material	Stainless steel.

389 **3.3.3 Solution Cooler 2 Specifications**

- 390 Basic design equation
- $391 \qquad \phi = UA\Delta Tm$
- 392 Shell side heat transfer coefficient

$$\frac{h_s d_e}{k_f} = Jh \, x \, Re \, x \, pr \, x \, 0.33 \, \left(\frac{\mu}{\mu W}\right)$$

- 393
- hs = shell side heat transfer coefficient, de = equivalent diameter
- Jh = heat transfer correction factor, Re = Reynolds number, Pr = prandth number

0,14

- 396 μ = viscosity of fluid at mean temp, μ w = viscosity of fluid at wall temp.
- 397 $(\mu/\mu w)^{0.14}$ = viscosity correction factor.
- 398

399 **Overall heat coefficient**

400 Kw for mild steel = 45w/m⁰C (Sinnott and Towler)

$$\frac{1}{U_0} = \frac{1}{ho} + \frac{1}{hod} + \frac{do \ln \frac{do}{dl}}{2kw} + \frac{do}{dt} x \frac{1}{h_i} x \frac{do}{dt} x \frac{1}{hid}$$

401

402 Shell – side pressure drop

$$\Delta P_s = 8 jf x \left(\frac{D_s}{de}\right) x \frac{L}{IB} \left(\frac{\rho u s^2}{2}\right) \frac{\mu^{0.14}}{\frac{\mu}{w}}$$

403

404 Neglecting viscosity correction factor

405 From figure 12 (Coulson and Richardson)

- 406 $\int f = 5.5 \times 10^{-2}$
- 407 Table 15: Results summary of Solution Cooler 2 specifications

Equipment name	Solution cooler
Туре	Horizontal shell & tubes
Sub-type	Split-ring floating head
Shell-type	Split-flow
Surface area of exchange	0.304 m²
Tube-inside diameter	16mm
Tube-outside diameter	20mm
Heat load	178.7054KJ/min
Tube length	4.88m
Tube-sheet	0.03m
Shell inside diameter	87.55mm
Tube bundle diameter	37.55mm
Bundle clearances	50mm
Number of tubes	1
Number of tube pass	1
Number of tubes per pass	1
Baffle spacing	17.51mm
Baffle cut	25 % (segmented type)
Tube pitch	25mm
Tube arrangement pattern	Triangular
Overall heat coefficient	362.9896 w/m ² ⁰ C
Tube-side pressure drop	0.000013kpa
Shell-side pressure drop	243.17kpa

Tube-side design pressure	2.7atm
Shell-side design pressure	2.2atm
Tube-side design temp.	100 °C
Shell-side design temp.	212 °C
Shell wall thickness	5mm
Tube material	Mild steel
Shell material	Stainless steel

408 **3.3.4 Cooler 5 (Condenser 5) Specifications**

- 409 **A = surface area of exchange.**
- 410 $= \underline{\phi}$

411 $U\Delta T_m$

412 **Tube bundle diameter** (**D**_b)

$$D_b = d_o(\frac{N_t}{K_i}) \frac{1}{nt}$$

414 From Table 15 (Coulson and Richardson), for triangular pitch.

415 $K_1 = 0.175$, ni = 2.285

416 **Tube inside coefficient.**

417 Cross – sectional area of one tube

$$=\frac{\pi(du^2)}{4}$$

418

413

419 Shell – side heat transfer coefficient

$$h_{s} = \frac{Kf}{de} x \ln x \, Re \, x \, pr^{0.33} \, x \left(\frac{\mu}{\mu W}\right)^{-0.14}$$

421 where hs = shell – side heat coefficient, Kf = thermal conductivity of fluid 422 J h = heat transfer coefficient, R = Reynolds number, Pr = prandth 423 $\left(\frac{\mu}{\mu w}\right)^{0.14}$ = viscosity correction factor. 424 μw

- 427
- 428 Table 16: Results summary of Cooler 5 (Condenser 5) specifications

Equipment name	Cooler 5
Туре	Shell & tube H.E
Sub-type	Split-ring floating head
Head load	2.62889kJ/min
Shell type	Two shell pass
Number of tubes	1
Number of tubes pass	4
Number of tubes per pass	1
Tube bundle diameter	5.88mm
Surface area of cooler	0.00245m ²
Shell inside diameter	63.88mm
Baffle spacing	494mm
Baffle cut	25%
Baffle height	0.75 Ds = 47.91 mm
Baffle type	Segmented
Tube pitch	31.25mm
Tube pattern	Triangular pattern
No of rods	12
Diameter of rods	9.5mm
Shell-side design press	5.984atm
Tube-side design press	2.75atm
Shell-side design temp.	310 [°] C
Tube-side design temp.	160 [°] C
Shell material	Stainless steel
Overall heat coefficient	3.5142w/m ²⁰ C
Shell wall thickness	5mm
Shell cover thickness	5mm
Tube-side pressure drop	0.0000079kpa
Shell-side pressure drop	791.388kpa.

430 3.3.5 Knock-Out Drum 1 Specification

Vapour-liquid separator was designed to separate a vapour-liquid mixture. The vapour-liquid
separator is also referred to as a flash drum, knock-out drum, knock-out pot, compressor suction
drum or compressor inlet drum (Kister, 1992). The vapour travels gas outlet at a design velocity
which minimizes the entrainment of any liquid droplets in the vapour as it exits the vessel.

Table 17: Results summary of Knock Out Drum 1 specification

Equipment name	Knock-out drum I
Туре	Vertical vessel
Drum diameter	0.002m
Drum length	0.004m
Mist eliminator type	Knitted wire-mesh
Mist eliminator thickness	0.152m
Clearance b/w liquid surface and centre of	0.3m
nozzle	
Clearance b/w centre of inlet	0.1524m
Nozzle and mist eliminator	
Clearance b/w mist eliminator and drum top	0.31m
edge	
Drum material of construction	Stainless steel
Drum wall thickness	7mm
Head and closure type	Ellipsoidal
Head and closure type	7mm
Mist eliminator material	Stainless steel.

436

437 3.3.6 Knock-Out Drum 2 Specifications

438 Table 18: Results summary of Knock Out Drum 2 specifications

Equipment name	Knock-out drum 2
Туре	Vertical cylinder vessel
Drum diameter	0.002m

Drum length	1.0m
Mist eliminator type	Knitted wire-mush
Mist eliminator thickness	0.152m
Liquid depth	0.1374m
Clearance b/w liquid surface and centre of	0.05m
nozzle	
Clearance b/w the centre of nozzle and the	0.1m
mist eliminator	
Clearance b/w the mist eliminator and drum	0.31m
top	
Drum wall thickness	5mm
Head and closure type	Tom spherical
Head and closure thickness	5mm
Mist eliminate material	Stainless
Drum material	Stainless steel

440 **3.3.7 Solution Heat Exchanger Specifications**

A heat exchanger was designed for efficient heat transfer from one medium to another. The media is separated by a solid wall, so that they never mix, or they may be in direct contact (Kister, 1992). They are widely used in space heating, refrigeration, air conditioning, power plants, chemical plants, petrochemical plants, petroleum refineries, natural gas processing, and sewage treatment.

446Table 19: Results summary of Solution Heat Exchanger specifications

Equipment name	Solution Heat exchanger
Туре	Horizontal S&T
Sub-type	Split-ring floating head
Head load	- 54.9306 KJ/min
Shell type	Split flow
Number of tubes	1
Number of tubes pass	1

Number of tubes per pass	1
Tube bundle diameter	37.5504mm
Surface area of exchanger	0.019m ²
Shell inside diameter	87.5504mm
Baffle spacing	17.6mm
Baffle cut	25%
Baffle height	135mm
Baffle type	Segmented
Tube pitch	25mm
Tube pattern	Triangular pattern
No of rods	8
Bundle diameter	124mm
Shell inside diameter	180mm
Tube outside diameter	20mm
Tube inside diameter	16mm
Tube length	4.88mm
Tube-sheet thickness	0.03m
Bundle clearance	50mm
Diameter of rods	9.5mm
Shell-side design press	1.1atm
Tube-side design press	1.1atm
Shell-side design temp.	160 ⁰ C
Tube-side design temp.	360 [°] C
Shell material	Stainless steel
Overall heat coefficient	$300 \text{w/m}^{20} \text{C}$
Shell wall thickness	5mm
Tube -side coefficient	261.13w/m ² ⁰ C
Shell-side coefficient	361.324w/m ² ⁰ C
Shell cover thickness	5mm

3.3.8 Flash Drum Specifications

449 Table 20: Results summary of Flash Drum specifications

Equipment name	Flash drum
Туре	Vertical gas
Drum diameter	Liquid separator

Drum length	0.002m
Mist dominator type	Knitted wore mesh
Mist dominator thickness	0.152m
Liquid depth	0.30m
Clearance between liquid surface and centre	
of nozzle	0.30m
Clearance between centre wilet nozzle &	
mist dominator	0.61m
Clearance between mist dominator and drum	
top	0.31m
Drum material of construction	Stainless steel
Head and closure type	Ellipsoidal

451 **4. Conclusion:**

The design of a plant to recover CO_2 from spent air from aerobic fermentation was successfully carried out. Material and energy balances were carried out on each equipment and then over the entire process. These balances were used in the chemical and mechanical engineering design of the following equipment: absorber, knock out drum, flash drum, gas cooler, reboiler and stripping column.

457 **References:**

Ahegot, A. S. & Celia, M. A. (2002). Modeling carbon (IV) oxide transport in unsaturated soils
in (Hassainzadeh et al eds.) *Proc. 14th International Conference in Computational Methods in Water Resources*, 41-47.

461 Aroonwilas, A. & Veawab, A. (2007). Integration of CO₂ capture unit using single- and blended-462 amines into supercritical coal-fired power plants: Implications for emission and 463 energymanagement. *International Journal of Greenhouse Gas Control*, 1, 143-150.

Baum, J. A. & Woehlck, H. J. (2003). Interaction of inhalational anaesthetics with CO₂
absorbents. *Best Prac. Res., Clin. Anaesthesiol., Vol. 17*, 63-76.

466 Coulson, J. M. and Richardson, J.F. (1968). Chemical Engineering, Vol. 2. Pergamon, N.Y.

- Demontigny, D. Tontiwachwuthikal, P. & Chakins, A. (2005). Comparing the absorption
 performance of packed columns and membrane contactors. *Ind. Eng. Chem. Res,* 44, 5726-5732.
- Liao, C. H. & Li, M. H. (2002). Kinetics of absorption of carbon (IV) oxide into aqueous solutions of monoethanolamine + N-methyloliethanolamin. *Chem. Eng. Sci.*, *57*, 4569-4582.
- Liao, C. H. Liu, W. T. & Tan, C. S. (2003). Removal of CO₂ by absorption in a rotating packed
 bed. *Ind. Eng. Chem. Res.*, *42*, 2381-2386.
- 473 Mani, F. & Peruzzini, M. (2006). CO_2 absorption by aqueous NH₃ solutions: speciation of 474 ammonium carbamate, bicarbonate and carbonate by a CNMR study. *Green Chem.*, *8*, 995-1000.
- 475 Qing, F. et. al. (2011). Kinetics of CO₂ absorption in aqueous ammonia solution. *International*476 *Journal of Greenhouse Gas Control*, 2010, 4(5), 729-738.
- 477 Sender, J. D. & Henley, E. J. (1998). Separation process principles. *John wiley and Sons, Inc.,*478 *New York.*
- 479 Watson, R.T., (2001): "Climate Change", Synthesis Report, *Cambridge University Press, UK*.
- Yeh, A. C. & Bai, H. (1999). Comparison of ammonia and monoethanoamine solvents to reduce
 CO₂ greenhouse gas emissions. *Sci. Total. Environ.*, 228, 121-133.
- Zeng, Q. et. al. (2011). Mass transfer coefficients for CO₂ absorption into aqueous ammonia
 solution using a packed column. Ind. *Eng. Chem. Research*, *50*, 10168-10175.
- 484
- 485
- 486