
An overview of the green road to the synthesis of nanoparticles 

Abstract— Nanotechnology is progressing at a very fast pace and has an overwhelming number of applications in 
medicine, agriculture, cosmetics, etc. Daily more and more discoveries and innovative applications are being 
brought to light. This new and exciting technology involves materials and devices in nanometer dimensions. The 
synthesis/fabrication of these all important nanoparticles should be in a clean and safe manner with minimum risk 
to the environment. This article examines and reports the ways of synthesizing nanoparticles in a green way, with 
low carbon footprint and minimum health hazards.  
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Introduction 

All matter and life originates at the nanoscale with atoms and molecules and this provides us with a 

very useful set of tools and techniques called Nanotechnology, which includes nanoparticles (NP), 

nanofabrication, nano biotechnology and other cognitive sciences. The unifying force is the 

manipulation of nanoscale matter for the diverse applications that we see today. By definition 

nanomaterials have dimensions of 1-100 nm and the main appeal is their large surface to volume ratio 

which gives them unique and enhanced properties. The size, shape and type of the NPs greatly 

influence its properties and field of applications. Nanomaterials find applications in environment and 

toxic gas sensing [1-5], food and agriculture [6-8], drugs and medicine [9-12] and in energy [13-15]. 

While nanotechnology is making many things in life easier and providing a lot of benefits to society, 

the large scale production of nanomaterials and the use of self replicating nano-machinery can pose 

incalculable risks. It is important to understand the role of nanoparticles in the uptake of pollutants 

and nutrients and also the toxicity of nanoparticles in food and agriculture. Safer design and 

manufacturing practices have to be adopted to ensure minimum risk to environment and human 

health. The concerns of toxicity and energy efficiency have lead to substantial research on green and 

sustainable production of NPs. This overview is an attempt to highlight the different green routes that 

can be taken to produce NPs with the minimum of environmental contamination and added benefits of 

antibacterial and antimicrobial properties of green NPs. The review is organized under the sections: 

importance of green synthesis, methods of green synthesis, disease inhibition using green NPs and 

finally conclusions. 

I. GREEN SYNTHESIS AND WHY IT IS IMPORTANT 

A. What is green synthesis? 

Green synthesis is the production of NPs using natural resources like plant extracts, microorganisms 

and energy saving methods in a sustainable, non-toxic and economical way. Extracts from different 

plants can be used to produce NPs with special characteristics and functionality to suit a specific 

application [10, 16-17]. The microorganisms can be bacteria, fungi, yeast etc and the choice will be 

based on the type, size and functionality that is desired of the NP [18-20]. 
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B. Benefits of Green Synthesis 

Why use green synthesis when convention methods of production exist? The answer lies in the 

numerous benefits that come with the use of a green route for NP synthesis. First of all, NPs produced 

in this manner are more stable and effective in comparison with those produced by physicochemical 

methods. Next, they are eco-friendly, sustainable, inexpensive and free of contaminants. Purity of NPs 

is a major consideration for biological and medical applications.  In addition, they are energy efficient 

and do not need high pressure, temperature, special culture preparation/isolation techniques or toxic 

chemicals. Moreover, most NPs produced by the green method show excellent antifungal, 

antibacterial and anti-parasitic properties. Other advantages are the ease of large scale synthesis and 

disposal of the non-toxic waste products.  

II.  METHODS OF GREEN SYNTHESIS 

 

The production of nanoparticles (NP) using natural substances is an important and emerging area in 

nanotechnology. The conventional methods of synthesis of NPs using chemicals as precursors or 

reducing agents have potential risks of toxicity and in general are not environmentally friendly or 

quick processes. To overcome these disadvantages the use of renewable resource natural biological 

systems to produce NPs is finding widespread acceptance. The different methods of green synthesis 

will be expanded based on the type of resource used and classified under: a) Use of micro-organisms 

b) Use of plant extracts and c) use of energy saving methods. 

A.  Use of plants and plant extracts 

The Green synthesis using biological molecules from plant extracts is proving to be far superior to 

chemical means. The huge plant diversity provides a natural bank of resources that can be utilized to 

rapidly synthesize in a one step protocol different types of NPs having a range of antimicrobial 

activity and application. The use of plant extracts to produce NPs of high quality, specific morphology 

and function is wide spread due it the simple steps involved in nanoparticle recovery. Fig 1 shows a 

schematic diagram of the steps involved [21]. The steps involved are extraction of plant by hand 

grinding/blender, filtration of the extract, addition of metal NP salt, stirring the resultant solution and 

finally recovery of salt from precipitate.  

 

 

 

 

 

 

 

 

 

 

Fig. 1 The various steps involved in the extraction of nanoparticles using plants [21] 
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Different parts of the plant like stem, fruit, fruit peels, bark, root, leaves etc can be used to produce the 

NPs. Taking Silver (Ag) NPs as an example the specific parts of the various plants used for synthesis 

is presented in Table 1 adapted from Ahmed et al [10].  

TABLE I.  SYNTHESIS OF SILVER NANOPARTICLES USING EXTRACTS FROM DIFFERENT PARTS OF VARIOUS PLANTS  

Plants 
Size 
(nm)                                         

Plant’s part                  Shape References 

Alternanthera 
dentate 

50–100          Leaves            Spherical          [22] 

Acorus calamus  31.83          Rhizome           Spherical          [23] 

Boerhaavia diffusa  25           whole plant            Spherical          [24] 

Tea extract 20-90            Leaves             Spherical          [25] 

Tribulus terrestris   16-28            Fruit                 Spherical          [26] 

Abutilon indicum           7-17            Leaves             Spherical          [27] 

Ziziphora tenuior   8–40           Leaves              Spherical          [28] 

Cocous nucifera                   22         Inflorecence         Spherical          [29] 

Pistacia atlantica           10–50            Seeds               Spherical          [30]          

 

The advantage of using plant and plant extracts over other biological methods is that there is no need 

for elaborate culturing and cell maintenance. Also, it is an easily scalable process. The success of 

producing NPs by this method has been reported in several research articles and reports [10, 16, 17, 

21-30].  

B. Use of micro-organisms 

Many microorganisms can be considered as nano factories that produce metal nanoparticles with 

different efficiency, size and shape. The use of physical and chemical means for NP synthesis may 

result in contamination due to toxic solvents, precursors and generate harmful byproducts with 

generally low yields. In contrast the use of micro-organisms like fungus, yeast etc for NPs synthesis is 

nontoxic, safe, reliable, clean and environmentally friendly with high yields. Fungi act as reducing 

agents of metal salts through secretion of enzymes and proteins. The mechanism may be extracellular 

that is outside the cell or between group of cells or intracellular meaning inside the cell or cytoplasm. 

This form of biosynthesis has great potential as large scale production of NPs from various strains of 

fungi is possible and they can even be grown in vitro. Table 2 lists some of the NPs obtained from 

diverse fungi and yeast species. 

The extracellular biosynthesis of Ag NPs using filamentous fungi like ‘Aspergillus fumigatus’ has 

been reported by Kuber et al [18]. These fungi are excellent candidates for extracellular process 

applications, since, they secret a variety of enzymes and are easy to grow and handle. Well dispersed 

Ag NPs of 5-25 nm were formed within minutes of silver ion coming in contact with the cell filtrate 

showing that the extracellular reduction process is a very fast and feasible biosynthesis method for Ag 

NPs. 
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TABLE II.  NANOPARTICLES OF VARYING SIZE AND SHAPE FABRICATED FROM FUNGAL AND YEAST SPECIES 

Fungi and Yeast NPs Size 
(nm) 

Shapes Location Ref 

Alternaria alternate Au 12 ± 5 Spherical 
triangular 
hexagonal 

Extracellular [31] 

Aspergillus clavatus Au 24.4 ± 1
1 

Triangular 
spherical 

hexagonal 

Extracellular [32] 

A. fumigatus ZnO 1.2–6.8 Spherical 
hexagonal 

Extracellular [33] 

A. oryzae  
TFR9 

FeCl3 10–24.6 Spherical – [34] 

A. sydowii Au 8.7–
15.6 

Spherical Extracellular [35] 

A. terreus Ag 1–20 Spherical Extracellular [36] 
A. tubingensis Ca3P2

O8 
28.2 Spherical Extracellular [37] 

Aureobasidium 
pullulans 

Au 29 ± 6 Spherical Intracellular [38] 

Candida albicans Au 5 Mono 
dispersed 
spherical 

Cell-free 
extract 

[39] 

C. glabrata CdS – – Intracellular [40] 
Coriolus versicolor Au 20–100, 

100–
300 

Spherical 
ellipsoidal 

Intra- and 
extracellular 

[41] 

Cylindrocladium 
floridanum 

Au 19.05 Spherical Extracellular [42] 

Fusarium oxysporum Pt 70–180 Rectangular 
triangular 
spherical 

aggregates 

– [43] 

 

Another typical example is the size controlled synthesis of silver NPs using ‘Fusarium oxysporum’ to 

obtain well-dispersed nanoparticles with size between 5 and 13 nm by Husseiny et al [9]. The NP size 

is controlled by the environmental and nutritional parameters viz substrate concentration, temperature, 

pH, weight of biomass etc. The biosynthesized NPs showed antibacterial and antitumor activities 

which will be discussed in more detail in section IV. 

C. Use of energy saving methods 

The synthesis of molybdenum disulfide nanostructures (MSNs) for host of applications by the ‘green’ 

microwave-assisted (MW) solvothermal synthesis method [44] is a clear example of energy saving 

techniques for green NP synthesis. In this process, Ammonium Molybdate and elemental Sulphur are 

mixed in 1:1 molar ratio in 10 ml of hydrazine monohydrate and 30 ml deionized water under 

magnetic stirring for 5 minutes. The resultant solvent mixture is transferred to a Teflon vessel and 

subjected to microwave radiation of 270 Watt in a microwave oven for 10 minutes, and is allowed to 

cool down naturally to room temperature. Black precipitate settled at the bottom of the solution is 

filtered, washed with distilled water, diluted hydrochloric acid and ethanol successively and 

centrifuged to remove any un reacted precursors. The final product is dried in vacuum oven at 50 

degrees Celsius for 4 hours to obtain MoS2 nanostructures. This technique qualifies for the energy 

efficient ‘greener’ approach by drastically reducing the reaction time (~300 times faster than the 
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conventional method). Microwave radiation penetrates through Teflon vessel and interacts with the 

solvents directly causing localized heating and thus generates supercritical conditions favorable for 

nucleation and growth of nanoparticles. The Schematic of the strategy for MW green synthesis of 

MSNs via generation of supercritical conditions is shown in Fig. 2 taken from the work of Qureshi et 

al [45]. 

 

 

 

 

 

 

 

 

Fig. 2. The Schematics for microwave assisted green synthesis of Molybdenum disulphide nanoparticles [45] 

In their work they demonstrated interestingly, biofilm inhibition and antimicrobial behavior of MSNs 

produced using this method. This is a significant discovery since the biofilm protects pathogenic 

organisms from drugs and immune system by resisting entry and recognition, respectively. They also 

showed the MSNs to be non-cytotoxic which gives them biocompatibility and increases their 

antimicrobial potential.  

The green synthesis of Ag NPs with demonstrated antibacterial activity by Fatimah [16] using MW 

is another example of energy efficient green process for NP synthesis. The use of MW shows the 

rapid formation of Ag NPs with similar properties to those obtained through the time consuming 

aging method. In addition, the use of microwave irradiation yielded larger particles. 

III. DISEASE INHIBITION USING GREEN NPS 

 

The excellent antibacterial and anti-parasitic properties of green NPs allows them to play significant 

roles in medicines, clinical applications and in vitro diagnostic applications and also in agriculture, 

water treatment, food packaging and textiles.  

Antibiotic resistance poses a major problem in healthcare due to the inherent tendency of microbial 

cells to alter their genes. In this context, the exploitation of inorganic nanoparticles to develop 

antiseptics that are deadly to microbes and demonstrate wide-ranging activity with lower prospects 

of microbial resistance is the most needed solution. 

Especially, the use of Ag NPs in the biomedical sector has seen increasing number of applications 

with large number products such as ointments, dressing materials, body hygiene etc already in the 

market. Ag NPs have been reported to possess antimicrobial property against myriad array of 

pathogenic microorganisms. An excellent example is the work of Husseiny et al [9] who showed the 

inhibitory capabilities of green Ag NPs towards bacteria and tumor. The NPs biosynthesized from 

‘Fusarium oxysporum’ showed excellent antibacterial activities when studied using agar well 

diffusion and zone of inhibition method against pathogenic strains of E. coli and S. aureus. Also, 

their work reveals promising antitumor capability against human breast carcinoma cell line (MCF-7). 

Fig. 3 shows the antibacterial and antitumor activities taken from their work. 
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Fig. 3.  The Antibacterial activity of different concentrations of biosynthesized AgNPs (A) against E. coli and S. aureus 
strains (B) viability chart of biosynthesized AgNPs against MCF-7 cell line. [9]. 

A serious concern is bacterial resistance to conventional antibiotics based on organic molecules. The 

prevalence of multidrug-resistant bacteria requires an effective solution and green NPs are coming to 

the rescue. An example is the interesting microbial resistance mechanism using non-cytotoxic MSNs 

by reactive oxygen species via disruption of cellular functions demonstrated in the work of Qureshi 

et al [45]. Fig. 4 taken from their work compares and illustrates the effectiveness of MSNs with other 

inorganic NPs against various forms of bacteria. 

 

Fig. 4.  Comparative illustration showing the antimicrobial effect of different NPs with MSNs on various gram-positive 
and gram-negative bacteria [45] 
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IV. CONCLUSIONS 

 
The use of natural and biogenic resources for production of NPs is a green eco-friendly, sustainable, 

inexpensive and contaminant free process. The NPs synthesized in this manner from plants and 

microorganisms are more stable, controllable and effective in treatment against pathogens and are 

less toxic to humans and environment as compared with those produced by chemical methods. 

Green NPs play a crucial role in all walks of life and find application in environmental remediation, 

nano-scale catalysis, treatment of water contaminated by toxic metal ions, water splitting, CO2 

sequestration, food and packaging, drugs and medicine, control and management of plant disease and 

also as effective fertilizers. 
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