1 <u>Review Paper</u>

A STUDY ON COLD PLASMA FOR FOOD

PRESERVATION

4 ABSTARCT:

2

3

8

9

22

26

29

5 Cold plasma is an electrically energized matter composed of highly reactive species which

6 includes molecules of charged and gas particles in the form of positive ions, and negative

7 ions, photons electrons, and free radicals at room temperature. It is an emerging technology

in non-thermal food preservation in the application of sterilization. An increase in the

plasma based treatment for food is employed to inactivate the food borne pathogens clearly

10 seen in the recent years. The present study reviews the action of plasma agents on the

microbial elasses population, surface decontamination of the raw produce in the food

processing and novel technologies with future view in applications of food.

13 **Key words:** Cold plasma, Food, preservation, sterilization.

14 Introduction

15 Matter on earth exists mostly in three distinct phases (gas, liquid and solid) but when

universe is considered as fourth state of matter which abundantly exists. So, Plasma is

17 hence referred to as the fourth state of matter, next to solids, liquids and gases. The term

18 'Plasma' was first employed by Irving Langmuir in 1928 to define this fourth state of matter

19 which is as partially or wholly ionized state of gas and discovered plasma oscillations in

20 ionized gas. The phase Matter changes from solid to liquid and further to gas occurs as we

21 increase the energy input likewise increasing the energy input beyond a certain level in gas

state causes ionization of molecules which yields the to plasma state. d Agostino et al.

23 (year) reported that plasma can be obtained either in low temperature, non-equilibrium glow

24 discharge or high temperature, equilibrium thermal plasma.

25 From the properties of plasma, it is used in various fields such as textile, -electronics, life

sciences, packaging etc. Roth et al. (year). Application of the plasma technology as a

27 surface cleaning tool has been commercially adopted for the removal of disinfection

al., year). In the biomedical sector, plasma technology is sused for cold sterilization of

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Comment [JTK1]: Rephrase please. It can be ...and its' future novelty in food technology.

Comment [JTK2]: Lock all paragraphs in the manuscript. 15, 25,

Formatted: Indent: First line: 0"

Comment [JTK3]: This introductory statement should be rephrased. 'Matter is any entity that has weight/mass and occupies space. Matter is generally known to exist in three distinct phases however, there is a fourth phase called plama...'

Comment [JTK4]: Please remove. Plasma is only next to gas. Next to solid is only liquid and next to liquid is only gas.

Comment [JTK5]: Remove please because it has been mentioned in the preceding statement.

Comment [JTK6]: Please remove the phrase 'we' because its' an article. ...as thermal or heat energy increases

Formatted: Highlight

Formatted: Highlight

Formatted: Font: Italic

Formatted: Highlight

Formatted: Highlight

Formatted: Font: Italic

60

instruments and prostheses as well as many thermo labile materials used in the biomedical 30 technology sector for its particular advantages, such as including its moderate or negligible 31 Formatted: Highlight Formatted: Highlight impact on substrate materials and use on nontoxic compounds. Conventionally, sterilization 32 methods such as heat, and chemical solutions are used for the surface disinfection of fruits, 33 Formatted: Highlight seeds, and spices etc., which are often time-consuming and damaging or have toxic 34 35 residues. Van de Veen et al. reported that the effect of cold plasma on bacterial spores is more than the conventional techniques like heat, chemicals and UV treatment. One of the 36 37 important challenges associated with cold plasma technology is ensuring high microbial Formatted: Font: Italic 38 inactivation while maintaining sensory qualities and that ensure there fresh appearance food and its' products. Conventional chemical treatments are familiar to food processors Formatted: Highlight 39 energy based processes, such as heating. The three conventional states of matter are solids, 40 liquids, and gases; plasma has been described as the fourth state of matter, an unfamiliar 41 proceeding statement. 42 designation that warrants explanation. As materials acquire energy (such as by heating), they change state, from solid (lowest energy) to liquid and then ultimately to gas. The 43 44 melting points and boiling points of materials widely vary. For all materials, however, at 45 each phase transition, the interactions and structures between molecules become loosed Formatted: Highlight 46 rand ultimately breakdown entirely (Niemira, 2012). Gases are collections of molecules (e.g., N₂2,O₋₂ and CO₋₂) or single atoms (e.g., He, Ne and Ar) without large scale structure. 47 Formatted: Highlight At still higher energies, the intra molecular and intra-atomic structures breakdown, 48 Formatted: Highlight liberating free electrons and ions. Plasma may be though to fasan ionized gas consisting of 49 neutral molecules, electrons, and positive and negative ions. Plasmas generated in 50 Formatted: Highlight conventional devices do not ionize all of the atoms in a gas, even for hot (i.e., thermal) 51 Formatted: Subscript plasmas, such as welding arcs and spark plugs (Fridman et al., 2005). Within these hot Formatted: Highlight 52 plasmas, all species are extremely reactive. Within cooler (i.e., nonthermal) plasmas, such 53 Formatted: Highlight as those found in neon signs and plasma display screens, some of the chemical species are 54 55 more reactive than others. For this reason, the chemical composition of the feed gas al., 2005) 56 becomes a determining factor in the types of reactions that the plasma can initiate (Lieberman & and Lichtenberg, 2005; Niemira & and Gutsol 2010). 57 58 The energy required to ionize gases into plasma can come from a variety of sources, such 59 as heat, electricity, laser light, radiation, and extremely rapid compression. As a cloud of

active particles, the plasma retains the imparted energy for a period of time. When the

Comment [JTK7]: This author is not included on your list of reference. Please update and include the year.

Comment [JTK8]: ... fresh appearance of

Comment [JTK9]: Please recast or remove because it does not connect with the

Formatted: Subscript, Highlight

Formatted: Subscript, Highlight

Comment [JTK10]: Please rephrase.

Comment [JTK11]: Please compare your citation with the main reference. (Chirokov et

Formatted: Font: 11.5 pt, Italic

Formatted: Indent: Left: 0", First line: 0", Space After: 9.4 pt

88

89

90

active particles recombine with each other, the energy is released as visible and UV light in 61 the process of recombination (Lieberman & and Lichtenberg 2005; Niemira, 2012). Of 62 more interest to food processors, the active particles in the plasma can react with the food 63 substrate, releasing the stored energy into the bacteria or viruses to be targeted. How much 64 energy a plasma has to impart will depend on its chemical composition, density, and 65 66 applied temperature. Plasma Science (Plasma- Definition, Physics and Chemistry) 67 In 1922, the American scientist Irving Langmuir proposed that the electrons, ions and 68 Formatted: Indent: First line: 0" neutrals in an ionized gas could be considered as corpuscular material entrained in some 69 kind of fluid medium and termed this entraining medium "plasma", similar to the plasma, 70 introduced by the Czech physiologist Jan Evangelista Purkinje to denote the clear fluid 71 which remains after removal of all the corpuscular material in blood. However, it emerged 72 that there was no "fluid medium" entraining the electrons, ions, and neutrals in an ionized 73 gas (Bellan 2015), nevertheless the name prevailed. 74 Comment [JTK12]: Chai and Bellan, 2015 not Bellan, 2015 The term "plasma" refers to a partially or wholly ionized gas composed essentially of 75 photons, ions and free electrons as well as atoms in their fundamental or excited states 76 possessing a net neutral charge. The plasma possesses a net neutral charge because the 77 number of positive charge carriers is equal to the number of negative ones (Kudra and 78 Mujumdar 2009). Electrons and photons are usually designated as "light" species in contrast 79 to the rest of the constituents designated as "heavy" species. Due to its unique properties 80 plasma is often referred to as the fourth state of matter according to a scheme expressing an 81 increase in the energy level from solid to liquid to gas and ultimately to plasma. 82 **Definition of Technology** 83 Thermal plasma, operating at many hundreds or thousands of degrees above ambient, would-84 Formatted: Indent: First line: 0" 85 be immediately detrimental to the quality of food products. Non thermal plasma is therefore the focus. For the sake of clarity, however, a distinction must be made between what non 86 thermal means to a plasma physicist and what the same term means to a food processor. To 87

the a physicist, non-thermal means that the plasma has a distinctly non uniform distribution

of energy —(a non-equilibrium) among the constituent particles. Electrons are likely to

transfer energy via collisions with heavier particles, exciting the larger particle in-to a state

Formatted: Font: 11.5 pt, Highlight

97

98 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118119

120 121

of reactivity (Fridman et al. 2005, Niemira & Gutsol, 2010). To a food processor, nonthermal means that the mode of action of the antimicrobial process does not rely on thermal heat-kill for inactivation of associated pathogens. As a practical matter, non-thermal processes are generally regarded as those that cause little or no thermal damage to the food product being treated. There are three primary mechanisms by which cold plasma inactivates microbes (Moisan *et al.*, 2002).

Comment [JTK13]: Please compare your citation with the main reference. (Chirokov *et al.*, 2005).

Formatted: Font: 11.5 pt, Highlight

Comment [JTK14]: Please delete to avoid tautology.

Formatted: Font: 11.5 pt, Italic

- The first is the chemical interaction of radicals, reactive species, or charged particles with cell membranes.
- The second is by damage to membranes and internal cellular components by UV radiation
- Finally, DNA strands may be broken by UV generated during recombination of the plasma species.

While on a given commodity, one mode of action may be more significant than another. However, the greatest sanitizing efficacy results is from plasma with multiple antimicrobial mechanisms (Moisan *et al.*, 2002; Laroussi 2003). As a food processing technology, cold plasma is new enough that the terminology is still evolving. The terms cold plasma (Noriega et al. 2011), cool plasma (Tran *et al.*, 2008), atmospheric pressure plasma (Chirokovetal.2005), cold atmospheric gas plasma (Moisanetal.2001), and other comparable terms have been used in recent publications. In other cases, the plasma is described by the generative technology, e.g., dielectric barrier discharge (Fridman et al. 2006), plasma jet (Lu et al.2009), uniform glow discharge plasma (Gadrietal.2000), gliding arc discharge (Burlica et al. 2010), etc.

Comment [JTK15]: Please adjust citation. It is not in the main reference.

Formatted: Font: 11.5 pt, Italic

Formatted: Font: 11.5 pt, Italic

Comment [JTK16]: Not referenced

Comment [JTK17]: Not referenced.

Comment [JTK18]: Not referenced

Comment [JTK19]: Please rephrase statement to be clearly understood.

Formatted: Indent: First line: 0"

Types of Plasma

Two classes of plasma, namely thermal and Non-thermal plasma (NTP) can be distinguished on the basis of conditions in which they are generated. This classification of plasma is based on the relative energetic levels of electrons and heavy species of the plasma. NTP (near ambient temperatures of 30-60°C) is obtained at atmospheric or reduced pressures (vacuum) and requires less power (citation?). NTPs are characterized by an electron temperature much above that of the gas (macroscopic temperature) and consequently do not present a local thermodynamic equilibrium. NTP is also generated by an electric discharge in- gas at lower pressure or using microwaves.

Typical illustrations for plasma generation at atmospheric pressure include the corona discharge, Dielectric Barrier Discharges (DBD), Radio-frequency Plasmas (RFP) and the gliding arc discharge. To the contrary, thermal plasmas are generated from higher pressures and require high power. Thermal equilibrium may exist in between the electrons and the heavy species. Plasma generation at atmospheric pressure is of interest, both technically and industrially for the food industries because this does not require extreme conditions.

A thermal plasma is characterized by the existence of a thermodynamic equilibrium between the electrons, ions and neutral particles. The temperatures of a thermal plasma at atmospheric pressure generally are above 6000 K. This corresponds to a mean kinetic energy of less than 1 ev. while

A non-thermal plasma has significantly different electron and gas temperatures. For example, the electron temperature may be several 10,000 K, which corresponds to a mean kinetic energy of more than 1 eV, whereas the gas temperature can be close to ambient. In spite of their low temperature, such plasmas can trigger chemical reactions and excitation states via electron impact (citation needed). In Contrast thermal plasma, non-thermal plasma can also be applied directly to thermally sensitive surfaces.

Formatted: Indent: First line: 0", Space After: 9.4 pt

Comment [JTK20]: This statement is not needful here. The mechanism explains their sensitivity.

Plasma Sources

Usually, plasma treatments was were carried out under vacuum conditions, but researchers have developed atmospheric pressure plasma system; with advantages of resulting reduced cost, increased treatment speed, and industrial applicability (Yoon and Ryu 2007; Yun et al., 2010). The ability to generate non-thermal plasma discharges at atmospheric pressure makes the decontamination process easier and less expensive (Kim et al., 2011). Nevertheless Nevertheless, recently, most of the cold plasma devices available commercially was developed for research to aim at biomedical applications. Therefore, for food applications, these devices may need to be customized or tailor made. The barrier glow discharge generated between two parallel electrodes is a widely employed NTP system.

Formatted: Indent: First line: 0"

Comment [JTK21]: (Kim et al., 2007)

Formatted: Font: 11.5 pt, Italic

Comment [JTK22]: Not referenced.

Comment [JTK23]: Not referenced.

Formatted: Font: 11.5 pt, Italic

Food may be conveyed through the discharge to achieve microbial decontamination in most of the industrial scale. Another configuration is the plasma pen or jet, in which a stream of gases can be directed at the object to be treated. Biozone, a Scientist has developed the new process for the generation of the cold oxygen plasma (COP) by using air to high- energy

deep UV light with an effective radiation spectrum between 180 nm &and 270 nm. This 152 cold gas plasma, composed of several species of negative and positive ions, free radical 153 154 molecules, electron, UV-photons and ozone (Terrier et al., 2009). Duo-Plasma line is Formatted: Font: 11.5 pt, Italic linearly extended plasma source excited using microwaves of 2.45 GHz at a pressure <1000 155 Pa (Petasch et al., 1997) and several other plasma treatment systems have evolved based on 156 Formatted: Font: 11.5 pt, Italic 157 this principle. The Plasmodul is a microwave sustained low pressure plasma reactor with a modular concept based on the Duo-Plasmaline principle which provides an easy up scaling 158 159 for industrial applications (Schulz et al. year). Formatted: Font: 11.5 pt, Italic 160 This type of microwave excited plasma sources are is well suited for large area plasma treatment (Petasch et al., 1997) and can probably be employed for surface treatment of 161 Comment [JTK24]: Not referenced... Formatted: Font: 11.5 pt, Italic foods or processing surfaces at industrial scale. More recently, Kim et al. (2010) developed 162 Comment [JTK25]: Not referenced a cold plasma jet operating at 20 kHz Alternating Current (AC) under atmospheric pressure. 163 The most changable feature of most plasma systems is the freedom to select a 164 165 gas or gas mixture. Improvements in the existing plasma systems and newer equipment 166 directed for treatment of real food systems are likely to draw attention of researchers and 167 engineers in near future. Recently, a novel approach which shows significant potential for the treatment of various 168 foods has been reported. The approach is based on a dielectric barrier discharge with the 169 food package in contact with high voltage electrodes. Only 40-50 W of power is needed to 170 171 ionize air inside a 4 L re-sealable plastic (LDPE) bag (Klockow and Keener 2009). The high voltage process ionizes any gas within the electric field contained within the package. 172 173 Ionization can generate significant amounts of reactive molecules with little increase in 174 product surface temperature. Particular treatment times for targeted spore or bacterial reductions are dependent on product loading, packaging material, gas composition and 175 package/electrode configuration. The in-package ionization process has been demonstrated 176 177 in a number of common packaging materials including cardboard, glass, LDPE, HDPE, 178 PETE, polystyrene, rubber, tygon, and others. Scale-up of the system has facilitated treatment of air filled packages with an electrode gap of up to 10 cm with rapid processing 179 180 times (Keener et al. 2010). Comment [JTK26]: Not referenced.

Types of Cold Plasma Systems

There is a are rapidly expanding array of technologies used to generate cold plasma. These can operate at atmospheric pressure or at some degree of partial vacuum. The gas being ionized may be as simple as air or nitrogen; or it may be a more exotic mixture containing some proportion of noble gases; such as helium, argon; or neon. The driving energy may be electricity, microwaves; or lasers. This wide array of design elements is an indication of the flexibility of cold plasma systems and the extent to which new forms of cold plasma systems continue to be built and evaluated.

-However, all cold plasma systems intended for use in food processing fall generally into one of three categories. These categories are defined by where the food to be treated is positioned with respect to the cold plasma being generated: at some significant distance from the point of generation, relatively close to the point of generation, or within the plasma generation field itself. Conceptually, these categories are derived from the nature of cold plasma chemistry, with delineations having to do with the half-life and reactivity of charged, active species within the plasma (Niemira &and Gutsol, 2010).

The first category is remote treatment cold plasma systems. The plasma is generated using one of a variety of methods and moved onto the surface to be treated. The plasma may be driven by a flow of the feed gas or (less commonly) manipulated through the use of magnetic fields. This type of system has the advantage of placing the surface to be treated at a physically separate point of generation (Chirokov *et al.*, 2005). This simplifies the design and operation of the device, and increases the flexibility with respect to the shapes and sizes of objects to be treated. However, the most reactive chemical species are also those that have the shortest half-life. During the time of flight, free electrons may recombine with other plasma products, such as heavy ions or atomic species. By the time the quenched plasma reaches the target surface, the composition is secondary chemical species, i.e. lower activity, long-living chemical species resulting from chemical recombination within the plasma (Gadri et al. 2000).

The lower concentration of ions that exist in this afterglow plasma generate UV light and activate chemical species upon reaction with the target, but their concentration is much lower than in active plasma (i.e., plasma supported by electric field) (Fridman & and Kennedy 2004). Thisese Conditioned category is known as direct treatment cold plasma

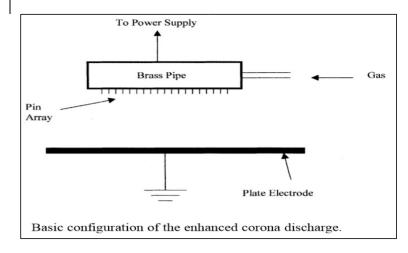
Formatted: Indent: First line: 0"

Formatted: Font: 11.5 pt, Italic

Comment [JTK27]: Not refrenced.

systems. In this systems, plasma generation instrument supplies active plasma directly to 212 the object to be treated. As with the first category, the plasma is moved via the flow of the 213 214 feed gas or by a comparable means. So the target is relatively close to the site of cold plasma generation & eand exposed to the plasma before active species recombine and are 215 lost. These systems provide higher concentrations of active agents (Laroussi and Lu. 216 217 2005). Systems of this type can operate in pulsed mode, with plasma generated at pulse Comment [JTK28]: Not referenced. frequencies of hundreds or thousands of times per second. 218 219 220 **Cold-Plasma Generators** 221 In this section, several methods that have been used to generate relatively large volumes of 222 Formatted: Indent: First line: 0" 223 non-equilibrium cold plasmas, at or near atmospheric pressure (sometimes referred to as "high" pressure) are presented. This is not a comprehensive list of all existing methods. The 224 225 methods presented here were chosen for two main reasons. 1. They have been used extensively to study the germicidal effects of cold, high 226 pressure plasmas; and 227 228 2. Their potential use in various other industrial plasma processing applications (lighting, surface modification, etching, deposition). 229 Formatted: Indent: Left: 0", Right: 0", Space After: 5.45 pt The Corona Discharge 230 231 Siemens (2005) was the first to suggest the use of a corona discharge to generate ozone in Comment [JTK29]: Not referenced. order to disinfect water supplies. This was the first recorded use of plasma toward the 232 Formatted: Indent: First line: 0" inactivation of micro-organisms. Menashi, (1972) used a pulsed RF-driven corona 233 Comment [JTK30]: Not referenced 234 discharge to create a plasma at atmospheric pressure. He reported that up to microbial spores could be inactivated in less than 1 s. Garate (1978) et al. used an "Enhanced Corona 235 Comment [JTK31]: Not referenced Formatted: Font: 11.5 pt, Highlight Discharge" to destroy concentrations of up to 4.106/ml of Escherichia coli, and spores of 236 237 Bacillus subtilis in less than 15 min. A schematic of the enhanced corona discharge is shown in Fig. This discharge consists of a line of pins fastened to a hollow pipe at one end 238 Comment [JTK32]: Fig...? and protruding from the other end through tiny holes. Formatted: Font: 11.5 pt, Highlight 239 240 The feed gas escapes through the holes and provides a local atmosphere around the corona 241 points. The feed gas, a non-electronegative gas such as helium or argon, replaces the air

242


243

244

around the corona points and therefore enhances the discharge by removing the electron attaching electronegative-oxygen molecules. The pin array can be biased by a de DC or aeAC high voltage supply, or by a pulsed power supply.

Formatted: Font: 11.5 pt, Highlight

Formatted: Font: 11.5 pt, Highlight

245246

247

248

249

250

251

252

253

254

255

256

257

258

259

260261

262

Fig:1: The Glow Discharge at Atmospheric Pressure

One of the early developments of diffuse glow discharge plasma at atmospheric pressure was reported by Donohoe and Wydeven. Donohoe (1979). They used a large gap (cm) pulsed-barrier discharge in a mixture of helium and ethylene to polymerize ethylene. Later, Kanazawa et al. (1979). reported their development of a stable glow discharge at atmospheric pressure by using a dielectric-barrier discharge (DBD) configuration. They claimed that to obtain a diffuse discharge (as opposed to a filamentary discharge, which is traditionally produced by DBDs), helium had to be the major constituent of the gas mixture, and the frequency of the applied voltage had to be in the kilohertz range. Schematic of the DBD based glow discharge at atmospheric pressure. At least one of the two electrodes must be covered by a dielectric material. After the ignition of the discharge, charged particles are collected on the surface of the dielectric.

This <u>charge</u> builtd-up <u>charge</u> creates a voltage drop, which counteracts the applied voltage, and therefore chokes the discharge current. The <u>discharge which</u> subsequently extinguishes. As the applied voltage increases again (at the second half cycle of the applied voltage) the discharge reignites. This process is repeated over and over during each full cycle of the applied voltage. Laroussi (2003), reported the use of the glow discharge at

Formatted: Indent: First line: 0"

Comment [JTK33]: Not referenced

Formatted: Font: 11.5 pt, Highlight

Formatted: Font: 11.5 pt, Italic, Highlight **Formatted:** Font: 11.5 pt, Highlight

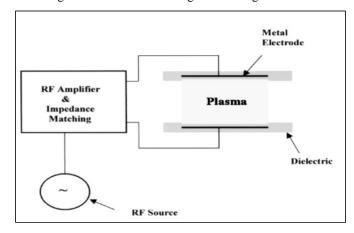
Formatted: Font: 11.5 pt, Highlight

Formatted: Indent: Left: 0", First line: 0"

263

264265

266


267

268

269

270

atmospheric pressure to destroy cells of *Pseudomonas fluorecens*. He used suspensions of the bacteria in Petri dishes placed on a dielectric-covered lower electrode. The electrodes were placed within a chamber containing mostly helium with an admixture of air. He obtained full destruction of the bacterium at of a concentrations of 4.10⁶/ml in less than 10 minutes. Using a similar discharge, Kelly-Win tenberg (2000), reported the inactivation of *Bacillus- subtilis* spores and using an air gap. *Escherichia- coliz, B. subtilis*, and a variety of other gram-negative as well as gram-positive bacteria were inactivated successfully by many researchers using the DBD-based diffuse-glow discharge.

271

272273

275

276

277

278

279

280

281 282

Fig:2:_Configuration of the DBD-based diffuse glow discharge at atmospheric pressure.

274 **Source: ?**

The Atmospheric-Pressure Plasma Jet

The atmospheric-pressure plasma jet (APPJ) is a capacitively coupled device consisting of two coaxial electrodes between which a gas flows at high rates. The outer electrode is grounded, while the central electrode is excited by RF power at 13.56 MHz. The free electrons are accelerated by the RF field and enter into collisions with the molecules of the background gas. These inelastic collisions produce various reactive species (excited atoms and molecules, free radicals) that exit the nozzle at high velocity. The reactive species can therefore react with a contaminated surface placed in proximity (cm) of the nozzle.

Formatted: Font: 11.5 pt, Italic

Comment [JTK34]: Please, what is the unit?

Comment [JTK35]: Montie and Kelly, (2000) reported...

Formatted: Font: 11.5 pt, Italic

Formatted: Indent: First line: 0"

283

284

285

286

287

288

As in the case of the diffuse DBD, the stability of the APPJ plasma (as well as its non-thermal characteristic) depends on using helium as a carrier gas. Herrmann <u>et al.</u> (1999): used the APPJ to inactivate spores of <u>Bacillus globigii</u>, a <u>simulant to Aanthrax</u> (<u>Bacillus anthracis</u>): and <u>Herrmann et al(1999)</u>: reported the reduction of seven orders of magnitude of the original concentration of <u>B. globigii</u> in about 30 s.

Formatted: Font: 11.5 pt, Italic

Formatted: Font: 11.5 pt, Italic
Formatted: Font: 11.5 pt, Italic

Formatted: Font: 11.5 pt, Italic

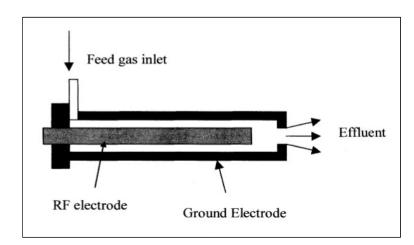


Fig:3: Configuration of the atmospheric-pressure plasma jet (APPJ) (source?)

290291

292

293

294

295

296

297298

299

300

301

302

289

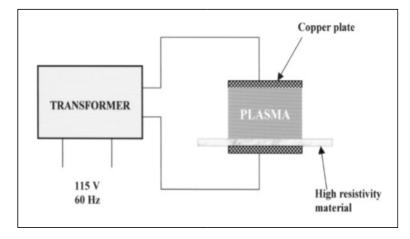
The Resistive Barrier Discharge

The concept of the resistive-barrier discharge (RBD) is based on the DBD configuration. However, Instead of a dielectric, a high-resistivity material is used to cover at least one of the electrodes. The high-resistivity layer plays the role of a distributed ballast which limits the discharge current and therefore prevents arcing. The advantage of the RBD over the DBD is the possibility to use de_DC power (or low-frequency ac, 60 Hz) to drive the discharge.

Using helium, large-volume diffuse cold plasma at atmospheric pressure can be generated. Richardson *et al.*, (2000) and Laroussi *et al.*, reported a four orders-of-magnitude reduction in the original concentration of vegetative *B. subtilis* cells in about 10 minutes. They also reported that the RBD-inactivated endospores of *B. subtilis*, but not as effectively as the

Formatted: Indent: First line: 0"

Comment [JTK36]: Include the year please.


Formatted: Font: 11.5 pt, Italic

vegetative cells. In these experiments, they used a gas mixture of 97%–3% helium-oxygen, respectively.

305

303

304

306 307

Fig4: Configuration of the resistive-barrier discharge (RBD)

Action of Plasma on microorganisms (source).

308

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Action on Cell Components and Functions

The use of sterilizing properties of plasma was first introduced towards the end of the '60s, patented in 1968 (Menashi, 1968) and first works with plasma made from oxygen were proposed in 1989. Thereafter, considerable research has been performed on the mechanism of microbial inactivation by plasma agents. The plasma agents contribute to the lethal action by interacting with the biological material. Nelson and Berger (1989) have shown that O2 plasma could be a very efficient biocidal against bacteria.

Plasma treatment can effectively inactivate a wide range of micro-organisms including spores (Kelly-Wintenberg et al. 1999; Feichtinger *et al.*, 2003; Lee *et al.* 2006) and viruses (Terrier *et al.*, 2009). Effect of plasma can be quite selective, meaning tuneable between damage to pathogenic organisms without damage to the host, or activation of different pathways in different organisms (Dobrynin *et al.*, 2009).

Low-pressure oxygen plasma has been shown to degrade lipids, proteins and DNA of cells (Mogul *et al.*, 2003). The reactive species in plasma have been widely associated to the direct oxidative effects on the outer surface of microbial cells. As an example, commonly

Formatted: Indent: First line: 0"

Comment [JTK37]: Not referenced

Formatted: Font: 11.5 pt, Subscript

Comment [JTK38]: Please, arrange your citation. Kelly was not the lead author of the publication. Check your main reference and make adjustment.

Comment [JTK39]: Not referenced.

Formatted: Font: 11.5 pt, Italic

used oxygen and nitrogen gas plasma are excellent sources of reactive oxygen-based and 324 nitrogen-based species, such as O•, O2, O3, OH•, NO•, NO2 etc. Atomic oxygen is 325 Formatted: Font: 11.5 pt, Subscript Formatted: Font: 11.5 pt, Subscript 326 potentially a very effective sterilizing agent, with a chemical rate constant for oxidation at Formatted: Font: 11.5 pt, Subscript room temperature of about 106 times that of molecular oxygen (Critzer et al., 2007). 327 Formatted: Font: 11.5 pt, Italic These act on the unsaturated fatty acids of the lipid bilayer of the cell membrane, thereby 328 impeding the transport of bio-molecules across it. The double bonds of unsaturated lipids 329 are particularly vulnerable to ozone attack (Guzel-Seydim et al., 2004). Membrane lipids 330 Formatted: Font: 11.5 pt. Italic 331 are assumed to be more significantly affected by the reactive oxygen species (ROS) due to 332 their location along the surface of bacterial cell, which allows them to be bombarded by these strong oxidizing agents (Montie et al., 2002). The proteins cells and the spores are 333 Formatted: Font: 11.5 pt, Italic equally vulnerable to the action of these species, causing denaturation and cell leakage. 334 Oxidation of amino acids and nucleic acids may also cause changes that result in microbial 335 336 death or injury (Critzer et al., 2007). Formatted: Font: 11.5 pt, Italic Micro-organisms in cold plasma are exposed to an intense bombardment by radicals, most 337 likely provoking surface lesions that the living cell cannot repair sufficiently faster. This 338 may partially explain the observations where in cells are in many cases destroyed very 339 quickly. This process is termed "etching" (Pelletier, 1992). The cell wall rupture has been 340 additionally attributed by Laroussi et al., (2003) and Mendis et al., (2002) to electrostatic 341 Comment [JTK40]: Adjust the citations. Mendis et al., 2000 not 2002. 2000 should forces due to accumulation of charges at the outer surface of cell membranes. The 342 come before 2003 please. 343 morphological changes in E. coli cells treated with atmospheric plasma at 75W for 2 mins Formatted: Font: 11.5 pt, Italic as observed under an electron microscope by (Hong et al. (2009), clearly revealed that the 344 Formatted: Font: 11.5 pt, Highlight Formatted: Font: 11.5 pt, Italic, Highlight 345 treated cells had severe cytoplasmic deformations and leakage of bacterial chromosome. Formatted: Font: 11.5 pt, Highlight 346 These observations demonstrate the loss of viability of bacterial cells after plasma treatment. An analogy between plasma and pulsed electric field has also been drawn to 347 explain the action of plasma on the membranes (Pothakamury et al., 1995; Spilimbergo et 348 Comment [JTK41]: Not referenced 349 al., 2003). It is well established that electroporation of membranes is induced by pulsed Formatted: Font: 11.5 pt, Italic Formatted: Font: 11.5 pt, Italic 350 electric fields and it appears that plasma acts on similar lines inducing perforations in the membranes of micro-organisms (Sale and Hamilton 1967; Pothakamury et al. 1995; 351 Comment [JTK42]: Not referenced Wouters and Smelt, 1997). In addition to generating pores, humid air plasma additionally 352

provokes a marked acidification of the medium (Moreau et al. 2005; Moreau et al. 2007).

353

Comment [JTK43]: Citations not properly

referenced. Please correct.

355 356 357 Role of UV photons and charged particles in ...? The production of UV photons of different wavelengths has been proposed to be involved. 358 Formatted: Indent: First line: 0" in dimerizing the thymine bases of DNA including that of spores (Munakata et al. 1991). 359 Comment [JTK44]: Not referenced 360 The role of UV photons in bacterial death when they are submitted to a plasma treatment was reviewed in detail by (Boudam et al., 2006). More recently, by exclusion of -the 361 Formatted: Font: 11.5 pt, Italic reactive particles and spectral fractions of UV radiation from access to the spores Roth et 362 al., (2010) revealed that UV-C radiation is the most effective inactivation agent in the 363 364 plasma. Ultraviolet (UV) photons play a less important role in atmospheric pressure glow discharge 365 Formatted: Space After: 0.05 pt (APGD) because they are easily absorbed by gas atoms and molecules at atmospheric 366 367 pressure (Vleugels *et al.*, 2005). Formatted: Font: 11.5 pt, Italic The role of the charged particles in the bacterial inactivation process was recently 368 Formatted: Indent: First line: 0" 369 investigated by Lu et al. (2009). Their work revealed that the charged particles play a minor Comment [JTK45]: ...2009 0r 2011. Please adjust citation 370 role in the inactivation process when He/N₂ (3%) is used as working gas than when He/O₂ Formatted: Font: 11.5 pt, Subscript (3%) is used. Also, they concluded that heat and UV play no or minor roles in the 371 Formatted: Font: 11.5 pt, Subscript 372 inactivation process. Similar results were earlier obtained by (Perni et al., 2007) who Formatted: Font: 11.5 pt, Italic interplayed bacterial inactivation kinetics with optical emission spectroscopy, and identified 373 374 oxygen atoms as major contributor in plasma inactivation with minor contributions from 375 UV photons, OH radicals, singlet oxygen metastables and nitric oxide. Thus, a contradiction 376 over the role of UV photons in plasma exists and future studies must be directed to get a clear picture. 377 378 **Effect of process parameters** 379 The concentrations in which the plasma agents occur in plasma depend greatly on the Formatted: Indent: First line: 0" 380 device set-up (reactor geometry), operating conditions (gas pressure, type, flow, frequency 381 and power of plasma excitation) and gas composition which affect their efficacy in a process when employed. To cite an example, the destructive efficiency of various gas 382 plasma sources and temperatures on Bacillus spp. spores were compared by (Hury et al., 383 Formatted: Font: 11.5 pt, Italic 384 1998). Formatted: Font: 11.5 pt, Italic

385

386

389

390

391 392

393

394

395

396

397 398

399

400 401

402

This group demonstrated that oxygen-based plasma is more efficient than pure argonplasma.

Formatted: Indent: Left: 0", First line: 0"

Another deciding criterion is whether the substrate to be sterilized is in direct contact with 387 the plasma (Pdirect Eexposure) or located remote from it (Rremote Eexposure) (Moisan et 388

Formatted: Indent: First line: 0"

al., 2001; Laroussi 2005; Boudam et al., 2006). If exposed remotely, the quantum of heat

Formatted: Font: 11.5 pt, Italic

transmitted to a sample is reduced, the charged particles do not play a role since they

Formatted: Font: 11.5 pt, Italic

recombine before reaching the sample, and many of the short-lived neutral reactive species also do not reach the sample.

-Since, the components of the plasma are reactive and self-quenching, with a relatively short half-life, decreased time of flight would be expected to be one of the major factors in antimicrobial efficacy in this case (Niemira and Sites 2008).

By varying the process parameters involved in plasma generation, a multitude of mechanisms can be actuated which may act individually or synergistically. Nevertheless, the details of interaction of the different plasma agents with the different components of bacterial cells or spores are currently very limited. The interactions which occur between plasma agents and biological materials, ultimately leading to sterilization are still under investigation.

Potential Applications of ...?:

Results of action of cold plasma on packing materials 403

Packing	Treatment	Applied	Results	References
materials	plasma	voltage		
		(dosage)		
Polypropylene	Air Corona	30 kHz, 1.7	Decrease in contact	D. Dixon, B.J.
		j/cm2	angle, increase in	et.al. (2012)
			adhesion	
PET films	Glow	10 W	Decrease in contact	K.N.
	discharge		angle, increase in	Pandiyaraj,
			roughness, crystallinity	et.al. (2008)
			and degradation yield	
Potato starch	Air plasma	15W	Decrease in hydrophilic	F.Starzyk, et.al.
film			nature, Increase in	(2001)
			tensile strength	
PP film	Diode plasma	8.3 W	Decrease in	P. Slepicka, et.
	discharge		contact angle,	Al.(2010)
			increase in surface	

			energy	
PET film	Jet plasma	35 W	Increase in hydrophobic	Y. Akishev, et
	DC discharge		nature	al., (2008)
PET	Jet plasma	285 V	Increase in weight,	K. Gotoh,
			decrease in contact	et.al.,(2011)
			angle and wettability	
HDPE film	RFAr:O2	150 W	Decrease in	I. Banik, K.S.
	Plasma		crystallinity, contact	Kim, et al.,
			angle, increase in	(2002)
			roughness	

Comment [JTK46]: Please follow these guidelines for the arrangement of the tables;

- 1. Label each table as Table 1, 2, 3...
 2. The table titles should be in initial capitals. E.g. Results of Action of Cold Plasma on Packaging Materials.
 3. Delete the authors initials on the reference section on each table. It should be Pandiyarai et al. (2008).

 4. Et al. should be in italies.
- 4. Et al. should be in italics.
- 5. Remove all borders on the table except at the heading and single line at the bottom. Please, these guidelines are for all the tables.

LDPE	RFArgon	25-100 W	Decrease in contact	M. Ataeefard,
	plasma		angle and ageing	et.al.,(2009)
			effect, increase in	
			crystallinity	
BOPP film	RFAir plasma	10-50 W	Decrease in contact	S.M.
			angle, increase,	Mirabedini, et.
			roughness ageing effect	Al.,(2007)

Comment [JTK48]: Follow the guidelines please.

Recent findings in the area of non-thermal plasmas for inactivation of microorganisms

415 and spores.

Organism	Plasma conditions	Treatment surface/	Salient result	Reference
		medium		
	Atmospheric plasma corona discharge, with high voltage (20kV) DC power supply	On agar plates	Changes of pH levels from alkaline to acid, upon plasma application to bacteria in water, does not play a predominant role in cell death.	Korachi et al. (2010)
Escherichia coli, Bacillus subtilis, Candida albicans, and Staphylococcus aureus	High-frequency capacitive discharge (0.4 torr) and barrier discharge (0.4-0.5 torr) in air excited at commercial frequency of 5.28 MHz			Azharonok et al. (2009)
	Oxygen based	Dried cells and endospore suspension on a cover-glass	Treated cells had severe cytoplasmic deformations and leakage of bacterial chromosome. UV from the plasma only slightly affected the viability of the spores.	Hong et al. (2009)

E 1 . 1 . 1 . 1 .	C 11 \cdot 1 \cdot	T 1 1 1	E.C. C. 1. 1.		- 1
		Inoculated	Efficacy of inactivation was		
type 1	plasma plume	membrane	markedly reduced for	Perni et al.	
Saccharomyces	generated by an AC	filters and	microorganisms on the cut	(2008a)	
cerevisiae	voltage of 8 kV at	inoculated fruit surfaces than on filters due			
Gluconobacter	30 kHz	surfaces to the migration of			
liquefaciens			microorganisms from the		
Listeria			exterior of the fruit tissue to		
monocytogenes			its interior and not		
			quenching of reactive		
			plasma species.		
Escherichia	Cold atmospheric	Pericarps of	S. cerevisiae was the most		
coli	plasma generated	mangoes and	resistant amongst all test	Perni et al.	
Saccharomyces	by an AC voltage	melons	organisms. An increase in	(2008b)	
cerevisiae	(variable12kV and		the applied voltage led to		
Pantoea	16kV)		more efficient production		
agglomerans			of reactive plasma species		
Gluconacetoba			(oxygen atoms) which was		
cter			attributed for better		
liquefaciens			inactivation.		
Escherichia	One atmosphere	Apples,	Inactivation was observed		
coli O157:H7	uniform glow	Cantaloupe	in all the cases. Extent of	Critzer et al.	
Salmonella sp.	discharge plasma	and	log reduction varied with	(2007)	
Listeria	(OAUGDP)	Lettuce the organisms			
monocytogenes	operated at 9 kV				
	power and 6 kHz				
	frequency				
Biofilms	RF high pressure	Biofilms	A 10 min plasma treatment		
produced by	cold plasma jet	produced in 96-	•	Abramzon	et
Chromobacteri	using Atomflo	well	100% of the cells. A	al. (2006)	
um violaceum	250	polystyrene	complex, biphasic model	(2000)	
	reactor with 100	microplates of inactivation was			
	W RF power	iniciopiaces	observed.		
	supply using He		observed.		
	and N2 gas				

416

417 Recent finding of microbial inactivation using cold plasma

Microorganism	Substrate	Plasma	Exposure	Results	Reference
		source	time and		
			dosage		
S.enteritidis (01)	Table Egg	RBD	90 min &	4–5 Log reduction	N. Rowan,
L. monocytogenes		prototype	30kV		et. Al.,(2007)
E. coli 12955 &	almonds	Dielectric	30 s & 30	4 log CFU/ml	Deng S, et.
Salmonella spp		discharge	kV and		A1.,2007
			2000 Hz.		
E.coli, C.jejuni	Chicken	Pulsed gas	24 s at 45kV	up to 8 Log	E. Noriega,
	skin	plasma		reduction	et.al.,(2011)
		discharge			
E. coli	Mango &	AC	2.5 s, 5 s	P. agglomerans	Perni et al.
Saccharomyces	Melon	voltage	and 10s,at	and G.	(2008)
<u>cerevisiae</u>	(honeydew)		12 to 16 kV	liquefaciens > 3	
<u>Pantoea</u>				log reductions after	
<u>agglomerans</u>				2.5 s.E. coli > 3	
<u>Gluconobacter</u>				log reductions after	
<u>liquefaciens</u>				5 s S.	
				cerevisiae > 3 log	
				reductions after 10s	19

E. coli O157:H7	apple juice	corona	40 s 100 Hz	5 log CFU/g	Montenegro
		discharges	with 4000		et al.
			pulses of		
			9000 V		
			peak		
			voltage		
E. coli O157:H7	Red Apples	Gliding	3 min &	up to 3.7 Log	Niemira and
Salmonella		arc	18kV	reduction	Sites
Stanley					(2008)
Yeast/mouls	Strawberris	DBD	5 min at 16	up to 3 Log	N.N. Misra,
			t0 18kV	reduction	et.al.,(2014)
A. hydrophila	Lettuce	COP	5 min at	5 Log reduction	I.K. Jahid,
			20kV		et.al.,(2014)
S. typhimurium	Tomatoes	DBD	300s at	3.8 Log reduction	D. Ziuzina,
			18kV		et.al.,(2014)

Comment [JTK47]: Please check. I think its

Associated benefits and concerns:

0

10

11

- 1 Cold plasma treatment to the foods is a promising technology in that which beacause it acts
- 2 rapidly, does not leave toxic residuals on processed parts or in the exhaust gas and the
- 3 temperature rise can be kept to an acceptable level. The viability of grains and legumes had
- 4 | shown to be preserved post plasma treatment with air and SF6 gases (Selcuk et al., 2008).
- 5 Moreover, unlike pulse light and gamma radiation, the shadow effect is minimised
- 6 considerably using gas plasma method as reactive species are produced in the whole
- 7 | chamber (Lassen et al., 2003; Goldman and Pruitt 1998). Contact angle (CA) measurements
- 8 for nonthermal oxygen plasma treated lamb's lettuce have shown increased wettability of
- 9 adaxial leaf surfaces after plasma exposure (Grzegorzewski et al. 2010a).
 - Further, in this case a successive degradation of epicuticular waxes and cutin of the plant's
 - epidermis was indicated by means of FTIR (ATR) and scanning electron microscopy
- 12 (SEM). Above all, it can be conveniently operated in either batch or continuous mode. An
- 13 aspect of the future of plasma technology is the possibility of pairing it with other
- decontamination processes such as pulsed-light treatment where synergistic effects may be
- 15 more appreciable.

Formatted: Indent: First line: 0"

Comment [JTK49]: Not referenced.

Comment [JTK50]: Not referenced. When referenced, please, 1998 comes before 2003 or you can delete Goldman and Pruitt since they concluded on the same matter on effect and mechanism of Gamma radiation.

Comment [JTK51]: Not referenced. Please add to the list of reference.

Studies on effect of nonthermal plasma on food components are scarce in literature. Based 16 17 on the experiments using low-pressure oxygen plasma it have been observed that -time and structure-dependent degradation can be seen for different selected model flavonoids 18 adsorbed on solid surfaces, which was attributed to plasmaimmanent reactive species such 19 as O (3P), O2 ($1\Delta g$ and $1\Sigma g+$), O3, or OH radicals (Grzegorzewski et al. 2010b). It has been 20 Comment [JTK52]: Not referenced. 21 observed in lamb's lettuce that pure compounds show a time-dependent degradation Formatted: Font: 11.5 pt, Highlight (flavonoids) or remain unchanged (phenolic acids) after exposure to oxygen plasma 22 23 (Grzegorzewski et al. 2010a). Formatted: Font: 11.5 pt, Highlight Also, for the same model plant based food, a significant increase of protocatechuic acid, 24 luteolin, and disometin has been recorded after 120 s treatment time, independent of the 25 applied plasma driving voltage. The effect of the UV and radical species of plasma on the 26 lipids and other sensitive constituents of the foods such as vitamins C and E (which are 27 28 naturally occurring in most fruits and vegetables and many foods) still remains ambiguous. 29 Suitability of plasma technology for treatment of high fat/ lipid containing and other 30 sensitive foods (where chemical changes may be induced) is doubted. 31 Products that have high lipid content would likely be affected by oxidation, resulting in formation of hydroxyl acids, keto acids, short-chain fatty acids and aldehydes etc. that cause 32 off-flavours and odours. For these reasons meat products may not be ideal substrates for 33 treatment with plasma (Critzer et al., 2007). For a full evaluation, additional issues 34 Formatted: Font: 11.5 pt, Italic 35 concerning food quality must be considered and these include changes in nutrient content colour and textural qualities, toxic residues and other chemical changes (Vleugels et al., 36 Formatted: Font: 11.5 pt, Italic 2005). Research efforts must be undertaken to evaluate the projected cost of the treatment 37 for large quantities of food commodities and also the safety of gases used before direct 38 plasma techniques will become common in the food industry (Basaran et al. 2008). 39 Therefore, cold plasma technology is an emerging disinfection method that offers an 40 41 exciting complementary or alternative, novel non thermal approach for reducing the 42 microbial populations on the raw or fresh produce surface and packaging materials. There may be several other applications in relation to food systems, which still remain unexplored. 43 Various reactive species of plasma interact with the biological cells to cause permanent 44 changes in them at cellular level and morphology, leading to inactivation. 45

Although cold plasma technology is not yet used commercially on a large scale, the 46 equipment should be readily scalable. Systems for large scale cold plasma treatment of food 47 and related products using various energy sources and methods (like a multiplicity of 48 microwave magnetrons) are already under development. This technology is increasingly 49 Comment [JTK53]: Citation please. finding acceptance among food processors for the surface sterilization and combating 50 51 biofilm formation. The effect of cold plasma on the sensitive constituents of foods, mainly lipids, vitamins etc. have still some issues that need to be addressed and once this is 52 53 achieved the technology will find wider applications and adaptation in food industries. Further research needs and conclusions 54 Comment [JTK54]: I suggest you can change this title to Conclusion and Recommendation 55 Further development of cold plasma technology will have to be carried out, allowing a Formatted: Indent: First line: 0" better understanding of the complex interactions during applications, such as food surface 56 57 interactions, impact on food composition, optimization of gas composition and other processing parameters according to the treated sample. Also, additional information 58 regarding food quality must be considered with respect to the cold plasma treatment, and 59 changes concerning the nutrient content, toxic residues or textural qualities should be 60 investigated. 61 Cold plasma treatment proved to be a flexible, efficient, chemical-free antimicrobial process 62 63 and it can represent an easy to use sanitizing method for the food industry that does not require special temperature, humidity or pressure conditions. The application of a plasma 64 treatment on different commodities represents a relatively new decontamination approach 65 of this technology and more research studies are needed if it is to provide a commercial 66 applicability for the food industry. Comment [JTK55]: Swap the paragraphs. 67

68 **Reference:**

69

- 1. Abramzon N, Joaquin JC, Bray J, Brelles-Marino G (2006) Biofilm destruction by RF high-pressure cold plasma jet. Plasma Science, IEEE Transactions on 34 (4):13041309
- Akishev, Y., Grushin, M., Dyatko, N., Kochetov, I., Napartovich, A., Trushkin, N.,
 & Descours, S. (2008). Studies on cold plasma-polymer surface interaction by

Comment [JTK55]: Swap the paragraphs. Cold plasma treatment proved....(which is your conclusion) before....Further development of cold plasma technology...(as recommendation).

104

example of PP-and PET-films. Journal of Physics D: Applied Physics, 41(23), 75 235203. 76 77 3. Akishev, Y., Grushin, M., Karalnik, V., Trushkin, N., Kholodenko, V., Chugunov, V., ... & Kireev, G. (2008). Atmospheric-pressure, nonthermal plasma sterilization 78 of microorganisms in liquids and on surfaces. Pure and Applied Chemistry, 80(9), 79 80 19531969. 4. Ataeefard, M., Moradian, S., Mirabedini, M., Ebrahimi, M., & Asiaban, S. (2009). 81 82 Investigating the effect of power/time in the wettability of Ar and O 2 gas plasmatreated low-density polyethylene. Progress in Organic Coatings, 64(4), 482-83 488. 84 5. Azharonok V, Krat'ko L, Nekrashevich YI, Filatova I, Mel'nikova L, Dudchik N, 85 Yanetskaya S, Bologa M. (2009). Bactericidal action of the plasma of high 86 frequency capacitive and barrier discharges on microorganisms. Journal of 87 Formatted: Font: 11.5 pt, Italic Engineering Physics and Thermophysics 82 (3):419-426 88 89 6. Bai, H., Mao, L., Wang, H. S., Zhao, J., Yang, L., An, T. T., ... & Liu, Y. X. (2009). 90 Epidermal growth factor receptor mutations in plasma DNA samples predict tumor response in Chinese patients with stages IIIB to IV non-small-cell lung cancer. 91 Journal of Clinical Oncology, 27(16), 2653-2659. 92 Comment [JTK56]: Please remove reference because it was not cited in your paper 7. Banik, I., Kim, K. S., Yun, Y. I., Kim, D. H., Ryu, C. M., Park, C. S., ... & Park, C. 93 E. (2003). A closer look into the behavior of oxygen plasma-treated high-density 94 polyethylene. Polymer, 44(4), 1163-1170. 95 8. Boudam, M. K., Moisan, M., Saoudi, B., Popovici, C., Gherardi, N., & and 96 Massines, F. (2006). Bacterial spore inactivation by atmospheric-pressure plasmas in 97 the presence or absence of UV photons as obtained with the same gas mixture. 98 Journal of Physics 99 D: Applied Physics, 39(16), 3494. 100 9. Broekaert, J. A. C., Siemens, V., & Bings, N. H. (2005). Microstrip microwave 101 Formatted: Font: 11.5 pt, Font color: Red induced plasma on a chip for atomic emission spectral analysis. IEEE Transactions 102 103 Formatted: Font color: Red

Plasma Science, 33(2), 560-561.

Formatted: Font: 11.5 pt, Font color: Red

Formatted: Font color: Red

105	10. Chai, K. B., & and Bellan, P. M. (2015). Formation and alignment of elongated,	
106	fractallike water-ice grains in extremely cold, weakly ionized plasma. The	
107	Astrophysical	
108	Journal, 802(2), 112.	
109	11. Chen, F. F., & Smith, M. D. (1984). <i>Plasma</i> . John Wiley & Sons, Inc	Formatted: Font: 11.5 pt, Font color: Red
110	12. Chirokov, A., Gutsol, A., and& Fridman, A. (2005). Atmospheric pressure plasma	
111	of dielectric barrier discharges. Pure and applied chemistry, 77(2), 487-495.	
112	13. Chirokov, A., Gutsol, A., & Fridman, A. (2005). Atmospheric pressure plasma of	
113	dielectric barrier discharges. Pure and applied chemistry, 77(2), 487-495.	Comment [JTK57]: Please delete reference.
114	14. Critzer F, Kelly Wintenberg K, South S, Golden D (2007) Atmospheric plasma	
115	inactivation of foodborne pathogens on fresh produce surfaces. Journal of food	
116	protection 70 (10):2290	
117	15. Critzer, F. J., Kelly-Wintenberg, K., South, S. L., & Golden, D. A. (2007).	
118	Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces.	
119	Journal of food protection, 70(10), 2290-2296.	
120 121	16. d'Agostino, R., Favia, P., Oehr, C., and Wertheimer, M. R. (2005). Low-Temperature	
122	Plasma Processing of Materials: Past, Present, and Future. Plasma Processes and	
123	Polymers, 2(1), 7-15.	
124	17. Deng S, Ruan R, Mok CK, Huang G, Lin X, Chen P. (2007). Inactivation of	
125	Escherichia coli on Almonds Using Nonthermal Plasma. Journal of Food	Formatted: Font: 11.5 pt, Italic
126	Science.;72(2):M62-M6.	Formatted: Font: 11.5 pt, Italic
127	18. Dixon, D., and& J. Meenan, B. (2012). Atmospheric dielectric barrier discharge	
128	treatments of polyethylene, polypropylene, polystyrene and poly (ethylene	
129	terephthalate) for enhanced adhesion. Journal of Adhesion Science and Technology,	
130	26(20-21), 2325-2337.	
131	19. Dobrynin, D., Fridman, G., Friedman, G., & and Fridman, A. (2009). Physical and	
132	biological mechanisms of direct plasma interaction with living tissue. New Journal	
133	of	
134	Physics, 11(11), 115020.	
	24	

135	20. Donohoe, K. G., & Wydeven, T. (1979). Plasma polymerization of ethylene in an		
136	atmospheric pressure-pulsed discharge. Journal of Applied Polymer Science, 23(9),		
137	2591-2601.		
138	21. E. Noriega, G. Shama, A. Laca, M. Diaz etal., FoodMicrobiol.28, 1293 (2011)		
139	22. F.Starzyk, C.Y.Lii, P.Tomasik, Polym. J. Food Nutr. Sci. 10,27(2001)		Comment [JTK58]: Please reference
140	23. Fayngold, V., & Garate, E. (1998, November). Plasma Density Measurement in an		Formatted: Font: 11.5 pt, Font color: Red
141	Atmospheric Pressure Corona Discharge. In APS Division of Plasma Physics		Pormatted. Form. 11.5 pt, Form Color. Neu
142	Meeting		Formatted: Font color: Red
143	Abstracts.		Formatted: Font: 11.5 pt, Font color: Red
144	24. Feichtinger, J., A. Schulz, M. Walker, and U. Schumacher. "Sterilisation with		Formatted: Font color: Red
145	lowpressure microwave plasmas." Surface and coatings technology 174 (2003): 564		
146	569 .		
147	25. Gotoh, M., Kobayashi, S., & and Kawabata, K. (1995). U.S. Patent No. 5,427,850.		
148	Washington, DC: U.S. Patent and Trademark Office.		
149	26. Güzel-Seydim, Z., Bever, P. I., & Greene, A. K. (2004). Efficacy of ozone to		
150	reduce bacterial populations in the presence of food components. Food		
151	Microbiology, 21(4), 475-479.		
152	27. Herrmann, H. W., Henins, I., Park, J., & and Selwyn, G. S. (1999). Decontamination		
153	of chemical and biological warfare (CBW) agents using an atmospheric pressure		
154	plasma jet (APPJ). Physics of Plasmas, 6(5), 2284-2289.		
155	28. Hong Y, Kang J, Lee H, Uhm H, Moon E, Park Y. (2009). Sterilization effect of		
156	atmospheric plasma on Escherichia coli and Bacillus subtilis endospores. Letters in		Formatted: Font: 11.5 pt, Italic
157	Applied Microbiology 48 (1):33-37	 _	Formatted: Font: 11.5 pt, Italic
158	29. Hong, Y. F., Kang, J. G., Lee, H. Y., Uhm, H. S., Moon, E., & Park, Y. H. (2009).		Formatted: Font: 11.5 pt, Italic
159	Sterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis		Formatted: Font: 11.5 pt, Font color: Red
160	endospores. Letters in applied microbiology, 48(1), 33-37.		Formatted: Font color: Red
161	30. Hury, S., Vidal, D. R., Desor, F., Pelletier, J., & Lagarde, T. (1998). A		
162	parametric study of the destruction efficiency of <u>Bacillus spores in low pressure</u>		Formatted: Font: 11.5 pt, Italic
163	oxygen-based plasmas. Letters in applied microbiology, 26(6), 417-421.		
164	31. I.Banik, K.S. Kim, Y.I. Yunet al., J.Adhes. Sci. Technol. 16, 1155 (2002)		
165	32. K. Gotoh, A. Yasukawa, K. Taniguchi, J. Adhes. Sci. Technol. 25, 307 (2011)		

166 167	33. K.N. Pandiyaraj, V. Selvarajan, R.R. Deshmukh, M. Bousmina, Surf. Coat. Technol. 202, 4218 (2008)	'	Comment [JTK59]: Please, use APA style of referencing and fix alphabetically. Gotoh, A. should come before Gohot, M.
168	34. Kim, C., Ryu, C., Kim, B. W., Sim, S. J., Chae, H., Yoon, H. C., & Yang, S. S. et al		Formatted: Font: 11.5 pt, Font color: Red
169	(2007). Microfluidic dialysis device fabrication for protein solution enrichment and		
170	its enrichment enhancement by plasma surface treatment of a membrane. Journal of		
171	the		
172	Korean Physical Society, 51(3), 993-999.		
173	35. Klockow, P. A., & and Keener, K. M. (2009). Safety and quality assessment of		
174	packaged spinach treated with a novel ozone-generation system. LWT-Food Science		
175	and		
176	Technology, 42(6), 1047-1053.		
177	36. Korachi M, Gurol C ₂₇ and Aslan N ₂ (2010). Atmospheric plasma discharge		
178	sterilization effects on whole cell fatty acid profiles of Escherichia coli and		Formatted: Font: 11.5 pt, Italic
179	Staphylococcus aureus. Journal of Electrostatics 68 (6):508-512. doi: DOI:		Formatted: Font: 11.5 pt, Italic
180	10.1016 <u>./j.elstat.2010.06.014</u>		
181	37. Korachi, M., Gurol, C., & Aslan, N. (2010). Atmospheric plasma discharge		Formatted: Font: 11.5 pt, Font color: Red
182	sterilization effects on whole cell fatty acid profiles of Escherichia coli and		Formatted: Font color: Red
183	Staphylococcus aureus. Journal of Electrostatics, 68(6), 508-512.		Comment [JTK60]: Remove please.
.84	38. Kudra, T., & Mujumdar, A. S. (2009). Advanced drying technologies. CRC		Formatted: Font: 11.5 pt, Font color: Red
185	press.		Formatted: Font: 11.5 pt, Font color: Red
186	39. Langmuir, I. (1928). Oscillations in ionized gases. Proceedings of the National	`\	Formatted: Font color: Red
187	Academy of Sciences, 14(8), 627-637.		Comment [JTK61]: Please reference properly. The book should contain edition.
.88	40. Laroussi, M. (2002). Nonthermal decontamination of biological media by		
189	atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Transactions		
190	on plasma science, 30(4), 1409-1415.		
191	41. Laroussi, M., Mendis, D. A., & Rosenberg, M. (2003). Plasma interaction with		
192	microbes. New Journal of Physics, 5(1), 41.		
193	42. Laroussi, M., Mendis, D. A., & Rosenberg, M. (2003). Plasma interaction with		
194	microbes. New Journal of Physics, 5(1), 41.		Comment [JTK62]: Please remove this
195	43. Lieberman, M. A., & and Lichtenberg, A. J. (2005). Principles of plasma discharges		reference because it has been cited already.
 196	and materials processing. John Wiley & Sons.		
	26		

 44. Lu, X., Al-Qudiri, H. M., Lin, M., & and Rasco, B. A. (2011). Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food and Bioprocess Technology, 4(6), 919-935. 45. M. Atucefurd, S. Moradian, M. Mirabedini, M. Ebruhimi, S. Asiaban, Prog. Org. Cont. 64, 482 (2009) 46. Meenakshi, V. R., & and Scheer, B. T. (1968). Studies on the carbohydrates of the slug Ariolimax columbianis with special reference to their distribution in the reproductive system. Comparative Biochemistry and Physiology, 26(3), 1091-1097. 47. Mendis, D. A., Rosenberg, M., & and Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE transactions on plasma science, 28(4), 13041306. 48. Mirabedini, S. M., Arabi, H., Salem, A., & and Asiaban, S. (2007). Effect of low-pressure O., and Ar plasma treatments on the wettability and morphology of biaxial-oriented polypropylene (BOPP) film. Progress in Organic Coatings, 60(2), 105-111. 49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews. 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., & and Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and Biomolecules. Biotechnology progress, 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization, Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International journal of Pharmaceutics, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of E. coli O157:H7. Using a Pulsed Nonthermal Plasma System. Journal of Food Science, 2002, 67(2		
Technology, 4(6), 919-935. 45. M. Atacefard, S. Moradian, M. Mirabedini, M. Ebrahimi, S. Asiaban, Prog. Org. Coat. 64, 482 (2009) 46. Mecnalschi, V. R., ∧ Scheer, B. T. (1968). Studies on the carbohydrates of the slug Ariolimax columbianis with special reference to their distribution in the reproductive system. Comparative Biochemistry and Physiology, 26(3), 1091-1097. 47. Mendis, D. A., Rosenberg, M., ∧ Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE transactions on plasma science, 28(4), 13041306. 48. Mirabedini, S. M., Arabi, H., Salem, A., ∧ Asiaban, S. (2007). Effect of low-pressure O ₂ and Ar plasma treatments on the wettability and morphology of biaxial-oriented polypropylene (BOPP) film. Progress in Organic Coatings, 60(2), 105-111. 49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews. 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., ∧ Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcustadiodurans and Biomolecules. Biotechnology progress, 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358. 221. S2. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International journal of Pharmaceutics, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of E. coli 0157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Formatted: Font: 115 pt. Italic Comment JTK63! The year of publication.	197	44. Lu, X., Al-Qadiri, H. M., Lin, M., ∧ Rasco, B. A. (2011). Application of mid-
45. M. Atueefard, S. Moradian, M. Mirabedini, M. Fibrahimi, S. Asiaban, Prog. Org. Coat. 61, 482 (2009) 46. Meenakshi, V. R., & and Scheer, B. T. (1968). Studies on the carbohydrates of the slug Ariolimax columbianis with special reference to their distribution in the reproductive system. Comparative Biochemistry and Physiology, 26(3), 1091-1097. 47. Mendis, D. A., Rosenberg, M., & and Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE transactions on plasma science, 28(4), 13041306. 48. Mirabedini, S. M., Arabi, H., Salem, A., & and Asiaban, S. (2007). Effect of low- pressure O₂ and Ar plasma treatments on the wettability and morphology of biaxial- oriented polypropylene (BOPP) film. Progress in Organic Coatings, 60(2), 105-111. 49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens, Food Engineering Reviews. 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., & and Trent, J. D. 215 210 211 215 216 217 217 218 219 219 219 219 219 210 210 210 210 211 211 211 212 212 213 213 214 215 215 216 217 218 218 219 219 219 210 210 210 210 211 211 211 212 212 213 213 214 215 215 216 217 218 218 219 219 219 210 210 210 210 211 211 211 212 212 213 213 214 215 215 216 217 218 218 219 219 219 219 210 210 210 210 211 211 211 212 212 213 213 214 215 215 216 217 218 218 219 219 219 210 210 210 210 211 211 211 212 212 213 213 214 215 215 216 217 218 218 219 218 219 219 219 219 210 210 210 210 210 211 211 211 212 212	198	infrared and Raman spectroscopy to the study of bacteria. Food and Bioprocess
Coat. 64, 482 (2009) 46. Meenakshi, V. R., & and Scheer, B. T. (1968). Studies on the carbohydrates of the slug Ariolimax columbianis with special reference to their distribution in the reproductive system. Comparative Biochemistry and Physiology, 26(3), 1091-1097. 47. Mendis, D. A., Rosenberg, M., & and Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE transactions on plasma science, 28(4), 13041306. 48. Mirabedini, S. M., Arabi, H., Salem, A., & and Asiaban, S. (2007). Effect of low-pressure O ₂ and Ar plasma treatments on the wettability and morphology of biaxial-oriented polypropylene (BOPP) film. Progress in Organic Coatings, 60(2), 105-111. 49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews. 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., & and Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and Biomolecules. Biotechnology progress, 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., & and Saoudi, B. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International journal of Pharmaceutics, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of E. coli O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment UTK63]: The year of publication	199	Technology, 4(6), 919-935.
46. Meenakshi, V. R., & and Scheer, B. T. (1968). Studies on the carbohydrates of the slug Ariolimax columbianis with special reference to their distribution in the reproductive system. Comparative Biochemistry and Physiology, 26(3), 1091-1097. 47. Mendis, D. A., Rosenberg, M., & and Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE transactions on plasma science, 28(4), 13041306. 48. Mirabedini, S. M., Arabi, H., Salem, A., & and Asiaban, S. (2007). Effect of low-pressure O ₂ and Ar plasma treatments on the wettability and morphology of biaxial-oriented polypropylene (BOPP) film. Progress in Organic Coatings, 60(2), 105-111. 49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews. 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., & and Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcustradiodurans and Biomolecules. Biotechnology progress, 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., & and Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International journal of Pharmaceutics, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of E. coli (0157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. 6 Comment (JTK63): The year of publication	200	45. M. Ataeefard, S. Moradian, M. Mirabedini, M. Ebrahimi, S. Asiaban, Prog. Org.
slug Ariolimax columbianis with special reference to their distribution in the reproductive system. Comparative Biochemistry and Physiology, 26(3), 1091-1097. 47. Mendis, D. A., Rosenberg, M., ∧ Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE transactions on plasma science, 28(4), 13041306. 48. Mirabedini, S. M., Arabi, H., Salem, A., ∧ Asiaban, S. (2007). Effect of low-pressure O ₂ and Ar plasma treatments on the wettability and morphology of biaxial-oriented polypropylene (BOPP) film. Progress in Organic Coatings, 60(2), 105-111. 49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews. 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., ∧ Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and Biomolecules. Biotechnology progress, 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International journal of Pharmaceutics, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of E. coli O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment LJTK63]: The year of publication	201	Coat. 64, 482 (2009)
reproductive system. Comparative Biochemistry and Physiology, 26(3), 1091-1097. 47. Mendis, D. A., Rosenberg, M., ∧ Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE transactions on plasma science, 28(4), 13041306. 48. Mirabedini, S. M., Arabi, H., Salem, A., ∧ Asiaban, S. (2007). Effect of low-pressure O ₂ and Ar plasma treatments on the wettability and morphology of biaxial-oriented polypropylene (BOPP) film. Progress in Organic Coatings, 60(2), 105-111. 49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews. 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., ∧ Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and Biomolecules. Biotechnology progress, 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International journal of Pharmaceutics, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of F. coli O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002, 67(2):646-8. Comment [JTK63]: The year of publication	202	46. Meenakshi, V. R., & and Scheer, B. T. (1968). Studies on the carbohydrates of the
47. Mendis, D. A., Rosenberg, M., ∧ Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE transactions on plasma science, 28(4), 13041306. 48. Mirabedini, S. M., Arabi, H., Salem, A., ∧ Asiaban, S. (2007). Effect of low-pressure O.g. and Ar plasma treatments on the wettability and morphology of biaxial-oriented polypropylene (BOPP) film. Progress in Organic Coatings, 60(2), 105-111. 49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews. 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., ∧ Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and Biomolecules. Biotechnology progress, 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International journal of Pharmaceutics, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of E. coli O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment UTK63]: The year of publication	203	slug Ariolimax columbianis with special reference to their distribution in the
electrostatic disruption of bacteria. <i>IEEE transactions on plasma science</i> , 28(4), 13041306. 48. Mirabedini, S. M., Arabi, H., Salem, A., ∧ Asiaban, S. (2007). Effect of low-pressure O ₂ and Ar plasma treatments on the wettability and morphology of biaxial-oriented polypropylene (BOPP) film. <i>Progress in Organic Coatings</i> , 60(2), 105-111. 49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens. <i>Food Engineering Reviews</i> . 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., ∧ Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and Biomolecules. <i>Biotechnology progress</i> , 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. <i>Pure and applied chemistry</i> , 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. <i>International journal of Pharmaceutics</i> , 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of <i>E. coli</i> O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8.	204	reproductive system. Comparative Biochemistry and Physiology, 26(3), 1091-1097.
13041306. 48. Mirabedini, S. M., Arabi, H., Salem, A., & Asiad Asiaban, S. (2007). Effect of low-pressure O ₂ and Ar plasma treatments on the wettability and morphology of biaxial-oriented polypropylene (BOPP) film. Progress in Organic Coatings, 60(2), 105-111. 49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews. 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., & and Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and Biomolecules. Biotechnology progress, 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International journal of Pharmaceutics, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of E. coli O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment [JTK63]: The year of publication	205	47. Mendis, D. A., Rosenberg, M., & and Azam, F. (2000). A note on the possible
48. Mirabedini, S. M., Arabi, H., Salem, A., & Arabi, S. (2007). Effect of low-pressure O. and Ar plasma treatments on the wettability and morphology of biaxial-oriented polypropylene (BOPP) film. Progress in Organic Coatings, 60(2), 105-111. 49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews. 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., & and Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and Biomolecules. Biotechnology progress, 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International journal of Pharmaceutics, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of E. coli O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment [JTK63]: The year of publication comment plasma System. Journal of Food Science. 2002; 67(2):646-8.	206	electrostatic disruption of bacteria. IEEE transactions on plasma science, 28(4),
pressure O ₂ and Ar plasma treatments on the wettability and morphology of biaxial- oriented polypropylene (BOPP) film. <i>Progress in Organic Coatings</i> , 60(2), 105-111. 49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens. <i>Food Engineering Reviews</i> . 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., ∧ Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and Biomolecules. <i>Biotechnology progress</i> , 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. <i>Pure and applied chemistry</i> , 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. <i>International journal of Pharmaceutics</i> , 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of <i>E. coli</i> O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment UTK63]: The year of publication	207	13041306.
oriented polypropylene (BOPP) film. <i>Progress in Organic Coatings</i> , 60(2), 105-111. 49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens. <i>Food Engineering Reviews</i> . 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., ∧ Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and Biomolecules. <i>Biotechnology progress</i> , 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. <i>Pure and applied chemistry</i> , 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. <i>International journal of Pharmaceutics</i> , 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of <i>E. coli</i> O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8.	208	48. Mirabedini, S. M., Arabi, H., Salem, A., & Asiaban, S. (2007). Effect of low-
49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews. 2011; 3(3):159-70. 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., ∧ Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and Biomolecules. Biotechnology progress, 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International journal of Pharmaceutics, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of E. coli O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment DTK63]: The year of publication	209	pressure O2 and Ar plasma treatments on the wettability and morphology of biaxial-
Formatted: Font: 11.5 pt, Italic Comment [JTK63]: The year of publication	210	oriented polypropylene (BOPP) film. Progress in Organic Coatings, 60(2), 105-111.
 50. Mogul, R., Chan, S. L., Stevens, R. M., Khare, B. N., Meyyappan, M., ∧ Trent, J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and Biomolecules. <i>Biotechnology progress</i>, 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. <i>Pure and applied chemistry</i>, 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. <i>International journal of Pharmaceutics</i>, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of <i>E. coli</i> O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. 	211	49. Misra N, Tiwari B, Raghavarao K, Cullen P. Nonthermal Plasma Inactivation of
J. D. (2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and Biomolecules. <i>Biotechnology progress</i> , 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. <i>Pure and applied chemistry</i> , 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. <i>International journal of Pharmaceutics</i> , 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of <i>E. coli</i> O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment [JTK63]: The year of publication	212	Food-Borne Pathogens. Food Engineering Reviews. 2011; 3(3):159-70. Formatted: Font: 11.5 pt, Italic
Biomolecules. Biotechnology progress, 19(3), 776-783. 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International journal of Pharmaceutics, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of E. coli O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment [JTK63]: The year of publication	ı	
 51. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & and Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International journal of Pharmaceutics, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of E. coli O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. 	215	(2003). Impact of Low-Temperature Plasmas on Deinococcusradiodurans and
Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3), 349-358. 221 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. 222 (2001). Low-temperature sterilization using gas plasmas: a review of the 223 experiments and an analysis of the inactivation mechanisms. International journal of 224 Pharmaceutics, 226(1), 1-21. 225 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of E. coli O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment [JTK63]: The year of publication	216	Biomolecules. Biotechnology progress, 19(3), 776-783.
 349-358. 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. <i>International journal of Pharmaceutics</i>, 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of <i>E. coli</i> O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. 	· ·	
 52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. <i>International journal of Pharmaceutics</i>, 226(1), 1-21. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of <i>E. coli</i> O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. 	219	Plasma sterilization. Methods and mechanisms. Pure and applied chemistry, 74(3),
 (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. <i>International journal of Pharmaceutics</i>, 226(1), 1-21. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of <i>E. coli</i> O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. 	220	349-358.
experiments and an analysis of the inactivation mechanisms. <i>International journal of Pharmaceutics</i> , 226(1), 1-21. 53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of <i>E. coli</i> O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment [JTK63]: The year of publication	221	52. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., &nd Yahia, L. H.
 Pharmaceutics, 226(1), 1-21. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of E. coli O157:H7 Using a Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment [JTK63]: The year of publication 	222	(2001). Low-temperature sterilization using gas plasmas: a review of the
53. Montenegro J, Ruan R, Ma, H, Chen P. Inactivation of <i>E. coli</i> O157:H7 Using a Formatted: Font: 11.5 pt, Italic Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment [JTK63]: The year of publication	223	experiments and an analysis of the inactivation mechanisms. International journal of
Pulsed Nonthermal Plasma System. Journal of Food Science. 2002; 67(2):646-8. Comment [JTK63]: The year of publication	224	Pharmaceutics, 226(1), 1-21.
	225	53. Montenegro J, Ruan R, Ma. H, Chen P. Inactivation of E. coli O157:H7 Using a Formatted: Font: 11.5 pt, Italic
	226	

227

256

257

228	research using the one atmosphere uniform glow discharge plasma (OAUGDP) for	
229	sterilization of surfaces and materials. IEEE Transactions on plasma science, 28(1),	
230	41-50.	
231	55. Moreau, L. (2005). Stability of multiagent systems with time-dependent	
232	communication links. IEEE Transactions on automatic control, 50(2), 169-182.	
233	56. Moreau, M., Orange, N., & and Feuilloley, M. G. J. (2008). Non-thermal plasma	
234	technologies: new tools for bio-decontamination. <i>Biotechnology advances</i> , 26(6),	
235	610-617.	
236	57. Nelson, C. L., & and Berger, T. J. (1989). Inactivation of microorganisms by oxygen	
237	gas plasma. Current microbiology, 18(4), 275-276.	
238	58. Niemira BA, Sites J (2008) Cold plasma inactivates Salmonella Stanley and	Formatted: Font: 11.5 pt, Italic
239	Escherichia coli O157: H7 inoculated on golden delicious apples. Journal of Food	
240	Protection 71 (7):1357-1365	
241	59. Niemira, B. A. (2012). Cold plasma decontamination of foods. Annual review of	
242	food science and technology, 3, 125-142.	
243	60. Niemira, B. A. (2012). Cold plasma decontamination of foods. Annual review of	
244	food science and technology, 3, 125-142.	
245	61. Niemira, B. A., & Gutsol, A. (2011). Nonthermal plasma as a novel food	
246	processing technology. Nonthermal processing technologies for food, 272-288.	
247	62. Niemira, B. A., & Sites, J. (2008). Cold plasma inactivates Salmonella Stanley and	Formatted: Font: 11.5 pt, Font color: Red
248	Escherichia coli O157: H7 inoculated on golden delicious apples. Journal of Food	Formatted: Font color: Red
249	Protection®, 71(7), 1357-1365.	Formatted: Font: 11.5 pt, Font color: Red
250	63. Noriega, E., Shama, G., Laca, A., Díaz, M., & Kong, M. G. (2011). Cold	Formatted: Font color: Red
251	atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated	Formatted: Font: 11.5 pt, Font color: Red
252	with Listeria innocua. Food microbiology, 28(7), 1293-1300.	Formatted: Font: 11.5 pt, Italic
253	64. novel Non-Thermal, A. Rohit Thirumdas, Chaitanya Sarangapani & Uday S.	
254	Annapure.	
255	65. Pandiyaraj, K. N., Selvarajan, V., Deshmukh, R. R., & and Gao, C. (2008). Adhesive	

properties of polypropylene (PP) and polyethylene terephthalate (PET) film surfaces

treated by DC glow discharge plasma. Vacuum, 83(2), 332-339.

54. Montie, T. C., Kelly-Wintenberg, K., & and Roth, J. R. (2000). An overview of

258	66. Pang, S. W., Sung, K. T., & and Ko, K. K. (1992). Etching of photoresist using	
259	oxygen plasma generated by a multipolar electron cyclotron resonance source.	
260	Journal of	
261	Vacuum Science & Technology B: Microelectronics and Nanometer Structures	Formatted: Justified
262	Processing, Measurement, and Phenomena, 10(3), 1118-1123.	
263	67. Park, G. Y., Park, S. J., Choi, M. Y., Koo, I. G., Byun, J. H., Hong, J. W., & Lee,	Formatted: Font: 11.5 pt, Font color: Red
264	J. K. (2012). Atmospheric-pressure plasma sources for biomedical applications.	
265	Plasma Sources Science and Technology, 21(4), 043001.	Comment [JTK64]: Please remove this.
266	68. Pelletier, J. H., Arnal, Y. A., Vallier, L. J., & and Pichot, M. G. (1992). U.S. Patent	
267	No. 5,102,687. Washington, DC: U.S. Patent and Trademark Office.	
268	69. Perni S, Liu D.W, Shama G, Kong M.G (2008b) Cold atmospheric plasma	
269	decontamination of the pericarps of fruit. Journal of Food Protection 71 (2):302-308	Formatted: Font: 11.5 pt, Italic
270	70. Perni S, Shama G, Kong MG (2008a) Cold atmospheric plasma disinfection of cut	
271	fruit surfaces contaminated with migrating microorganisms. Journal of Food	
272	Protection 71 (8):1619-1625	
273	71. Perni, S., Shama, G., Hobman, J. L., Lund, P. A., Kershaw, C. J., Hidalgo-Arroyo,	
274	G. A., & Kong, M. G. (2007). Probing bactericidal mechanisms induced by cold	
275	atmospheric plasmas with Escherichia coli mutants. Applied Physics Letters, 90(7),	
276	073902.	Comment [JTK65]: Please rearrange
277	72. Ragni L, Berardinelli A, Vannini L, Montanari C, Sirri F, Guerzoni ME, Guarnieri A	reference in alphabetical order.
278	(2010) Non-thermal atmospheric gas plasma device for surface decontamination of	Formatted: Font: 11.5 pt, Font color: Red
279	shell eggs. Journal of Food Engineering 100 (1):125-132	Comment [JTK66]: Remove
280	73. Richardson, J. P., Dyer, F. F., Dobbs, F. C., Alexeff, I., & Laroussi, M. (2000,	Formatted: Font color: Red
281	June).	
282	On the use of the resistive barrier discharge to kill bacteria: Recent results. In <i>Plasma</i>	
283	Science, 2000. ICOPS 2000. IEEE Conference Record-Abstracts. The 27th IEEE	
284	International Conference on (p. 109). IEEE.	
285	74. Roth, J. R., Nourgostar, S., &nd Bonds, T. A. (2007). The one atmosphere uniform	
286	glow discharge plasma (OAUGDP)—A platform technology for the 21st century.	
287	IEEE	
288	Transactions on Plasma Science, 35(2), 233-250.	
	29	

289	75. Rowan N, Espie S, Harrower J, Anderson J, Marsili L, MacGregor S. (2007)	
290	Pulsedplasma gas-discharge inactivation of microbial pathogens in chilled poultry	
291	wash water. Journal of Food Protection 70 (12):2805-2810	Formatted: Font: 11.5 pt, Italic
292	76. S.M. Mirabedini, H. Arabi, A. Salem, S. Asiaban, Prog. Org. Coat. 60, 105 (2007)	
293	77. Sale, A. J. H., & and Hamilton, W. A. (1967). Effects of high electric fields on	
294	microorganisms: I. Killing of bacteria and yeasts. Biochimica et Biophysica Acta	
295	(BBA)-General Subjects, 148(3), 781-788.	
296	78. Slepička, P., Vasina, A., Kolská, Z., Luxbacher, T., Malinský, P., Macková, A., &	
297	Švorčík, V. (2010). Argon plasma irradiation of polypropylene. Nuclear Instruments	
298	and Methods in Physics Research Section B: Beam Interactions with Materials and	
299	Atoms, 268(11), 2111-2114.	
300	79. Spilimbergo, S., Dehghani, F., Bertucco, A., & Foster, N. R. (2003). Inactivation of	
301	bacteria and spores by pulse electric field and high pressure CO2 at low temperature.	
302	Biotechnology and Bioengineering, 82(1), 118-125.	
303	80. Terrier, O., Essere, B., Yver, M., Barthélémy, M., Bouscambert-Duchamp, M.,	
304	Kurtz, P., & and Lina, B. (2009). Cold oxygen plasma technology efficiency	
305	against different airborne respiratory viruses. Journal of Clinical Virology, 45(2),	
306	119-124.	
307	81. Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: a novel	
308	nonthermal technology for food processing. Food biophysics, 10(1), 1-11.	
309	82. Tran, A. T. T., Hyland, M. M., Qiu, T., Withy, B., & James, B. J. (2008). Effects of	
310	surface chemistry on splat formation during plasma spraying. Journal of Thermal	
311	Spray Technology, 17(5-6), 637-645.	
312	83. Tran, M. Q. (1979). Ion acoustic solitons in a plasma: a review of their experimental	Formatted: Font: 11.5 pt, Font color: Rec
313	properties and related theories. <i>Physica Scripta</i> , 20(3-4), 317.	Formatted: Font color: Red
314	84. Vleugels, M., Shama, G., Deng, X. T., Greenacre, E., Brocklehurst, T., & and Kong,	
315	M. G. (2005). Atmospheric plasma inactivation of biofilm-forming bacteria for food	
316	safety control. IEEE Transactions on Plasma Science, 33(2), 824-828.	
317	85. Wouters, P. C., & and Smelt, J. P. (1997). Inactivation of microorganisms with	
318	pulsed electric fields: potential for food preservation. Food Biotechnology, 11(3),	
319	193-229.	

30

320	86. Y. Akishev, M. Grushin, N. Dyatko et al., J. Phys. 41, 235 (2008)	
321	87. Žárský, V. (2012). Jan Evangelista Purkyně/Purkinje (1787–1869) and the	Formatted: Font: 11.5 pt, Font color: Red
322	establishment of cellular physiology—Wrocław/Breslau as a central European	
323	cradle for a new science. <i>Protoplasma</i> , 249(4), 1173-1179.	
!		