SCIENCEDOMAIN international

SDI Review Form 1.6

Journal Name:	Journal of Advances in Mathematics and Computer Science
Manuscript Number:	Ms_JAMCS_48492
Title of the Manuscript:	Methods of bilateral approximations for nonlinear eigenvalue problems
Type of the Article	Original Research Article

General guideline for Peer Review process:

This journal's peer review policy states that <u>NO</u> manuscript should be rejected only on the basis of '<u>lack of Novelty'</u>, provided the manuscript is scientifically robust and technically sound. To know the complete guideline for Peer Review process, reviewers are requested to visit this link:

(http://www.sciencedomain.org/page.php?id=sdi-general-editorial-policy#Peer-Review-Guideline)

Created by: EA Checked by: ME Approved by: CEO Version: 1.6 (10-04-2018)

SCIENCEDOMAIN international www.sciencedomain.org

SDI Review Form 1.6

PART 1: Review Comments

	Reviewer's comment	Author's comment (if agreed with reviewer, correct the manuscript and highlight that part in the manuscript. It is mandatory that authors should write his/he feedback here)
<u>Compulsory</u> REVISION comments		Toodbuok Horo)
	The article is not suitable for publication in this present form. The authors should address below issues exactly for fu	ırther
	consideration	
	The English language of manuscript needs major revision.	
	In results and discussion, the authors should discuses on their results deeply.	
	3. The authors should show the comparison between their results and previous works.	
	4. The literature is poor needs to be updated with the following articles:	
	The moratare to poor needs to be apacied with the following articles.	
	Daniel, Y. S., Aziz, Z. A., Ismail, Z., & Salah, F. (2017). Effects of thermal radiation, viscous and Joule heating on e MHD nanofluid with double stratification. <i>Chinese Journal of Physics</i> , <i>55</i> (3), 630-651.	lectrical
	Daniel, Y. S., & Daniel, S. K. (2015). Effects of buoyancy and thermal radiation on MHD flow over a stretching porousing homotopy analysis method. <i>Alexandria Engineering Journal</i> , <i>54</i> (3), 705-712.	us sheet
	Daniel, Y. S. (2016). Laminar convective boundary layer slip flow over a flat plate using homotopy analysis method. of The Institution of Engineers (India): Series E, 97(2), 115-121.	Journal
	Daniel, Y. S., Aziz, Z. A., Ismail, Z., & Salah, F. (2017). Entropy analysis in electrical magnetohydrodynamic (MHD) nanofluid with effects of thermal radiation, viscous dissipation, and chemical reaction. <i>Theoretical and Applied Mech Letters</i> , 7(4), 235-242.	
	Daniel, Y. S. (2015). Steady MHD laminar flows and heat transfer adjacent to porous stretching sheets using HAM. <i>journal of heat and mass transfer</i> , 2(3), 146-159.	American
	Daniel, Y. S., Aziz, Z. A., Ismail, Z., & Salah, F. (2018). Effects of slip and convective conditions on MHD flow of nar over a porous nonlinear stretching/shrinking sheet. <i>Australian Journal of Mechanical Engineering</i> , <i>16</i> (3), 213-229.	nofluid
	Daniel, Y. S., Aziz, Z. A., Ismail, Z., & Salah, F. (2017). Numerical study of Entropy analysis for electrical unsteady r magnetohydrodynamic flow of nanofluid and heat transfer. <i>Chinese Journal of Physics</i> , <i>55</i> (5), 1821-1848.	natural
	Daniel, Y. S., Aziz, Z. A., Ismail, Z., & Salah, F. (2018). Impact of thermal radiation on electrical MHD flow of nanoflunonlinear stretching sheet with variable thickness. <i>Alexandria engineering journal</i> , <i>57</i> (3), 2187-2197.	uid over
	Daniel, Y. S. (2017). MHD laminar flows and heat transfer adjacent to permeable stretching sheets with partial slip condition. <i>Journal of Advanced Mechanical Engineering</i> , <i>4</i> (1), 1-15.	
	Daniel, Y. S., Aziz, Z. A., Ismail, Z., & Salah, F. (2018). Thermal stratification effects on MHD radiative flow of nanof nonlinear stretching sheet with variable thickness. <i>Journal of Computational Design and Engineering</i> , <i>5</i> (2), 232-242	
	Daniel, Y. S. (2016). Steady MHD boundary-layer slip flow and heat transfer of nanofluid over a convectively heated linear permeable sheet. <i>Journal of Advanced Mechanical Engineering</i> , <i>3</i> (1), 1-14.	d of a non-
	Daniel, Y. S., Aziz, Z. A., Ismail, Z., & Salah, F. (2017). Double stratification effects on unsteady electrical MHD mixe	ed

Created by: EA Checked by: ME Approved by: CEO Version: 1.6 (10-04-2018)

SCIENCEDOMAIN international www.sciencedomain.org

SDI Review Form 1.6

	convection flow of nanofluid with viscous dissipation and Joule heating. <i>Journal of applied research and technology</i> , <i>15</i> (5), 464-476.
	Daniel, Y. S. (2015). Presence of heat generation/absorption on boundary layer slip flow of nanofluid over a porous stretching sheet. <i>American Journal of Heat and Mass Transfer</i> , 2(1), 15-30.
	Daniel, Y. S., Aziz, Z. A., Ismail, Z., & Salah, F. (2017). Thermal radiation on unsteady electrical MHD flow of nanofluid over stretching sheet with chemical reaction. <i>Journal of King Saud University-Science</i> .
	Daniel, Y. S., Aziz, Z. A., Ismail, Z., & Salah, F. (2018). Hydromagnetic slip flow of nanofluid with thermal stratification and convective heating. <i>Australian Journal of Mechanical Engineering</i> , 1-9.
	Daniel, Y. S., Aziz, Z. A., Ismail, Z., & Salah, F. (2018). Slip Effects on Electrical Unsteady MHD Natural Convection Flow of Nanofluid over a Permeable Shrinking Sheet with Thermal Radiation. <i>Engineering Letters</i> , 26(1).
	Daniel, Y. S., Aziz, Z. A., Ismail, Z., & Salah, F. (2017). Entropy Analysis of Unsteady Magnetohydrodynamic Nanofluid over Stretching Sheet with Electric Field. <i>International Journal for Multiscale Computational Engineering</i> , 15(6).
	Daniel, Y. S., Zainal, A. A., Ismail, Z., & Salah, F. (2018). Electrical Unsteady MHD Natural Convection Flow of Nanofluid with Thermal Stratification and Heat Generation/Absorption. <i>Matematika</i> , <i>34</i> (2), 393-417.
	DANIEL, Y. S. (2015). Boundary layer stagnation point flow of a nanofluid over a permeable surface with velocity, thermal and solutal slip boundary conditions. <i>Journal of Applied Physical Science International</i> , 237-252.
Minor REVISION comments	
Optional/General comments	

PART 2:

		Author's comment (if agreed with reviewer, correct the manuscript and highlight that part in the manuscript. It is mandatory that authors should write his/her feedback here)
Are there ethical issues in this manuscript?	(If yes, Kindly please write down the ethical issues here in details)	

Reviewer Details:

Name:	Yahaya Shagaiya Daniel
Department, University & Country	Kaduna State University, Nigeria

Created by: EA Checked by: ME Approved by: CEO Version: 1.6 (10-04-2018)