ON THE GENERAL LINEAR RECURSIVE SEQUENCES

Original Research Article

ON THE GENERAL LINEAR RECURSIVE SEQUENCES

ABSTRACT. In this paper we investigate the properties of the general linear recursive sequences started from the Lucas sequence and give an application to matrices.

1. Introduction

For $a_1, a_2 \in \mathbb{Z}$, the corresponding Lucas sequence $\{u_n\}$ is given by $u_0 = 0$, $u_1 = 1$, and $u_{n+1} + a_1u_n + a_2u_{n-1} = 0$ ($n \ge 1$). The comparable series have been studied by many mathematicians [1, 2, 3]. The general linear recursive sequences $\{u_n\}$ is given by $u_n + a_1u_{n-1} + \cdots + a_mu_{n-m} = 0$ ($n \ge 0$). Here we comply [4] the Lucas series extended to general linear recursive sequences by defining $\{u_n(a_1, ..., a_m)\}$ as follows:

$$u_{1-m} = \dots = u_{-1} = 0, \quad u_0 = 1,$$

 $u_n + a_1 u_{n-1} + \dots + a_m u_{n-m} = 0 \quad (n = 0, \pm 1, \pm 2, \dots),$

where $m \geq 2$ and $a_m \neq 0$.

Throughout the Section 2 we assume that $a_1,...,a_m$ are complex numbers with $a_m \neq 0$, $x^m + a_1 x^{m-1} + \cdots + a_m = (x - \lambda_1) \cdots (x - \lambda_m)$, $s_n = \lambda_1^n + \lambda_2^n \cdots + \lambda_m^n$ and $u_n = u_n(a_1,...,a_m)$. There we obtain convolution sums between u_n and s_n also state u_n by using s_n . After newly defining $Coef(u_n)$ which is the summation of the coefficients of s_i $(1 \leq i \leq n)$ and their multiplication terms in u_n , we prove $Coef(u_n) = 1$ for $n \in \mathbb{N}$. In that process, we especially find that

$$\sum_{\substack{k=1\\k+n_2+\cdots+n_k=n}}^n \frac{2^k}{n_1 n_2 \cdots n_k k!} = n+1.$$

In the Section 3 we treat the application of u_n in the powers of matrices and simplifies it by a modular p according to the Legendre symbol.

2. Relations between u_n and s_n

Theorem 2.1. For $n \in \mathbb{N}$ we have

(a)

$$\sum_{k=0}^{\overline{\mathbf{n}}} u_k u_{n-k} = \sum_{\substack{k=1\\n_1+n_2+\cdots+n_k=n}}^{\overline{\mathbf{n}}} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k k!},$$

2010 Mathematics Subject Classification. 11B39, 11B50, 11C20. Key words and phrases. Lucas series, Sequence, matrices.

UNDER PEER REVIEW

(b)

$$\sum_{k=0}^{n} k u_k u_{n-k} = n \sum_{\substack{k=1\\n_1+n_2+\dots+n_k=n}}^{n} \frac{2^{k-1} s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k k!}.$$

Proof. (a) First in [4, p. 345] we can see that

$$\ln \sum_{n=0}^{\infty} u_n x^n = \sum_{n=1}^{\infty} \frac{s_n}{n} x^n.$$

This leads that

$$\sum_{n=1}^{\infty} \frac{2s_n}{n} x^n = \ln \sum_{n_1=0}^{\infty} u_{n_1} x^{n_1} + \ln \sum_{n_2=0}^{\infty} u_{n_2} x^{n_2}$$
$$= \ln \sum_{n_1, n_2=0}^{\infty} u_{n_1} u_{n_2} x^{n_1 + n_2}$$

and

(1)
$$\sum_{n_1, n_2=0}^{\infty} u_{n_1} u_{n_2} x^{n_1+n_2} = \exp \sum_{n=1}^{\infty} \frac{2s_n}{n} x^n.$$

Then by (1) and Maclaurin series of an exponential function we have

$$\begin{split} &\sum_{n=0}^{\infty} \left(\sum_{n=1}^{n} u_{n_1} u_{n-n_1} \right) x^n \\ &= \exp \sum_{n=1}^{\infty} \frac{2s_n}{n} x^n \\ &= \sum_{N=0}^{\infty} \frac{1}{N!} \left(\sum_{n=1}^{\infty} \frac{2s_n}{n} x^n \right)^N \\ &= 1 + \sum_{n=1}^{\infty} \frac{2s_n}{n} x^n + \frac{1}{2!} \left(\sum_{n=1}^{\infty} \frac{2s_n}{n} x^n \right)^2 + \frac{1}{3!} \left(\sum_{n=1}^{\infty} \frac{2s_n}{n} x^n \right)^3 + \cdots \\ &= 1 + \sum_{n=1}^{\infty} \frac{2s_n}{n} x^n + \sum_{n=2}^{\infty} \left(\sum_{n_1 + n_2 = n} \frac{2^2 s_{n_1} s_{n_2}}{n_1 n_2} \right) \frac{x^n}{2!} \\ &+ \sum_{n=3}^{\infty} \left(\sum_{n_1 + n_2 + n_3 = n} \frac{2^3 s_{n_1} s_{n_2} s_{n_3}}{n_1 n_2 n_3} \right) \frac{x^n}{3!} + \cdots \\ &= 1 + 2s_1 x + \left(s_2 x^2 + \sum_{n_1 + n_2 = 2} \frac{2^2 s_{n_1} s_{n_2}}{n_1 n_2} \cdot \frac{x^2}{2!} \right) \\ &+ \left(\frac{2s_3}{3} x^3 + \sum_{n_1 + n_2 = 3} \frac{2^2 s_{n_1} s_{n_2}}{n_1 n_2} \cdot \frac{x^3}{2!} + \sum_{n_1 + n_2 + n_3 = 3} \frac{2^3 s_{n_1} s_{n_2} s_{n_3}}{n_1 n_2 n_3} \cdot \frac{x^3}{3!} \right) \\ &+ \cdots + \left(\frac{2s_n}{n} x^n + \sum_{n_1 + n_2 = n} \frac{2^2 s_{n_1} s_{n_2}}{n_1 n_2} \cdot \frac{x^n}{2!} + \cdots \right) \\ &+ \sum_{n_1 + n_2 + \dots + n_n = n} \frac{2^n s_{n_1} s_{n_2} \cdots s_{n_n}}{n_1 n_2 \cdots n_n} \cdot \frac{x^n}{n!} \right) + \cdots \\ &= 1 + \sum_{n=1}^{\infty} \left(\sum_{n_1 + n_2 + \dots + n_k = n} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k} \cdot \frac{1}{k!} \right) x^n \\ &= 1 + \sum_{n_1 + n_2 + \dots + n_k = n} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k} \cdot \frac{1}{k!} \right) x^n \\ &= 1 + \sum_{n_2 + \dots + n_k = n} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k} \cdot \frac{1}{k!} \right) x^n \\ &= 1 + \sum_{n_2 + \dots + n_k = n} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k} \cdot \frac{1}{k!} \right) x^n \\ &= 1 + \sum_{n_2 + \dots + n_k = n} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k} \cdot \frac{1}{k!} \right) x^n \\ &= 1 + \sum_{n_2 + \dots + n_k = n} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k} \cdot \frac{1}{k!} \right) x^n \\ &= 1 + \sum_{n_2 + \dots + n_k = n} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k} \cdot \frac{1}{k!} \right) x^n \\ &= 1 + \sum_{n_2 + \dots + n_k = n} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k} \cdot \frac{1}{k!} \right) x^n \\ &= 1 + \sum_{n_2 + \dots + n_k = n} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k} \cdot \frac{1}{k!} \right) x^n \\ &= 1 + \sum_{n_2 + \dots + n_k = n} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k} \cdot \frac{1}{k!}$$

$$\sum_{k=0}^{n} k u_k u_{n-k} = \sum_{K=0}^{n} (n-K) u_{n-K} u_K$$

$$= n \sum_{K=0}^{n} u_{n-K} u_K - \sum_{K=0}^{n} K u_{n-K} u_K$$

and

$$\sum_{k=0}^{n} k u_k u_{n-k} = \frac{n}{2} \sum_{k=0}^{n} u_k u_{n-k}$$

so we refer to part (a).

Lemma 2.2. We have

(a)

$$u_1 = s_1$$
,

(b)

$$u_2 = \frac{1}{2}s_1^2 + \frac{1}{2}s_2,$$

(c)

$$u_3 = \frac{1}{6}s_1^3 + \frac{1}{2}s_1s_2 + \frac{1}{3}s_3.$$

Proof. (a) Let us put n = 1 in Theorem 2.1 (a):

$$u_0u_1 + u_1u_0 = \sum_{k=0}^{1} u_k u_{1-k} = \sum_{\substack{k=1\\n_1 + n_2 + \dots + n_k = 1}}^{1} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k k!} = 2s_1.$$

Since $u_0 = 1$, we obtain $u_1 = s_1$.

(b) Placing n = 2 in Theorem 2.1 (a), we note that

$$u_0u_2 + u_1u_1 + u_2u_0 = \sum_{k=0}^{2} u_k u_{2-k} = \sum_{\substack{k=1\\n_1 + n_2 + \dots + n_k = 2}}^{2} \frac{2^k s_{n_1} s_{n_2} \dots s_{n_k}}{n_1 n_2 \dots n_k k!}$$
$$= s_2 + 2s_1^2$$

and so

$$2u_2 + u_1^2 = s_2 + 2s_1^2.$$

Using part (a) in the above identity, we conclude that

$$u_2 = \frac{1}{2}s_1^2 + \frac{1}{2}s_2.$$

(c) In a similar manner we set n=3 in Theorem 2.1 (a) and use part (a) and (b).

Now Lemma 2.2 suggests that u_1 , u_2 , and u_3 are represented by s_1 , s_2 , s_3 , and their multiplication terms, furthermore the summation of the coefficients of s_i

 $(1 \leq i \leq 3)$ and their multiplication terms is 1. For example, Lemma 2.2 (c) shows that

 $Coef(u_3)$

:= The summation of the coefficients of s_i and their multiplication terms in u_3

$$= \frac{1}{6} + \frac{1}{2} + \frac{1}{3}$$
$$= 1.$$

Thus we define $Coef(u_n)$ and generalize the above fact as follows:

Definition 2.3. $Coef(u_n)$ implies that the summation of the coefficients of s_i $(1 \le i \le n)$ and their multiplication terms in u_n for $n \in \mathbb{N}$.

Under this condition we can see that $Coef(u_n)$ is a linear transformation. To prove it let us put

$$u_n = a_1 s_1^{p_1} s_2^{p_2} \cdots s_n^{p_n} + a_2 s_1^{q_1} s_2^{q_2} \cdots s_n^{q_n} + \cdots + a_n s_1^{r_1} s_2^{r_2} \cdots s_n^{r_n},$$

$$u_{n'} = a'_1 s_1^{p'_1} s_2^{p'_2} \cdots s_{n'}^{p'_{n'}} + a'_2 s_1^{q'_1} s_2^{q'_2} \cdots s_{n'}^{p'_{n'}} + \cdots + a'_{n'} s_1^{r'_1} s_2^{r'_2} \cdots s_{n'}^{r'_n},$$

where $p_i, q_i, r_i, p_i', q_i', r_i' \in \mathbb{N} \cup \{0\}$ and $a_i, a_j' \in \mathbb{R}$ for $(1 \le i \le n, 1 \le j \le n')$. Then there exists a constant α and it satisfies

$$Coef(\alpha u_n)$$
= $Coef(\alpha(a_1s_1^{p_1}s_2^{p_2}\cdots s_n^{p_n} + a_2s_1^{q_1}s_2^{q_2}\cdots s_n^{q_n} + \cdots + a_ns_1^{r_1}s_2^{r_2}\cdots s_n^{r_n}))$
= $Coef(\alpha a_1s_1^{p_1}s_2^{p_2}\cdots s_n^{p_n} + \alpha a_2s_1^{q_1}s_2^{q_2}\cdots s_n^{q_n} + \cdots + \alpha a_ns_1^{r_1}s_2^{r_2}\cdots s_n^{r_n}))$
= $\alpha a_1 + \alpha a_2 + \cdots + \alpha a_n$
= $\alpha(a_1 + a_2 + \cdots + a_n)$
= $\alpha Coef(u_n)$.

In a similar manner,

$$Coef(u_{n} + u_{n'})$$

$$= Coef\left((a_{1}s_{1}^{p_{1}}s_{2}^{p_{2}} \cdots s_{n}^{p_{n}} + a_{2}s_{1}^{q_{1}}s_{2}^{q_{2}} \cdots s_{n}^{q_{n}} + \cdots + a_{n}s_{1}^{r_{1}}s_{2}^{r_{2}} \cdots s_{n}^{r_{n}})\right)$$

$$+ (a'_{1}s_{1}^{p'_{1}}s_{2}^{p'_{2}} \cdots s_{n'}^{p'_{n'}} + a'_{2}s_{1}^{q'_{1}}s_{2}^{q'_{2}} \cdots s_{n'}^{q'_{n'}} + \cdots + a'_{n'}s_{1}^{r'_{1}}s_{2}^{r'_{2}} \cdots s_{n'}^{r'_{n'}})\right)$$

$$= (a_{1} + a_{2} + \cdots + a_{n}) + (a'_{1} + a'_{2} + \cdots + a'_{n'})$$

$$= Coef(u_{n}) + Coef(u_{n'}).$$

In addition we can find

(3)
$$Coef(u_n u_{n'}) = Coef(u_n)Coef(u_{n'}).$$

Theorem 2.4. We indicate u_n by s_i $(1 \le i \le n)$ and their multiplication terms, moreover $Coef(u_n) = 1$ for $n \in \mathbb{N}$.

Proof. Obviously we can represent u_n as s_i $(1 \le i \le n)$ and their multiplication terms by Theorem 2.1 and Lemma 2.2. Next we use the induction to deduce that $Coef(u_n) = 1$. Let us put

$$(4) s_1 = s_2 = \dots = s_i = 1$$

to exclude the effect of s_i $(1 \le i \le n)$. Then first since $u_1 = s_1$ in Lemma 2.2 (a), we have $Coef(u_1) = 1$. Second we suppose that $Coef(u_n) = 1$, which leads that

(5)
$$\sum_{k=0}^{n} u_k u_{n-k} = \sum_{\substack{k=1 \ n_1 + n_2 + \dots + n_k = n}}^{n} \frac{2^k}{n_1 n_2 \dots n_k k!} \quad \text{for } n \in \mathbb{N}$$

by Theorem 2.1 (a) and Eq. (4). And by (2) and (3) the above identity signifies

$$Coef\left(\sum_{\substack{k=1\\n_1+n_2+\cdots+n_k=n}}^{n}\frac{2^k}{n_1n_2\cdots n_kk!}\right)\\ = Coef\left(\sum_{k=0}^{n}u_ku_{n-k}\right)\\ = Coef(u_0u_n+u_1u_{n-1}+u_2u_{n-2}+\cdots+u_{n-1}u_1+u_nu_0)\\ = Coef(u_0)Coef(u_n)+Coef(u_1)Coef(u_{n-1})+Coef(u_2)Coef(u_{n-2})\\ +\cdots+Coef(u_{n-1})Coef(u_1)+Coef(u_n)Coef(u_0)\\ = 2Coef(u_n)+n-1\\ = 2\cdot 1+n-1\\ = n+1$$

and

(6)
$$\sum_{\substack{k=1\\n_1+n_2+\cdots+n_k=n}}^{n} \frac{2^k}{n_1 n_2 \cdots n_k k!} = n+1.$$

Similarly, by (5) and (6) we obtain

$$\begin{array}{l} n+2 \\ & \sum\limits_{n_1+n_2+\cdots+n_k=n+1}^{n+1} \frac{2^k}{n_1n_2\cdots n_kk!} \\ & = Coef\left(\sum\limits_{n_1+n_2+\cdots+n_k=n+1}^{n+1} \frac{2^k}{n_1n_2\cdots n_kk!}\right) \\ & = Coef\left(\sum\limits_{n_1+n_2+\cdots+n_k=n+1}^{n+1} \frac{2^k}{n_1n_2\cdots n_kk!}\right) \\ & = Coef\left(\sum\limits_{k=0}^{n+1} u_ku_{n+1-k}\right) \\ & = Coef(u_0u_{n+1} + u_1u_n + u_2u_{n-1} + \cdots + u_nu_1 + u_{n+1}u_0) \\ & = Coef(u_0)Coef(u_{n+1}) + Coef(u_1)Coef(u_n) + Coef(u_2)Coef(u_{n-1}) \\ & + \cdots + Coef(u_n)Coef(u_1) + Coef(u_{n+1})Coef(u_0) \\ & = 2Coef(u_{n+1}) + n \end{array}$$

7

and so $Coef(u_{n+1}) = 1$.

3. APPLICATION OF TO MATRICES Proposition 3.1. Let p be an odd prime, $a,b,c,d\in\mathbb{Z}, p\nmid ad-bc, \Delta=(a-d)^2+4bc$. Then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{p-\left(\frac{\Delta}{p}\right)} \equiv \begin{cases} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\ \frac{a+d}{2}I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\ (ad-bc)I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = -1, \end{cases}$$
 where I is the 2×2 identity matrix and $\left(\frac{1}{p}\right)$ denotes the Legendre symbol.

Proof. See Corollary 3.3 in [4].

Theorem 3.2. Let p be an odd prime, $a, b, c, d \in \mathbb{Z}$, $p \nmid ad - bc$, $\Delta = (a - d)^2 + 4bc$. Then for $m, l \in \mathbb{N} \cup \{0\}$ satisfying $m \geq l$, we have

In particular, if $\mathbf{m} = l$ or $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{m-l} \equiv I \pmod{p}$ with m > l, then we obtain

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{pm-l\left(\frac{\Delta}{p}\right)} \equiv \begin{cases} 1 \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) \equiv 1, \\ \left(\frac{a+d}{2}\right)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\ (ad-bc)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) \equiv -1 \end{cases}$$

Proof. Let $u_{-1} = 0$, $u_0 = 1$, and

(7)
$$u_{n+1} = (a+d)u_n - (ad-bc)u_{n-1} \quad \text{for } n \in \mathbb{N} \cup \{0\}.$$

Then $u_n = u_n(-a - d, ad - bc)$. Moreover in [4, p. 348] we can see that

(8)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^n = \begin{pmatrix} u_n - du_{n-1} & bu_{n-1} \\ cu_{n-1} & u_n - au_{n-1} \end{pmatrix}$$

and

(9)
$$u_{p-1-\left(\frac{\Delta}{p}\right)} \equiv 0 \pmod{p}, \qquad u_{p-1} \equiv \left(\frac{\Delta}{p}\right) \pmod{p}.$$

Now, by Proposition 3.1, (8), and (9) we note that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{pm-l(\frac{\Delta}{p})} \\
&= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{p} \right\}^{m-l} \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{p-(\frac{\Delta}{p})} \right\}^{l} \\
&= \begin{pmatrix} u_{p} - du_{p-1} & bu_{p-1} \\ cu_{p-1} & u_{p} - au_{p-1} \end{pmatrix}^{m-l} \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{p-(\frac{\Delta}{p})} \right\}^{l} \\
&= \begin{pmatrix} u_{p} - d \begin{pmatrix} \frac{\Delta}{p} \end{pmatrix} & b \begin{pmatrix} \frac{\Delta}{p} \end{pmatrix} & m-l \\ c \begin{pmatrix} \frac{\Delta}{p} \end{pmatrix} & u_{p} - a \begin{pmatrix} \frac{\Delta}{p} \end{pmatrix} & \text{if } \left(\frac{\Delta}{p} \right) = 1, \\
& \begin{pmatrix} \frac{a+d}{2}I \end{pmatrix}^{l} \pmod{p}, & \text{if } \left(\frac{\Delta}{p} \right) = 0, \\
& \begin{pmatrix} (ad-bc)I \end{pmatrix}^{l} & (\text{mod } p), & \text{if } \left(\frac{\Delta}{p} \right) = -1
\end{pmatrix} \\
&= \begin{pmatrix} \left(\frac{a+d}{2} \right)^{l} \begin{pmatrix} u_{p} & 0 \\ 0 & u_{p} \end{pmatrix}^{m-l} & (\text{mod } p), & \text{if } \left(\frac{\Delta}{p} \right) = 0, \\
& (ad-bc)^{l} \begin{pmatrix} u_{p} + d & -b \\ -c & u_{p} + a \end{pmatrix}^{m-l} & \begin{pmatrix} \frac{\Delta}{p} \end{pmatrix} = -1.
\end{pmatrix}$$

Here when $\left(\frac{\Delta}{p}\right) = 1$, using (7) and (9) we deduce that

$$u_p = (a+d)u_{p-1} - (ad-bc)u_{p-2}$$

$$\equiv (a+d)\left(\frac{\Delta}{p}\right) - (ad-bc)u_{p-1-\left(\frac{\Delta}{p}\right)} \pmod{p}$$

$$\equiv (a+d)\cdot 1 - (ad-bc)\cdot 0 \pmod{p}$$

$$\equiv a+d \pmod{p}$$

thus

$$\begin{pmatrix} u_p - d & b \\ c & u_p - a \end{pmatrix}^{m-l} \equiv \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{m-l} \pmod{p}.$$

And when $\left(\frac{\Delta}{p}\right)=0$, referring to $u_{p-\left(\frac{\Delta}{p}\right)}=u_p\equiv\frac{a+d}{2}\pmod{p}$ in [4, p. 349] we obtain

$$\begin{pmatrix} \frac{a+d}{2} \end{pmatrix}^l \begin{pmatrix} u_p & 0 \\ 0 & u_p \end{pmatrix}^{m-l} = \left(\frac{a+d}{2}\right)^l (u_p I)^{m-l}
\equiv \left(\frac{a+d}{2}\right)^l \left(\frac{a+d}{2}\right)^{m-l} I
\equiv \left(\frac{a+d}{2}\right)^m I \pmod{p}.$$

Similarly when $\left(\frac{\Delta}{p}\right) = -1$, by (9) we have $u_p = u_{p-1-\left(\frac{\Delta}{p}\right)} \equiv 0 \pmod{p}$ and so

$$(ad - bc)^l \begin{pmatrix} u_p + d & -b \\ -c & u_p + a \end{pmatrix}^{m-l} \equiv (ad - bc)^l \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}^{m-l} \pmod{p}.$$

In consequence the above facts lead Eq. (10) to

$$(11) \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{pm-l\left(\frac{\Delta}{p}\right)} \equiv \begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{m-l} \pmod{p}, & \text{if } \begin{pmatrix} \frac{\Delta}{p} \end{pmatrix} \equiv 1, \\ \begin{pmatrix} \frac{a+d}{2} \end{pmatrix}^m I \pmod{p}, & \text{if } \begin{pmatrix} \frac{\Delta}{p} \end{pmatrix} \equiv 0, \\ (ad-bc)^l \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}^{m-l} \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) \equiv -1. \end{cases}$$

Especially, if m = l then Eq. (11) becomes

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{pm-l\left(\frac{\Delta}{p}\right)} \equiv \begin{cases} \begin{pmatrix} a+d \\ 2 \end{pmatrix}^{m} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\ (ad-bc)^{m} \begin{pmatrix} d-b \\ -c & a \end{pmatrix}^{0} \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \end{cases}$$

$$\equiv \begin{cases} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\ \left(\frac{a+d}{2}\right)^{m} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \end{cases}$$

$$\equiv \begin{cases} \left(\frac{a+d}{2}\right)^{m} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\ (ad-bc)^{m} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = -1. \end{cases}$$

From the matrix theory we easily know when a matrix A satisfies $A^m = I$ for an identity matrix I and $m \in \mathbb{N}$, then the inverse matrix $A^{-1} = A^{m-1}$ since $A \cdot A^{m-1} = I$. Thus using this property we deduce as follows:

$$A\cdot A^{m-1}=I.$$
 Thus using this property we deduce as follows: If $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{m-l}\equiv I\pmod p$ with $m>l$ then the inverse matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1}\equiv \begin{pmatrix} 18 & b \\ c & d \end{pmatrix}^{m-l-1}\pmod p$ so

$$\left\{ \frac{1}{ad - bc} \begin{pmatrix} d \\ -c \end{pmatrix}^{m-l} \equiv \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \right\}^{m-l} \\
\equiv \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{m-l-1} \right\}^{m-l} \pmod{p} \\
\equiv (I^{-1})^{m-l} \pmod{p} \\
\equiv I \pmod{p}$$

and

$$\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}^{m-l} \equiv (ad - bc)^{m-l} I \pmod{p}.$$

Therefore Eq. (11) shows that

11

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{pm-l\left(\frac{\Delta}{p}\right)} \equiv \begin{cases} \left(\frac{a+d}{2}\right)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\ (ad-bc)^l \cdot (ad-bc)^{m-l} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = -1 \end{cases}$$

$$\equiv \begin{cases} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\ \left(\frac{a+d}{2}\right)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\ \left(\frac{a+d}{2}\right)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\ (ad-bc)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = -1. \end{cases}$$

References

- [1] L. E. Dickson, *History of the Theory on Numbers*, Vol. I, Ch. XVII. New York: Chelsea, (1952).
- (1952). [2] D. H. Lehmer, Annals of Math., **31.2** (1930), 419–448.
- [3] E. Lucas, "Théorie des fonctions numériques simplement périodiques.", Amer. J. Math., 1 10 8), 184–240.
- [4] Z. H. Sun, Linear recursive sequences and powers of matrices, Fibonacci Quart., 39 (2001), No. 4, 339–351.

ON THE GENERAL LINEAR RECURSIVE SEQUENCES

ORIGIN	IALIT	ΥR	EPO	RT

24%

Nature America, Inc, 2009

SIMILA	RIT Y INDEX			
PRIMA	PRIMARY SOURCES			
1	202.195.112.2 Internet	151 words -6%		
2	www.fq.math.ca	49 words -2%		
3	Sun, Z.H "On the quadratic character of quadratic units", Journal of Number Theory, 200805 Crossref	42 words — 2 %		
4	"Fermat's Last Theorem for Amateurs", Springer Nature America, Inc, 1999 Crossref	38 words — 2 %		
5	WS. Chou, Leetsch C. Hsu, Peter JS. Shiue. "Application of Faà di Bruno's formula in characterization of inverse relations", Journal of Comand Applied Mathematics, 2006 Crossref	28 words — 1 % nputational		
6	pt.scribd.com Internet	25 words — 1 %		
7	www.cds-am.net			
	Internet	22 words — 1 %		
8	tailieu.vn Internet	21 words — 1 %		
9	Robert A. Wilson. "The Finite Simple Groups", Spring Nature America, Inc., 2009	19 words — 1 %		

10	www.hytc.cn Internet	18 words — 1 %
11	C. L. Stewart. "On Divisors of Fermat, Fibonacci, Lucand Lehmer Numbers, III", Journal of the London Mathematical Society, 10/01/1983	cas 18 words — 1 %
12	Sun, ZH "Quartic residues and binary quadratic forms", Journal of Number Theory, 200507 Crossref	17 words — 1 %
13	research.att.com Internet	17 words — 1 %
14	Yen-Lun Chen. "A simple coefficient test for cubic permutation polynomials over integer rings", IEEE Communications Letters, 7/2006	13 words — 1 %
15	link.springer.com Internet	12 words — 1 %
16	Svalbe, Imants, Nikesh Nazareth, Nicolas Normand, and Shekhar Chandra. "On Constructing Minimal Ghosts", 2010 International Conference on Digital Image Computing Techniques and Applications, 201	12 words — /0
17	f2.org Internet	12 words — 1 %
18	www.scicom.uwaterloo.ca	10 words — < 1 %
19	Paulo Ribenboim. "The Book of Prime Number Records", Springer Nature America, Inc, 1989 Crossref	8 words — < 1%
20	Lih-Yuan Deng. "Generalized Mersenne Prime Number and Its Application to Random Number	8 words — < 1%

Generation", Monte Carlo and Quasi-Monte Carlo Methods 2002, 2004

Crossref

- Rubenthaler, S.. "Fast simulated annealing in R^d with an application to maximum likelihood estimation in state-space models", Stochastic Processes and their Applications, 200906
- Zvonko Čerin. "SUMS OF PRODUCTS OF GENERALIZED FIBONACCI AND LUCAS NUMBERS", Demonstratio Mathematica, 2009

 Crossref
- Nihal Yilmaz Özgür. "Principal Congruence Subgroups of Hecke Groups \$\$ H{\left({{\sqrt q }}} 6 words < 1 % \right)} \$\$", Acta Mathematica Sinica English Series, 04/2006 Crossref
- Vladimir Anashin, Andrei Khrennikov. "Applied Algebraic Dynamics", Walter de Gruyter GmbH, 2009
 Crossref

EXCLUDE QUOTES OFF
EXCLUDE BIBLIOGRAPHY OFF

EXCLUDE MATCHES

OFF