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Abstract 

Using the Lambert W function, occupation number of particles was calculated in the case of 

the statistics of Boltzmann distribution for a finite number of particles n by applying the exact 

Stirling formula and the exact function ln(n!). The exact analytical expression of occupation 

number of particles (ni) is found in terms of the Lambert W function and is more general than 

that usually calculated by the usual exponential Boltzmann distribution based on the Stirling 

approximation ln(n!)=n ln(n)-n. The new expression in the exact and algebraic closed form 

eliminates the need for the complex iterative computation. Its high accuracy is proved by a 

comparison of calculating occupation number of particles (ni) with respective numerical 

solution. 
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1. Introduction  

The Stirling approximation to ln (n!) is typically introduced to physical chemistry students as 

a step in the derivation of the exponential Boltzmann distribution. However, naïve application 

of this approximation leads to incorrect conclusions. For example student of physical 



 

 

chemistry are often introduced to the statistical treatment of the occupation number ni as given 

by Boltzmann's distribution equation: 

]exp[n ii              (1) 

Using Stirling's approximation [1, 2]  

ln(n!) = n ln(n)-n                      (2)  

The range of applicability of Eq. 2 is limited to very large values of n, The exponential 

Boltzmann distribution is limited strictly to n >>>1 and applies only for  not too large. 

However, the distribution is used in the literature even for →∞ and n→0, where Eq. 1 does 

not be appropriate. It is interesting that Stirling’s approximation, Eq.1, fails and the more 

precise Stirling formula, Eq.3 [2] is required to determine the occupation number ni. 

ln(n!) = (n + ½)ln(n)-n+1/2ln(2π)                          (3) 

For a finite number of particles, the occupation number of particle has been determined by 

kakorin [3],  but no details, analysis or more explanation and discussion were made for how 

determining it.   

In this paper, basing on the work of karokin [3], we present more details, analysis and 

discussion of how calculated the expression of the occupation number ni of particles in the 

case of Boltzmann statistics for a finite number of particles. We compare the obtained result 

with this found by usual exponential Boltzamnn statistics using the stirling approximation 

ln(n!)=n ln(n)-n . 

2. Methodology  

By applying the exact Stirling formula and the exact function ln(n!) ( case of the statistics of 

Boltzmann distribution for a finite number of particles n ), we calculate the occupation 



 

 

number of particles. Analytical expression of ni was expressed in terms of the primary branch 

of the Lambert function W0.  

Using numerical method as Newton–Raphson’s method, the occupation number of particles 

was also calculated and compared with this obtained by applying exact Striling formula.  

 

3. Results and discussion 

 In the case of finite number of particles in Boltzmann statistics, the expression of occupation 

number ni is [3]  
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                               (4) 

Where A, represent some constant in the Boltzmann statistics. 

Eq. (4) can be solved numerically by an iterative method. This is not necessary; the exact 

solution of this equation is given by the so-called Lambert W-function [4]. This function was 

postulated to solve the equation: 

           zzWexpzW                 (5) 

The Lambert W-function allows the explicit solution of entire classes of differential 

equations, which actually only could be solved numerically and is experiencing today a 

renaissance in various fields of sciences and engineering [5-11].  

The expression of the occupation number of particles is given by:   
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Where i is energy of state (i), kT/1  (k is the Boltzmann constant and T is the 

temperature).  



 

 

Equation (6) is a transcendental equation that can be solved exactly with the results written in 

closed form in terms of the Lambert W function using the approach proposed by                

Hadj Belgacem [12-16]. 

For further calculation, we introduce the abbreviations:  

iA                   (7) 

and 
2

)Aexp(
z                           (8) 

 We obtain the implicit equation  
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For solving Eq. (9) we suppose that  
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Inserting Eq. (10) into Eq. (9) yields 
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Rearranging Eq. 11 and employing an exponential in Eq. 13 

0)zln())z(Wln()z(W             (12) 

1))zln())z(Wln()z(Wexp(            (13) 

    zzWexpzW               (14) 



 

 

We find that Eq. (14) represents the definition of the Lambert W-function, as already 

established in Eq. (5). 

Consequently, our hypothesis in Eq. (10) is justified. 

The exact solution for the occupation number ni is after resubstitution for z and replacing A  
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The Lambert W-function is a complex and multi-valued function with an infinite number of 

branches, only two of them having real values. If x is real, then for 0
1

 x
e

, there are two 

possible real values of )x(W , as displayed in reference [4]. The branch satisfying )(1 xW is 

denoted )x(W0 ; the branch satisfying 1)x(W   is denoted )x(W 1 . Where are 1)
e

1
(W   

and 0)0(W  . Both real branches )x(W0 and )x(W 1 , for x real are presented in figure1. 

For practical application, to find the branch of )(xW that correctly describes the evolution of 

the occupation number in additional reasonable considerations are required. At the limit when 

the occupation number ni tend to infinity ( in ), the expression of the general occupation 

number calculated in this work using the exact striling formula must be equal to the usual one 

calculating by using the striling approximation.  

Inserting appropriate parameters
0

00 n2

1
)nln(,1000n   in 

Eq.14; )nln(,1000n 00  in Eq.1. The occupation number can be expressed as a 

function of βiwhere i is the energy of the state and βkin figure 2. 



 

 

To illustrate what kinds of the Lambert W function branch's that computes the real value of ni. 

We compare in the figure 2 the evolution of the general occupation number ni calculate with 

the primary branch W0 (figure 2.a) and with the second branch W-1 (figure 2.b) using Eq.14 

with usual one calculating by using the striling approximation using Eq.1 (figure 2.c…) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The two branches of Lambert W function )x(W 1 in blue color and )x(W0 in red. 

The comparison of the general occupation number evolution showed in the figures (2.a) and 

(2.b) with the usual occupation number figure (2.c) demonstrate that W0 (x) is the branch that 

appropriately describes the evolution of the general occupation number as a function of βi 
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To validate the obtained general analytical solution of the occupation number, we compare it 

in figure 3 with the numerical solution of Eq. (3) obtained using the Newton–Raphson’s 

method. It is easily seen that an excellent agreement is achieved for all values of the βi . 

4. Conclusion  

In summary, the Lambert W-function was successfully used to determine an exact analytical 

solution for calculating the occupation number ni of particles in the case of Boltzmann 

statistics for a finite number of particles. The exact solution for the occupation number ni was 

expressed in terms of the primary branch of the Lambert function W0. Comparing with 

numerical result shows that the proposed solution is in a good agreement. 

Practically, this occupation number ni is simple to compute since the Lambert W-function is 

readily available in standard computational packages and can be easily implemented in other 

mathematical formulas, for example to calculate the partition function Z and the constant 

volume heat capacity Cv in Boltzmann statistics.  
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Figure 2: (a) Exponential Boltzmann distribution ni from Eq1versus βi, where i is the 
energy of the state and βkb) Lambert –Boltzmann distribution ni Eq.14 versus β with 
the primary branch of the Lambert W function (W0) and (c) Lambert–Boltzmann distribution 
ni Eq.14 versus βi calculated with the secondary branch of the Lambert W function (W-1). 
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Figure 3: the occupation number ni as a function of βi. The dashed curve gives the 
occupation number as calculated from numerical solution. The solid curve gives the present 
result. 
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