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ABSTRACT. In this paper we investigate the properties of the general linear
recursive sequences started from the Lucas sequence and give an application
to matrices.

1. INTRODUCTION

For ay, az € Z, the corresponding Lucas sequence {uy, } is given by ug = 0, u; = 1,
and 4,41 + a1, + a2ty =0 (n ). The comparable series have been studied
by many mathematicians [1, 2, 3]. The general linear recursive sequencff){u,} is
given by u, + ajttp—1 + -+ + apip—m = 0 (n = 0). Here we comply [4] the Lucas
series extended to general linear recursive sequences by defining {u,(ay,...,a,,)} as
follows:

U = =1u_1 =0, uyg=1,

Up + AUp—1 + -+ Aplp—m =0 (n=0,%£1,£2 ..),

where m > 2 and a,, # 0.

Throughout the Section 2 we assume that ay,...,a,, are complex numbers with
A Z0, 2™ + a1 2™ P+l = (@ — A (8= M), S = AT+ AT+ A
and u, = u,(ay,...,a,). There we obtain convolution sums between u, and s,
also state u,, by using s,. After newly defining Coe f(u,) which is the summation
of the coefficients of s; (1 <7 < n) and their multiplication terms in wu,, we prove
Coef(u,) =1 for n € N. In that process, wéespecially find that
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—— =n+1.
NNy -+ k!

=
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1

nit+net-otnp=n

+

In the Section 3 we treat the application of w,, in the powers of matrices and
simplifies it by a modular p according to the Legendre symbol.

2. RELATIONS BETWEEN 1, AND $§,

Theorem 2.1. Forn € M we have

(a)
n n ke
258,80y ** * Sy,
UptUn—f = —T 3
e — g - k!
- ny+nat-Fng=n
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n k—1
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Proof. (a) First in [4, p. 345] we can see that
oo oo g
In Up L™ = an,
D wna" =3
n=({) n=1

This leads that

b X L -
E —a" =1In E Uy, " +In E Up, L2
n=1 n ny,=0 1a=()
oo
— F 4 T T2
=1In E Uy, Ung T
1y ,ma=0
and
oo o0
23,
(1) E -u,,l-u“.‘:::“""“” = exp E ™.
n
1y na=0 n=1

Then by (1) and Maclaurin series of an exponential function we have
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2% s, 5, 0N 5.8
E Uptly_f = E it forp > 1.
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T +ne + -Hw, =7

(b) Effortlessly we can know that
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n
kgt g = 3 E Wty —f
0

k= k=0

so we refer to part (a).

Lemma 2.2. We have
(a)
U] = 81,

(b)

1.
up = =55 +

2

532,
(c)

1.

3
U3 = =87 + =5182 + =53.
3 651 152 3‘}

2
Proof. (a) Let us put n =1 in Theorem 2.1 (a):

1

1 k
2 SnySng " Sny,
gty + Uyt = E gl —f = E m = 2.5']_.
k=0 k=1 12 kel
s =1

ny+nz+
Since ug = 1, we obtain u; = s1.
(b) Placing n = 2 in Theorem 2.1 (a), we note that

2
ugts + wuy + Fusuy = E Uptby_
k=0

ning - npk!

2 e
Z 2 SnySng ' Sy
k=1

Ny +ng+- =2
= 80 + 253!

and so

Qus + 13 = 89 + 257,

Using part (a) in the above identity, we conclude that

1o 1
Uy = —§ —8a.
2 2 1 2 2

(c) In a similar manner we set 1 = 3 in Theorem 2.1 (a) and use part (a) and
(b).
O

Now Lemma 2.2 suggests that w;, ue, and uz are represented by sp, s2, s3,
and their multiplication terms, furthermore the summation of the coefficients of s;
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=]

(1 < ¢ < 3) and their multiplication terms is 1. For example, Lemma 2.2 (¢) shows
that

Coe f(us)
= The summation of the coefficients of s; and their multiplication terms in ug

1,11
6 2 3
=1,

Thus we define Coe f(u,,) and generalize the above fact as follows:

Definition 2.3. Coef(u,) implies that the summation of the coefficients of s;
(1 <i < n) and their multiplication terms in wu, for n € N.

Under this condition we can see that Coef(u,) is a linear transformation. To
prove it let us put

Uy = als”'sﬁ“ o gPn 4 agst s}’f e SERIE S PR AT PR

.
ot
n'

IJ2 ) Inr ! dl

vy T 7
Uy = ‘1131 832 8.7 + ahs] ‘92 S8 a8 syt 8

where p;, gi,ri,pt, ¢t, vl € NU {0} and a;, a} eRfor (1 <i<n 1<j<a)
Then there exists a constant o and it satisfies

Coef(auy,)

= Coc,f( (ays]'sh? - sbr 4 ags] sd - sl 4 ans)sh? --sj;"))

= Coef (aal st sh? 8P+ aansT 8T 8T+ 4 g sy sy 9:‘)
= aay + aag + -+ qag

afar +az+ -+ an)

= aCoef(un).

In a similar manner,

Coef(tn + ty)

—_ Coef ((alsl S : sfir. o azsfh sa1.t S:!ln + 4+ anSrl" s;z . ,s:;n)
2 Py Pl P T T P T T
(2) + (a)s)rsh? - +aza'2---an, + ot ans it st )

= (a +a2+~‘+an}+{a’l+a’2+---+a’;r}
= Coef(uy) + Coef(un ).

In addition we can find

(3) Coef(upity) = Coef(un)Coe f(uy).

Theorem 2.4. We indicate u,, by s; (1 <4 < n) and their multiplication terms,
moreover Coef(u,) =1 forn € N.

Proof. Obviously we can represent u, as s; (1 < i < n) and their multiplication
terms by Theorem 2.1 and Lemma 2.2. Next we use the induction to deduce that
Coef(u,) =1. Let us put

{4} §] =8y == 8§ =
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to exclude the effect of s; (1 < ¢ < n). Then first since u; = $1 in Lemma 2.2 (a),
we have Coef(u;) = 1. Second we suppose that Coef(u,) = 1, which leads that

n n 2;"
(5) E Wty —f = E —LT forn e N
Teyrg - MR
=0 = 1n2 K
n+ngt-tnp=n

by Theorem 2.1 (a) and Eq. (4). And by (2) and (3) the above identity signifies

n

2k
Coef Z

= ning -« - ngk!
ny+ng+-Fn=n

= Coef (Z 'u.;\-'u.n,._;,-)

k=0
= Coef(upttn + U1tUn—1 + Uallp—2 + -+ + Un_1U1 + Unig)
= Coef(up)Coef(u,) + Coe f(uy)Coe f(un—1) + Coe fluz)Coe f(tn—2)
+ -+ Coaifur,,_1)Coef(uy) + Coef(u,)Coe f(ug)
= 2Coef(u,) +n—1
=2-1+n-1
=n+1

and

2k
(6) Z —— =n+1.

ning - - ngk!

gt tng=n

Similarly, by (5) and (6) we obtain

n+2

n+1 :

> z

B nyng - - - k!
k=1 17¢2 k

ny$nattn=nstl

Bl

2k
nyng - - - ngk!

= Coef

k=1
ny+ng+--Fng=n+1l

n+1
= Coef Z UpUn+1—k

k=0
= Coef(upttn41 + wr1tiy + totty—1 + -+ - + Upty + Unt10)
= Coef(up)Coef(tni1) + Coef(ur)Coef(un) + Coef(uz)Coef(tn-1)
+ - 4 Coef(uy)Coef(uy) + Coef (g 1)Coe fug)
=2Coef(unyr) +n
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and so Coef(unt1) = 1.

3. APPLICATION OF § TO MATRICES

Proposition 3.1. Let p be an odd prime, a,b,c,d € Z, pt ad—be, A = (a—d)>+4be.
Then

I (mod p), i#(8)=1,
=
p=(%)
(3 2) = 3§3r (mod p), if (&) =0,

(ad —be)l (mod p), if {%) =1,
where I is the 2 x 2 identity matriz and (;) denotes the Legendre symbol.

Proof. See Corollary ﬁ in [4]. O

Theorem 3.2. Let p be an odd prime, a,b,c,d € Z, ptad—be, A = (a—d)? +4be.
Then for m,l € N U {0} sat';'sﬁﬁmg m > [, we have

( m—l

(f: Z) (mod p), if (%) =1,
b pm—i(%) at+d\™ e
(C d) = ( 2 ) 1 [Illl:ld p)s ?.f (;) = 0-.

4
(& (

(mod p), if (%) = -1.

(ad — be)! (

\

m—l
In particular, if m =1 or (fz ::;) =1 (mod p) with m > [, then we obtain

)=
b prra—i(%) a+ d . )
(3 d) = ( ! g ) I (modp), if (p) 0,

)=-1.

I (modp), if (

=k

1=

(ad—b)™I (I, + (

Proof. Let u_y =0, ug =1, and

=k

(7) Uyl = @4— d)u, — (ad — be)u,—, for n € NU{0}.

Then u, = u,(—a — d, ad — be). Moreover in [4, p. 348] we can see that
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n
(8) a b _ fun— dity 1 bitp—1
c d Clin—1 Uy — QU1

and

(9) U,y (a) = 0 (mod p), Up_1 = (%) (mod p).

Now, by Proposition 3.1, (8), and (9) we note that

g o\ i3)
¢ d
s\
c d B B
— 'U-p_fll.'up_l bu’j)—] m—1 a b P—[%)
= (jT-lp_]_ “P—n’“p—l ¢ d
m—I
w-a(§) o)
A A
{'(T’) w=a($)

I' (modp)| if (%) =q,
(10) X (a;df){ (mod p), if (‘?—J) =0,
((ad— bc)f)I (od p), if (%) =-1

m—I
_ 2
(“”' i 0 ) (mod p), 9(%) =1,

c Up — @

! m—l
0
(a;d) (7:;, Y ) (mod p), if (%) =0,
P

. _ m—1
(ad — be)! (u,, e g ) (mod p), if (%) =—1.

- Up +a

o

Here when (%) = 1, using (7) and (9) we deduce that
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Up = (a+ d)up_l — (ad — bc)'u.p_g

=(a+d) (%) — (ad — bt’.‘)ﬂp_l_(%) (mod p)

=(a+d)-1—(ad—be)-0 (mod p)
=a+d (modp)

thus
w —d b m—I a b m—l
( I’C = a) = (c af) (mod p).
And when (%) = 0, referring to U, (&) = Up = %ﬁ (mod p) in [4, p. 349] we
obtain
a+ d : Uy 0 mt a—+ d E m—
(59) (¢ w) = ()
_fa+d ‘la+d m_{}
N 2 2
= (a ; d) I (mod p).
Similarly when (%) = —1, by (9) we have u, = U, _(2) = 0 (mod p) and so

wy +d A d By
_ ol [Up - — Y -
(ad — be) ( ¢  up a.) = (ad — be) (—c.‘ a ) (mod p).

In consequence the above facts lead Eq. (10) to

16]
¢ b m=—l
(2 d) (mod p), if (9 =1,

(11) (‘; z)m_{(e)a (“;d)mr (mod p), if (%):0,

m—l
(ad — be)! (_dc _;’) (mod p), if (%) =]

Especially, if m = [ then Eq. (11) becomes
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(>~

=

- 0

(a b) (mod p), if (%) =

c
pm —I(%) m
(f: 3) = ((1 ;— d) I {111()(1 p)r if (%) = (),
0
d b L

(ad — b)™ ( ) (mod p), if (&) =1

—i i

.

I (mod p), ?(%) =1

a+d T ) A -

(ad - bey™I (modp), if (8)=-1.

Y

From the matrix theory we easily know when a matrix A satisfies A™ = I for
an identity matrix I and m € N, then the inverse matrix A=! = A™ 1 since
A- A"~ = I Thus using this property we deduce as follows :

—1 -1
"™ : ] . L
1f (f (E) = I (mod p) with m > [ then the inverse matrix f c; -

b m—l—1
( d) (mod p) so

1 d m—1 ~ 1 -1y ™t
{ad—bc (—c %} - (r: d)
5 B m—l—1) ™!
- { (c.‘ d) } (mod p)

= H™" (mod p)
=1 (mod p)

and

d b m—1
( R ) = (ad —be)™ "I (mod p).

—C

Therefore Eq. (11) shows that
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'? (mod p),

(a ; d) I (mod p),

==
—

B B pm.—f{
({: d)

.

I (mod p),

(“’2’“) [ (),

(mod p),

(ad — be)™ I

REFERENCES

(ad — be)! - (ad — be)™ ™' T (mod p),

11

[1] L. E. Dickson, History of the Theory on Numbers, Vol. I, Ch. XVIL New York: Chelsea,

(1952).

[2] D. H. Lehmer, Annals of Math., 31.2 (1930), 419-448.

(3] E. Lueas, "Théorie des fonctions numériques simplement périodiques.”, Amer. J. Math., 1

3. 184-240.

[4] Z. H. Sun, Linear recursive sequences and powers of matrices, Fibonacci Quart., 39 (2001),

No. 4, 339-351.




ON THE GENERAL LINEAR RECURSIVE SEQUENCES

ORIGINALITY REPORT

24,

SIMILARITY INDEX

.

PRIMARY SOURCES
o
202.195.112.2 151 words — 6 70
o
www.fg.math.ca 49 words — 2 /0

B D

B B

B B

Internet

" . . O
Sun, Z.H.. "On the quadratic character of quadratic L /0
units", Journal of Number Theory, 200805 42 words 2

Crossref

"Fermat’s Last Theorem for Amateurs", Springer 38 words — 2%
Nature America, Inc, 1999

Crossref

- o
W.-S. Chou, Leetsch C. Hsu, Peter J.-S. Shiue. 28 words — | A)
Application of Faa di Bruno's formula in
characterization of inverse relations", Journal of Computational
and Applied Mathematics, 2006

Crossref

: 0
pt.scribd.com 25 words — | /0

Internet

www.cds-am.net

Internet

o)
22 words — ! /0

- 40
tailieu.vn 21 words — A)

Internet

Robert A. Wilson. "The Finite Simple Groups", Springer19 words — 1 %
Nature America, Inc, 2009



—_ —_
(0)) (&)

RN RN RN
(o) (0 0] ~

B
o

Crossref

o)
7
I\r/]\t/(\a/vm\(/a\t/.hy’[c.cn 18 words /0

" HYH H ; A 0
C. L. Stewart. "On DIVISOI’"S of Fermat, Fibonacci, Lucas g \\ ooy /0
and Lehmer Numbers, llI", Journal of the London
Mathematical Society, 10/01/1983

Crossref

Sun, Z.-H.. "Quartic residues and binary quadratic
forms", Journal of Number Theory, 200507

Crossref

o
17 words — 1 /0

0
Lte:g?rch.att.com 17 words — 1 /0

Yen-Lun Chen. "A simple coefficient test for cubic 1 %
. . : T 13 words —

permutation polynomials over integer rings", IEEE

Communications Letters, 7/2006

Crossref

[ ' 0
llr!tr;rknétsprmger.com 12 words — 1 /0
Svalbe, Imants, Nikesh Nazareth, Nicolas Normand, 1 %
and Shekhar Chandra. "On Constructing Minimal 12 words —

Ghosts", 2010 International Conference on Digital
Image Computing Techniques and Applications, 2010.

Crossref

0
o/
L?e-rgertg 12 words — /0
. 40
x\t/(\a/xq\é\t/.smcom.uwaterloo.ca 10 WOFdS _ < A’)

: N : 40
Paulo le)enb.mm. The Book of Prime Number 8 words — < /0
Records", Springer Nature America, Inc, 1989

Crossref

: " : : 0
Lih-Yuan Deng. "Generalized Mersenne Prime 8 words — < 1 /0
Number and Its Application to Random Number



Generation", Monte Carlo and Quasi-Monte Carlo Methods 2002,
2004

Crossref

" H H 1 A O
Rubenthaler, S.. "Fast simulated annealing in R g, - 4o < 1 A)
with an application to maximum likelihood
estimation in state-space models", Stochastic Processes and their
Applications, 200906

Crossref

= . n 0
Zvonko Cerin. "SUMS OF PRODUCTS OF s words — < 1%
GENERALIZED FIBONACCI AND LUCAS
NUMBERS", Demonstratio Mathematica, 2009

Crossref

Nihal Yilmaz Ozgur. "Principal Congruence < 1 %
Subgroups of Hecke Groups $$ H{\left( {{\sqrt q}} 6 words —

\right)} $$", Acta Mathematica Sinica English Series,

04/2006

Crossref

Vladimir Anashin, Andrei Khrennikov. "Applied 6 words — < 1 %
Algebraic Dynamics", Walter de Gruyter GmbH,
2009

Crossref

OFF OFF
OFF



	ON THE GENERAL LINEAR RECURSIVE SEQUENCES
	ON THE GENERAL LINEAR RECURSIVE SEQUENCES
	ORIGINALITY REPORT
	PRIMARY SOURCES


