

1

 1

Original Research Article 2

 3

 4

AN EXPLORATORY STUDY OF COGNITIVE BASE 5

COMPLEXITY MEASURES OF ONLINE ALGORITHMS6

 7

Abstract— Measuring the complexity of software has been an insoluble problem in software engineering. 8

Complexity measures can be used to predict critical information about testability of software system from 9

automatic analysis of the source code. In this paper, Improved Cognitive Complexity Metric (ICCM) is 10

applied on C programming language. since C is a procedural language, the cognitive complexity metric is 11

capable to evaluate any procedural language. This paper presents a cognitive complexity metric named 12

ICCM. First, the metric is analytically evaluated using Weyuker’s properties for analyzing its nature. 13

Secondly, perform a comparative study of the metric with the existing metric such as NCCOP, CFS, 14

CICM and CPCM, and the result shows that ICCM do better than other metrics by giving more 15

information contained in the software and reflecting the understandability of a source code. Also, an 16

attempts has also been made to present the relationship among ICCM, NCCOP, CICM, CFS and CPCM 17

using pearson correlation coefficient method. 18

 19

Keywords— Software complexity, Cognitive informatics, Basic Control Structure, online algorithms 20

 I. INTRODUCTION 21

Many well known software complexity measures have been proposed such as [1], Halstead programming 22
effort [2] Oviedo’s data flow complexity measures [3], Basili’s measure [4] and Wang’s cognitive complexity 23
measure [5]. All the reported complexity measures are supposed to cover the correctness, effectiveness and clarity 24
of software and also to provide good estimate of these parameters. Out of the numerous proposed measures, 25
selecting a particular complexity measure is again a problem, as every measure has its own advantages and 26
disadvantages. There is an ongoing effort to find such a comprehensive complexity measure, which addresses 27
most of the parameters of software. Reference [6] suggested nine properties, which are used to determine the 28
effectiveness of various software complexity measures. A good complexity measure should satisfy most of the 29
Weyuker’s properties. For measuring the complexity of a code, one must consider most of the internal attributes 30
responsible for complexity. 31

Complexity is a difficult concept to define. It can be found in relation to software development, software 32
metrics, software engineering for safety, reverse engineering, configuration management and empirical studies of 33
software engineering [7]. So far, there is no exact understanding of what is meant by complexity with various 34
definitions still being proposed. High complexity of a system usually means that the complexity cannot be 35
represented in a short and comprehensive form. Reference [8] stated that complexity (of a modular software 36
system) is a system property that depends on the relationships among elements and is not a property of any 37
isolated element. Reference [9] defined software complexity as “the degree to which a system or component has a 38
design or implementation that is difficult to understand and verify”. Therefore, complexity relates both to 39
comprehension complexity as well as to representation complexity. There are some complexity measures based 40
on cognitive aspects such as Cognitive Functional Size (CFS) proposed by [5] to measure the complexity of a 41
software, it depends on input, output parameters and internal control flow. It excludes some important details of 42
cognitive complexity such as information contained in variables and operators. 43

New Cognitive Complexity of Program (NCCoP) was proposed by [10] to measure the cognitive complexity 44
of a program; the metric considered the number of variables in a particular line of code and the weight of Basic 45
Control Structure. 46

 47

II. REVIEW OF RELATED WORKS 48

Complexity measures is divided into code based complexity measures, cognitive complexity measures and 49

requirement based complexity measure. 50

 51

A.Code Based Complexity Measures 52

UNDER PEER REVIEW

2

Code complexity metrics are used to locate complex code. To obtain a high quality software with low cost of 53

testing and maintenance, the code complexity should be measured as early as possible in coding. Developer can 54

adapt his code when recommended values are exceeded [11] Code based complexity measure comprises 55

Halstead Complexity Measure and Mac Cabe’s Cyclomatic Complexity and Lines of Code Metrics. 56

B. Cognitive Complexity Measures 57

 Cognitive complexity measures quantify human difficulty in understanding the source code [12]. Some of the 58

existing cognitive complexity measures are Klcid Complexity Metrics, Cognitive Functional Size (CFS), 59

Cognitive Information Complexity Measure (CICM), Modified Cognitive Complexity Measure (MCCM), 60

Scope Information Complexity Number of Variables (SICN), Extended Structure Cognitive Information 61

Measure (ESCIM) and Unified Complexity Measure (UCM). 62

C. Klcid Complexity Metrics 63

 Klemola and Rilling (2004) proposed KLCID based complexity measure. Defined identifiers as 64

programmer defined variables and based on identifier density (ID). 65

ID = 66

(1) 67

For calculating KLCID, number of unique lines of code was found, lines that have same type and kind of 68

operands with same arrangements of operators considered equal. KLCID is defined as : 69

KLCID = 70

(2) 71

This method can become very time consuming when comparing a line of code with each line of the program. It 72

also assumes that internal control structures for the different software’s are same. 73

 74

E. Cognitive Functional Size 75

Reference [5] proposed functional size to measure the cognitive complexity. The measure defines the cognitive 76

weights for the Basic Control Structures (BCS). Cognitive functional size of software is defined as: 77

CFS = (3) 78

Where Ni= Number of Inputs, No= Number of Outputs and Wc= Total Cognitive weight of software. 79

Wc is defined as the sum of cognitive weights of its q linear block composed in individual BCS’s. Since each 80

block may consist of m layers of nesting and each layer with n linear BCS, total cognitive weight is defined as:81

 82

Wc = 83

(4) 84

Only one sequential structure is considered for a given component. 85

Now difficulty with this measure is the inability to provide an insight into the amount of information contained 86

in software. 87

 88

F. Cognitive Information Complexity Measure 89

 Cognitive Information Complexity Measure (CICM) is defined as product of weighted information count of the 90

software and sum of the cognitive weights of Basic Control Structure (SBCS) of the software [13]. The CICM 91

can be expressed as: 92

CICM = WICS * SBCS (5) 93

This establishes a clear relationship between difficulty in understanding and its cognitive complexity. It also 94

gives the measure of information contained in the software as: 95

Ei = 96

(6) 97

where Ei represents Information Coding Efficiency. 98

The cognitive information complexity is higher for the programs, which have higher information coding 99

efficiency. Now the problem with these measures is that, they are code dependent measures, which itself is a 100

problem as stated earlier. Various theories have been put forward in establishing code complexity in different 101

dimensions and parameters. 102

CodeofLine

sidentifierofnumberTotal

identifiercontaininglinesuniqueofNumber

linesuniqueofsettheinIdentifierofNumber

() cOi WNN ∗+

()∑ ∏∑
= = =








q

j

m

k

n

i

c lkjW
1 1 1

,,

LOCS

ICS

UNDER PEER REVIEW

G. Modified Cognitive Complexity Measure 103

 Reference [14] modified CFS into Modified Cognitive Complexity Measure (MCCM) by simplifying 104

the complicated weighted information count in CICM as: 105

MCCM = 106

(7) 107

where Ni1 is the total number of occurrences of operators, Ni2 is the total number of occurrences of operands, 108

and Wc is the same as in CFS. 109

However, the multiplication of information content with the weight Wc derived from the whole BCS's structure 110

remains the approach's drawback. Also, [12] proposed Cognitive Program Complexity Measure (CPCM) based 111

on the arguments that the occurrences of inputs/output in the program affect the internal architecture and are the 112

forms of information contents. The computation of CFS was also critized such that the multiplication of distinct 113

number of inputs and outputs with the total cognitive weights was not justified as there was no reason why using 114

multiplication. 115

Besides, it was established that operators are run time attributes and cannot be regarded as information 116

contained in the software as proposed by [13]. Based on these arguments, CPCM was thus defined as: 117

CPCM = 118

(8) 119

where Sio is the total occurrences of input and output variables and Wc is as in CFS. 120

 121

H. Improved Cognitive Complexity Metric 122

Improved Cognitive Complexity Metric is defined as the product of the number of variables and Cognitive 123

weight of Basic Control Structure of the software [17]. The ICCM can be expressed as: 124

ICCM =)(*)3(
1 1

KWMNVANV C

LOC

K

LOC

V

∑ ∑
= =

+ 125

(9) 126

Where, the first summation is the line of code from 1 to the last Line of Code (LOC), Arbitrarily Named 127

Variables (ANV) and Meaningfully Named Variable (MNV), are the number of variables in a particular line of 128

code and WC is the weight of BCS as shown in Table 1 corresponding to the particular structure of line. 129

 130

Table 1. Basic Control Structure (Kushwaha and Misra, 2006) 131

Category BCS

CWU

Sequence Sequence 1

 Condition If-else / Switch 2 132

 Loop For / For-in 133

 While/do…While 3 134

 Functional activity Functional- call 135

 Alert/ prompt throw 2 136

 Exception try-catch 1 137

 138

 139

 140
III. Materials and Method 141

A.The metrics are applied on some online algorithm codes which are written in C language. Ten(10) different types of 142
online algorithms codes were considered. These programs were different from each other in their architecture, the 143
calculations of ICCM for these online algorithms are given in Table 2. The structures of all the 10 programs are as 144
follows: The second column of the tables shows the C codes. The sum of Arbitrarily Named Variables (ANV), the 145
Meaningfully Named Variables (MNV) and the operators in the line is given in the third column of the table. The 146
cognitive weights of each C codes lines are presented in the forth column. The C complexity calculation measure for 147
each line is shown in the last column of Tables 2 and Table 3 shows the ICCM, CICM, CFS, CPCM and NCCOP 148
results of the ten (10) different online algorithm codes. 149
 150

 B.. Analytical Evaluation of ICCM using Weyuker’s Property 151

The ICCM metric was verified to satisfy all nine Weyuker’s properties. Weyuker (1988) properties have been 152

suggested as a guiding tool in identification of a good and comprehensive complexity measure by several 153

researchers. 154

Property 1: (∃P)(∃Q)(|P| ≠ |Q|) Where P and Q are program body. 155

cio WS +

UNDER PEER REVIEW

4

This property states that a measure should not rank all programs as equally complex. 156

ICCM for least recently used (LRU) and least frequently used (LFU) algorithm are considered. LRU contains 157

seven iterations and six branches, LFU contains seven iterations and five branches. The complexity of LRU 158

(ICCM = 405) and LFU as ICCM = 427. It is clear that the complexity of LRU and LFU are different, so this 159

property is satisfied by the proposed measure 160

Property 2: Let C be a non-negative number then there are only finitely many programs of complexity C. 161

Calculation of ICCM depends largely on the number of arbitrarily named variables, meaningfully named 162

variables and cognitive weight of Basic Control Structures. Also all the programming languages consist of finite 163

number of BCS’s. Therefore ICCM holds for this properly. 164

Property 3: There are distinct programs P and Q such that /p/ = /Q/ 165

Transpose algorithm has the ICCM value of 416, also considering Move to Front algorithm, the ICCM is 416. 166

These examples showed that the two different programs can have the same complexity, that is 416. So ICCM 167

hold for the third property. 168

Property 4: (∃P)(∃Q) (P≡Q & |P| ≠ |Q|) 169

This property states that the two programs implementing with different algorithm should have different 170

complexity. FIFO program, the ‘if ‘condition have been replaced by the sequential formula “ frame [i] [0] = 0 171

and frame [i] [1] = -1, in LRU program . With this change ICCM of FIFO is 333 and for LRU is 405. It is clear 172

that the two programs with same objects have different complexity. Hence ICCM holds this property. 173

Property 5: (∀P)(∀Q)(|P| ≤ |P;Q| and |Q| ≤ |P;Q|). 174

This property states that if the combined program is constructed from class P and class Q, the value of the 175

program complexity for the combined program is larger than the value of the program complexity for the class P 176

or the class Q. 177

The program body of page replacement algorithm, this program consist of three program body, one for 178

calculating FIFO, the other for LRU and the third program is for calculating the Optimal. FIFO program 179

contains six alterations and 6 branches, LRU program contains seven iterations and four branches. The total 180

cognitive weight of the complete program (FIFO, LRU and OPTIMAL) body is = 1096 ICCM. The complexity 181

of FIFO is 333, LRU = 405, optimal = 315. The cognitive complexity of Page replacement algorithm (FIFO + 182

LRU + Optimal) is greater than FIFO, LRU and Optimal; that is ICCM of FIFO (333) is less than Page 183

replacement (1096) and ICCM of LRU (405) is less than 1096 and ICCM of Optimal (315) is less than 1096. 184

Hence ICCM holds this property. 185

Property 6(a): (∃P)(∃Q)(∃R)(|P| = |Q|) & (|P;R| ≠ |Q;R|) 186

Let P be the Transpose program and Q be the MTF program. The ICCM of both the programs is 416. 187

Appending R to P didn’t give Q program. Hence property 6(a) is not satisfied by the ICCM. 188

Property 6(b): (∃P)(∃Q)(∃R)(|P| = |Q|) & (|R;P| ≠ |R:Q|) 189

This property states that if a new program is appended to two programs which have the same program 190

complexity, the program complexities of two new combined program are different or the interaction between P 191

and R can be different than interaction between Q and R resulting in different complexity values for P + R and 192

Q + R. If any numbers of statements are added into programs p and program Q the complexity will changes. So 193

ICCM hold this property. 194

 Property 7: There are program bodies P and Q such that Q is formed by permutting the order of the statement 195

of p and (/p/ ≠ /Q/). 196

This property states that permutation of elements within the item being measured can change the metric values. 197

The intent is to ensure that metric values due to permutation of programs. Since variables is dependent on the 198

number of Arbitratily and meaningfully named variable in a given program statement and the number of 199

statements remaining after this very program statement, hence permuting the order of statement in any program 200

will change the value of variables. Also cognitive weights of BCS’s depend on the sequence of the statement. 201

Hence ICCM will be different for the two programs. Thus ICCM holds for this property. 202

Property 8: If P is renaming of Q, then /p/ = /Q/ 203

UNDER PEER REVIEW

5

The measure gives the numeric value so renaming the program will not affect the complexity of a program. 204

Hence ICCM holds for this property 205

Property 9: (∃P)(∃Q)(|P| + |Q|) < (|P;Q|) OR (∃P)(∃Q)(∃R)(|P| + |Q| + |R|) < (|P; Q;R|) 206

This property states that the programs complexity of a new programs combined from two programs is greater 207

than the sum of two individual programs complexities. In other words, when two programs are combined, the 208

interaction between programs can increase the complexities metric value. 209

For the program Page Replacement Algorithm, if we separate the main program by segregating P (FIFO), Q 210

(LRU) and R (Optimal), we have the program Page replacement algorithm. Where the cognitive complexity of 211

individual are FIFO (333), (LRU) 405 and (Optimal) 315. The combination of the three programs into one 212

program has the complexity of 1053, while the complexity for Page Replacement Algorithm is 1096. Hence 213

1053 <1096. This proves that ICCM holds for this property. 214

 215

F. Demonstration of ICCM 216

The cognitive complexity metric given by equation (9) is demonstrated with Frequency Count Algorithm given 217

by the following Table 2. 218

Table 2. Frequency Count Algorithm 219

 ANV+ 220

 S/N CODE MNV CWU ICCM 221

 222

1. # Include<stdio.h> 0 1 0 223

2. int main () 1 1 1 224

3. { 0 1 0 225

4. int arr[100],freq ,[100] 3 1 3 226

5. int size,i,j,count, 9 1 9 227

6. /* Read size of array and elements in array*/ 1 1 1 228

7. Printf (“Enter size of array:”), 1 1 1 229

8. Scanf (”%d”, &size), 4 1 4 230

9. Printf (“Enter elements on array:”), 1 1 1 231

10. For (i=o,i<size,i++) 10 3 30 232

11. { 0 1 0 233

12. Scanf (“%d” ,&arr[i]) 7 1 7 234

13. Freq[i]=-l, 4 1 4 235

14. } 0 1 0 236

15. /* counts frequency of each element/* 1 1 1 237

16. For(I =o, I <size, I ++) 10 3 30 238

17. { 0 1 0 239

18. Count =I, 1 1 1 240

19. For(j =I + I, j < size, j++) 13 3 39 241

20. { 0 1 0 242

UNDER PEER REVIEW

6

21. if(arr[i] = = arr [j] 8 2 16 243

22. { 0 1 0 244

23. Count++, 1 1 1 245

24. Freq [j] = 0, 4 1 4 246

25. } 0 1 0 247

26. } 0 1 0 248

27. if (freaq [i]!=0) 4 2 8 249

28. { 0 1 0 250

29. Freq[i]=count, 5 1 5 251

30. } 0 1 0 252

31. } 0 1 0 253

32. Printf(“\n Frequency of all 254

 elements of array:\n”), 1 1 1 255

33. For (i =0,i<size , i++) 10 3 30 256

34. { 0 1 0 257

35. If (freq [1] 1 = 0) 4 2 8 258

36. { 0 1 0 259

37. Print f (“% d occurs % d times in”, 10 1 10 260

arr [1], freq [1]) } 261

38. } 0 1 0 262

39. } 0 1 0 263

40. return 0 1 1 1 264

41. } 0 1 0 265

 266

258267

2268

5269

8270

 271

IV. COMPARATIVE STUDIES BETWEEN ICCM AND SOME COGNITIVE MEASURES272

273

The cognitive complexity values for different existing cognitive measures and ICCM measure are shown in 274

Table 3 and also the table for pearson correlation coefficient among the measures are shown in Table 4. The 275

graphs for comparison between the existing cognitives measures and ICCM measure are shown in Figure 2 and 276

Figure 3.277

 278

 279

 280

 281

UNDER PEER REVIEW

7

Table 3.Cognitive Complexity Values of CICM, CFS, CPCM, NCCOP and ICCM 282

ALGORITHM CFS CICM CPCM NCCOP ICCM 283

FC 78 90 55 97 258 284

OPTIMAL 132 128 91 127 315 285

FIFO 72 112 74 136 330 286

LRU 87 93 89 173 405 287

TRANSPOSE 85 82 60 141 416 288

LFU 98 102 100 194 427 289

MTF 92 120 93 238 416290

291

292

 293

Table 4. Pearson Correlation of Complexity Values for Different Measure in C

 CFS CICM CPCM NCCOP ICCM

CFS Pearson

Correlation

1 .602 .547 .057 -.005

Sig. (2-tailed) .152 .203 .904 .992

N 7 7 7 7 7

CICM Pearson

Correlation

.602 1 .609 .283 -.149

Sig. (2-tailed) .152 .146 .538 .749

N 7 7 7 7 7

CPCM Pearson

Correlation

.547 .609 1 .717 .492

Sig. (2-tailed) .203 .146 .070 .262

N 7 7 7 7 7

NCCO

P

Pearson

Correlation

.057 .283 .717 1 .784*

Sig. (2-tailed) .904 .538 .070 .037

N 7 7 7 7 7

ICCM Pearson

Correlation

-.005 -.149 .492 .784
*
 1

Sig. (2-tailed) .992 .749 .262 .037

N 7 7 7 7 7

*. Correlation is significant at the 0.05 level (2-tailed).
 294

UNDER PEER REVIEW

295

 296

Figure 2. Relative graph between ICCM, NCCOP, CFS, CPCM and CICM for C Programs297

 298

299

 300

Figure 3: Scatter Plots of Complexity Values for Different Measure 301

A.Discussion 302

In this research, series of experiments were conducted to show t303

shown in Table 3, shows that ICCM gives accurate result compared t304

measures. ICCM for FC algorithm has the lowest value of 258 which indicates that lower complexity 305

information were packed in the software and also predict how user can easily underst306

code. NCCOP, CFS and CPCM also observed that FC algorithm has the lowest information packed in the 307

program but were not able to reflect code comprehensiveness. LFU algorithm has the highest value of 308

Relative graph between ICCM, NCCOP, CFS, CPCM and CICM for C Programs

Figure 3: Scatter Plots of Complexity Values for Different Measure

In this research, series of experiments were conducted to show the effectiveness of the ICCM

shown in Table 3, shows that ICCM gives accurate result compared to the other existing cognitive complexity

measures. ICCM for FC algorithm has the lowest value of 258 which indicates that lower complexity

information were packed in the software and also predict how user can easily understand some functions in the

NCCOP, CFS and CPCM also observed that FC algorithm has the lowest information packed in the

program but were not able to reflect code comprehensiveness. LFU algorithm has the highest value of

he effectiveness of the ICCM. The results as

o the other existing cognitive complexity

measures. ICCM for FC algorithm has the lowest value of 258 which indicates that lower complexity

and some functions in the

NCCOP, CFS and CPCM also observed that FC algorithm has the lowest information packed in the

program but were not able to reflect code comprehensiveness. LFU algorithm has the highest value of

UNDER PEER REVIEW

9

complexity which is (ICCM = 427), which indicates that LFU has the highest complexity information packed in 309

the software. NCCOP, CICM, CFS and CPCM was not able to show that because ICCM considers the effort for 310

comprehending the code and the information contained in software. 311

A relative graph which shows the comparison between CFS, CICM, CPCM, NCCOP and ICCM in C 312

program is plotted in Figure 3. A close inspection of this graph shows that ICCM is closely related to CFS, 313

CICM, CPCM and NCCOP, in which ICCM reflect similar trends. In other words, high ICCM values are due to 314

the fact that ICCM includes most of the parameters of different measures and measure the effort required in 315

comprehending the software. For example, ICCM has the highest value for LFU (427) which is due to having 316

larger size of the code and high cognitive complexity. 317

The correlation coefficient is a statistical measure that measures the relationship between two variables. If one 318

variable is changing its value then the value of second variable can be predicted. it was shown in Figure 3 that 319

their exist positive linear relationship between the pairs of different measurement. 320

 V. CONCLUSION 321

The result of ICCM exhibit the complexity of program very clearly and accurate than other existing cognitive 322

measures. The practical applicability of the metric was evaluated by different online algorithm codes written in 323

C programming language to prove its robustness and well structureness of the proposed measure. Also ICCM 324

was evaluated through the most famous Weyuker’s property, it was found that eight out of the nine properties 325

have been satisfied by ICCM and that there exist a degree of correlation between the measures. The comparative 326

inspection of the implementation of ICCM versus CFS, CPCM, CICM and NCCoP has shown that: 327

• ICCM makes more sensitive measurement, so it provides information contained in a software and also 328

measure the difficulties in understanding the code. 329

• CFS excludes some important details of cognitive complexity such as information contained in 330

variables, whereas ICCM includes it. 331

• CICM includes operators which makes it very complicated to calculate whereas information is only 332

contained in the operands/ variables and operators are just used to perform some operation on 333

operands. ICCM was able to handle those isues. 334

• CPCM is based on total number of occurences of input and output parameters, counting the number of 335

input and output is not clear and ambiguously interpreted. Whereas ICCM was able to handle those 336

issues. 337

• NCCoP wasn’t able to measure the difficulties of code comprehension, Of a fact empirical validations 338

have shown that ICCM was able to reflect the difficulty level of understandability in a program. 339

The ICCM could be adopted by programmers in determining the understandability of Procedural languages and 340

also provides the information contained in the program. 341

References 342

[1] McCabe, T.A. “Complexity measure”. IEEE trans. software engineering (se-2, 6) pp. 308-320, 1976. 343

[2] Halstead M. “Elements of software science”. Elsevier North Holland, New York. pp. 67-78, 1977. 344

[3] Oviedo E.“Control flow, data and program complexity”. In Proc. IEEE COMPSAC, Chicago, 1980, pp 345

146-152. 346

[4] Basili,V.R., Phillips,“T.Y,Metric analysis and data validation across fortran projection” .IEEE 347

Trans.software Eng., SE –9(6), 1983, pp. 652-663. 348

[5] Wang Y., Shao J. “Measurement of the Cognitive Functional Complexity of Software.” Proceeding of 349

the 3rd IEEE International Conference on Cognitive Informatics. pp. 4-9, 2004. 350

[6] Visscher B.F. ‘Exploring Complexity in Software Systems”. Ph.D. thesis. Department of Computer 351

Science and Software Engineering. University of Portsmouth, UK. Pp. 130-138, 2005. 352

[7] Weyuker E. “Evaluating software complexity measure”. IEEE Transaction on Software Complexity 353

Measure, Vol.14 No.9, 1988, pp. 1357-1365. 354

[8] Briand, L.C., Morasca, S., Basili, V.R. “Property-Based Software Engineering Measurement”. 355

IEEE Trans. Software Eng. Vol. 22 No. 1, 1996, pp. 68-86. 356

UNDER PEER REVIEW

10

[9] IEEE Computer Society “IEEE Standard Glossary of Software Engineering Terminology”. IEEE 357

std. 610.12, 1990. 358

[10] Amit K. J., Kumar R. “A New Cognitive Approach to Measure the Complexity of 359

Software”. International Journal of Software Engineering and its Applications. Vol.8 No.7, 2014, pp. 360

185-198. 361

[11] Mayrhauser A.V., Vans A.M. “From Code Understanding Needs to Revers Engineering Tools 362

Capabilities”. In: Proc. of 6th Int. Conference on Computer Aided Software Engineering. pp.19-363

23,1993. 364

[12] Sanjay Misra, Ibrahim Akman “A New Complexity Metric Based on Cognitive 365

Informatic”.Proceedings of 3rd International Conference on Rough Sets and Knowledge Technology, 366

pp. 620–627, 2008. 367

[13] Misra S. “Cognitive Program Complexity Measure”. In Proc. of IEEE, pp.120–125, 2009. 368

[14] Kushwaha D.S and Misra A.K. “A Modified Cognitive Information Complexity Measure of 369

Software”. Proceeding of the 7th International Conference on Cognitive Systems. pp. 120-131, 2008. 370

[15] Olabiyisi S.O; Omidiora E.O. and Isola E. O.”Performance evaluation of procedural cognitive 371

complexity metric and other code based complexity metrics’. September 2012, IJSER, Volume 3,Issue 372

9. 373

 374

[16] Isola E. O; Sotonwa K.A. “Performance evaluation of procedural cognitive complexity metric on 375

imperative programming languages” August 2015, IJRASET, Volume 3. Issue viii. 376

 377

[17] Isola E. O., Olabiyisi S. O., Omidiora E. O.,Ganiyu R. A., Ogunbiyi D.T. and Adebayo O. Y (2016): 378

‘’Development of an Improved Cognitive Complexity Metrics for Object- Oriented Codes.’’ British 379

Journal of Mathematics & Computer Science. 18(2): PP: 1-11. 380

 381

UNDER PEER REVIEW

