1
 Original Research Article

 2
 2

 3
 INTERACTIONS OF EXTRACTS OF SELECTED MACROFUNGI AND

 4
 MALARIA PARASITE, Plasmodium berghei berghei IN BALB/C STRAIN

 5
 ALBINO MICE

 6
 7

8 10 11 **ABSTRACT**

12 Malaria is a global menace that claimed many lives. The potential of mushroom at appropriate dosage, concentrations and suitable condition especially as 13 antiplasmodial agents against malaria is important. Therefore, this study 14 15 investigated the interactive effects of some fungi extracts (Pleurotus tuber-regium, 16 Pleurotus pulmonarius, Fomes lignosus, Lentinus subnudus, Termitomyces robustus) and their combinations with malaria parasite, Plasmodium berghei 17 berghei in BALB/c strain albino mice. Intraperitoneal injection of experimental 18 animals with 0.2mL of 5x10⁶ parasitized blood was done before or after oral 19 administration of the extracts of 0.1mL fungi extracts at five concentrations. There 20 21 were 3 replicates. The percentage parasitemia, packed cell volume (PCV), the weight loss of the albino mice were monitored. The Extract, and Concentration 22 Levels recorded highly significant (p < 0.01) effects on the parasitemic level (137.96; 23 24 329.26), PCV (4539.48; 2357.93) and weights (53.46; 510.56) of experimental animals in prophylactic and therapeutic experiments. Also, highly significant 25 interactions (of 521.30) was obtained from Extracts x Concentrations. Lentinus 26 subnudus and Fomes lignosus as well as P. tuber-regium had the best prophylactic 27 and therapeutic potentials of 30%; 36% and 36% respectively. Lentinus subnudus 28 could be considered a good prophylaxis in prevention of malaria as it exceeds 29 therapeutic effect. Concentrations 0.4mg/mL and 0.04mg/mL were found to be most 30 effective; producing similar effect as chloroquine (20mg/kg bw) used as control. 31 32 Therefore, the optimum activity of the fungi extracts were interactive against the malaria parasite. Plasmodium berghei berghei in the albino mice. 33

- 34 Keywords: Fungi extracts, *Plasmodium species*, Antiplasmodial potentials, Albino mice,
- 35

Interactive effects.

- 36
- 37 38

39 1. INTRODUCTION

40

Mushrooms are higher fungi growing on decaying wastes [1]. They are highly rich in 41 nutrients and medicinal compounds, such as lentinan, glycans etc [2]. These in 42 43 addition to other bioactive compounds enhanced human's health [3]. According to World Health Organization [4], malaria outbreak is a global problem associated with 44 resistant Plasmodium strains. There is the need to search for drugs especially of 45 natural origin that are effective against strains of *Plasmodium* responsible for the 46 spread of malaria parasite. Therefore, this work aimed at studying the interactions of 47 fungi extracts, and their concentrations that enhance therapeutic potentials of 48

49 selected higher fungi against malaria parasite, *Plasmodium berghei berghei* in 50 albino mice.

51

52 2. MATERIAL AND METHODS

53 Sources of fungi extracts, experimental animals and malaria parasite

Fungi samples (Pleurotus tuber-regium, P. pulmonarius, Termitomyces robustus, 54 Fomes lignosus and Lentinus subnudus) were collected from different locations. 55 Extraction of the five fungi was done separately with ethanol using soxhlet 56 apparatus [5]. The extracts (40mg/mL) were serially diluted to 4, 0.4, 0.004 and 57 58 0.0004mg/mL before administering orally to the mice. The malaria parasite, Plasmodium berghei berghei; and BALB/C strain albino mice (Mus musculus) of 4-5 59 weeks old of an average weight of 22grammes were used. Passaging was carried 60 out as the albino mice were intraperitoneally injected with 0.2mL of 5 x 61 10⁶Plasmodium berghei berghei infected blood sample. They were monitored for 62 about 12days for parasitemia. Also, the packed cell volume (PCV) and weights of 63 64 animals were determined.

65 Statistical Analysis

Data collected were analysed using SAS version 2.0 to compute Analysis of
 Variance (ANOVA) while Means were separated by Duncan's Multiple Range Tests
 (DMRT) at p < 0.05.

69

70 71 3. RESULTS AND DISCUSSION

The prophylactic effects of extract types, replicates, concentration and their 72 73 interactions on parasitemia in albino mice for the days of infection (Table 1). The fungi species produced a highly significant (p< 0.01) prophylactic and therapeutic 74 75 effects on the parasitemia, PCV, and weights of BALB/c albino mice. Extract and Concentration produced high significant (p< 0.01) prophylactic effects on 76 77 parasitemia except on the first and twelveth days of infection. The third order of interaction; concentration and replicates was significant only on the second day. The 78 fungi extract types, concentration and their first order of interaction (Extract x 79 Concentration) had prophylactic effects on the packed cell volume of albino mice on 80 the first and third days of infection, while only Concentration produced significant 81 82 effect on the twelveth day after infection (Table 2).

83 The result shown in Table 3 reveals that the extracts produced higher prophylactic 84 effect on the weight of the experimental animals. Due to the effect of the extracts, weight loss in the animals was minimal on the first and second days of infection. 85 The results in Table 4 and 5 show the effects of the extracts, concentrations, 86 87 interactions of the extracts and concentrations were highly significant 88 (therapeutically) on the parasitemia and PCV in the animals throughout the period of 89 the experiment. The effect of the concentrations, extracts and concentrations was highly significant (P<0.01) on the seventh day of parasitic infection, while the 90 interactive effect of the extracts and replicates was significant (Table 6). The 91 92 interactions of the parameters on the parasitemia, PCV, weight showed highly 93 significant (P<0.01) therapeutic effect for Extract x Concentration. Similar results were obtained in the therapeutic experiments. This reveals the efficacy of the fungi 94 extracts for both prophylactic and therapeutic experiments. 95

96 The findings from this study show that higher fungi especially mushrooms possess

97 antiplasmodial potentials. The fungi extracts reduced the parasitemic infection in the

98 mice in accordance with previous report of [6]. The evaluation of *in-vivo* single and interactive effects of the fungi extracts at different concentration levels against the 99 malaria parasite, Plasmodium berghei berghei was observed for a period of time 100 was established as previously confirmed by [7]. The single interactive effects of the 101 extract types, concentrations, as well as the combination of extract and 102 concentrations increased prophylactic effect on the parasitemia with the exception 103 104 of the day of infection of the plasmodium on the albino mice. This is in accordance 105 with the report of [8].

106 The prophylactic and therapeutic effects of the fungi extracts was enhanced except in the replicate and in the co-interaction of the Extracts X Replicate at all levels of 107 108 interaction in parasitemia, PCV and weights of the experimental animals. This was 109 in agreement with the findings on inhibitory effects of some botanicals against 110 Fusarium species [9; 10; and 11]. The interactions of the Extract, and Concentration increased the preventive and curative potentials of the fungi. This could be 111 attributed to the pharmacological compounds and bioactive components of the fungi 112 extracts. They evidenced the biological and medicinal qualities of the higher fungi. 113 These are naturally-occurring chemical compounds play the roles of protecting 114 115 human health [12, 13, 14, 15, 16].

The parasitemia infection in the mice were effectively suppressed by the interactions 116 117 of the fungi extracts. This indicates the efficacy of the extracts against the malaria 118 parasite as earlier reported by [17]. As a result of the potency, moderate percentage of parasitemia was recorded for the extracts administered at different concentration 119 120 levels throughout the period of infection. The results of the interactions of extract and replicate, concentration and replicate could be due to the non-significance of 121 the replicates. The efficacy of the extracts and the prompt activities in reducing the 122 parasitemia of the mice, stabilizing the PCV and reducing weight loss in the animals 123 established the potency of the fungi extract as reported by [18]. 124

- 125
- 126

127 Table 1: Interactive effects of extract types, replicates, concentration on 128 parasitemia in albino mice for the days of infection

			%	Parasiter	nia		
Source of Variation	df	Day 1	Day 2	Day 3	Day 4	Day 5	Day 12
Extract Types	5	6.9 ^{ns}	56.54**	57.46**	54.25**	18.79 [*]	137.96**
Replicate	2	7.17 ^{ns}	0.48 ^{ns}	3.90 ^{ns}	2.53 ^{ns}	2.05 ^{ns}	68.07 ^{ns}
Concentration	5	9.65 ^{ns}	94.40**	88.01**	98.98**	95.44**	329.26**
Extract x Replicate	10	8.46 ^{ns}	2.43 ^{ns}	3.61 ^{ns}	6.11 ^{ns}	2.94 ^{ns}	27.01 ^{ns}
Extract x Concentration	25	8.62 ^{ns}	19.46 ^{**}	15.18 ^{**}	22.56**	26.67**	68.50 ^{ns}
Concentration x Replicate	10	8.65 ^{ns}	8.01*	5.42 ^{ns}	3.36 ^{ns}	8.87 ^{ns}	30.01 ^{ns}
Error	50						
Total	108						
Corrected Total	107						
129 *, ** are significant	and	highly	significant val	ues at p	< 0.05 an	nd p<0.01	

130 respectively.

133

¹³¹

¹³²

			Packed	Cell Volu	ume (PCV	()	
Source of Variation	df	Day 1	Day 2	Day 3	Day 4	, Day 5	Day 12
Extract Types	5	164.25 [*]	2794.49 ^{ns}	205.12 ^{ns}	534.52 ^{ns}	300.6 ^{ns}	307.16 ^{ns}
Replicates	1	4.01 ^{ns}	3200.00 ^{ns}	490.89 [*]	193.39 ^{ns}	1530.89 ^{ns}	196.68 ^{ns}
Concentration	5	272.98**	3246.85 ^{ns}	225.39 ^{ns}	522.12 ^{ns}	1041.00 ^{ns}	1489.22**
Concentration x	5	63.31 ^{ns}	2599.90 ^{ns}	79.99 ^{ns}	39.29 ^{ns}	405.06 ^{ns}	134.71 ^{ns}
Replicate				**			
Extract x Replicate	5	106.51 ^{ns}	2482.43 ^{ns}	169.19	66.42 ^{ns}	90.32 ^{ns}	369.71 ^{ns}
Extract x Conc.	25	129.15	2480.06 ^{ns}	208.89	283.45 ^{ns}	407.18 ^{ns}	688.42 ^{ns}
Error	25						
Total	72						
Corrected Total	71						
137 *, ** are significan	t and	highly sig	gnificant val	ues at p	< 0.05 a	nd p<0.01	
138 respectively.							
139							
140							
141							
142							
143	- 66 4					tration on	
144 Table 3: Interactive (s of extract	t types, rep	licates, al	na concer	tration on	
145 weights of albino mi	ce dui	ing the per		tion laight			
Source of Variation	df	Day 1	Day 2	Day 3	Day 4	Day 5	Day 12
Extract Types	5	24 . 21.72 ^{**}	2 4 2 **	23 06 ^{ns}	10 50 ^{ns}	3 16 71 [*]	50.08 ^{ns}
Replicate	2	21.72	23.42 * /8.51**	23.00	19.09	40.71 76.44**	152 12**
Concentration	5	21.04	3 17 ^{ns}	4 30 ^{ns}	15 10 ^{nt}	³ 00.44	510 56**
Extract x Replicate	10	2 93 ^{ns}	6.24 ^{ns}	10 42 ^{ns}	7 14 ^{ns}	15 02 ^{ns}	34 95 ^{ns}
Extract x Concentration	21	9.95**	18 99*	16.18 ^{ns}	20.87*	44 25**	44.36 ^{ns}
Concentration	10	5.39 ^{ns}	28.36**	27.33	33 41*	41.20 ^{**}	29 11 ^{ns}
Replicate		0.00	20.00	27.00	00.11	11.00	20.11
Error	50						
Total	108						
IUIAI	100						
Corrected Total	107						
Corrected Total	100 107 it and	highly sig	nificant val	ues at p	< 0.05 a	nd p<0.01	
Corrected Total146 *, ** are significan147 respectively.	107 it and	highly sig	gnificant val	ues at p	< 0.05 a	nd p<0.01	
Corrected Total146 *, ** are significan147 respectively.148	107 t and	highly sig	gnificant val	ues at p	< 0.05 a	nd p<0.01	
Corrected Total146 *, ** are significant147 respectively.148149	107 t and	highly sig	gnificant val	ues at p	< 0.05 a	nd p<0.01	
Corrected Total146 *, ** are significant147 respectively.148149150	107 t and	highly sig	gnificant val	ues at p	< 0.05 a	nd p<0.01	
TotalCorrected Total146 *, ** are significant147 respectively.148149150151	107 t and	highly sig	gnificant val	ues at p	< 0.05 a	nd p<0.01	
TotalCorrected Total146 *, ** are significant147 respectively.148149150151152	107 t and	highly sig	gnificant val	ues at p	< 0.05 a	nd p<0.01	
Corrected Total146 *, ** are significant147 respectively.148149150151152153	107 t and	highly sig	gnificant val	ues at p	< 0.05 a	nd p<0.01	
TotalCorrected Total146 *, ** are significant147 respectively.148149150151152153154	107 t and	highly sig	gnificant val	ues at p	< 0.05 a	nd p<0.01	
Corrected Total 146 *, ** are significant 147 respectively. 148 149 150 151 152 153 154 155	107 t and	highly sig	gnificant val	ues at p	< 0.05 a	nd p<0.01	

135	Table 2: Interactive effects of the extract types, replicates, concentration and
136	on PCV of albino mice for the days of infection

i			%	Parasitem	ia		
Source of Variation	df	Day 7	Day 8	Day 9	Day 10	Day 11	Day 14
Extract Types	5	26.44**	14.44**	11.62**	24.15* [*]	31.84**	20.32**
Replicate	2	14.01 [*]	11.61 ^{ns}	5.50 ^{ns}	3.52 ^{ns}	5.68 ^{ns}	0.67 ^{ns}
Concentration	5	30.80**	29.91**	20.59**	26.60**	22.39**	23.61**
Extract x Replicate	10	5.69 ^{ns}	2.49 ^{ns}	3.90 ^{ns}	2.06 ^{ns}	1.83 ^{ns}	2.82 ^{ns}
Extract x Concentration	21	11.29**	15.83 ^{**}	23.68**	18.21**	21.31**	23.60**
Concentration x	10	3.30 ^{ns}	4.55 ^{ns}	1.39 ^{ns}	2.99 ^{ns}	4.11 ^{ns}	3.17 ^{ns}
Replicate							
Error	42						
Total	96						
Corrected Total	95						
161 *, ** are significant	and	highly sig	nificant valu	ues at p <	0.05 and	l p<0.01	
162 respectively.						-	
163							
164				\sim			
165 Table 5: Therapeutic	c effe	cts of extra	act types, re	plicates, co	oncentratio	on on	
166 PCV during	the p	period of in	fection in a	lbino mice			
			Packed C	cell Volume	(PCV)		
Source of Variation	df	Day 7	Day 8	Day 9	Day 10	Day 11	Day 14
Extract Types	5	1294.51**	3336.35**	3815.00**	4539.48**	4282.39	3245.45
Replicate	2	190.21 ^{ns}	285.18**	24.83 ^{ns}	95.30 ^{ns}	120.02 ^{ns}	85.06 ^{ns}
Concentration	5	399.71**	518.46**	443.72 ^{ns}	804.79 ^{**}	992.81**	2357.93

69.87^{ns}

329.13**

199.78^{ns}

521.30**

52.40^{ns}

423.41**

42.64^{ns}

438.71**

61.18^{ns}

281.41**

130.06^{ns}

Table 4 : Therapeutic effects of extract types, replicates, concentration on 159 160 parasitemia during the period of infection in albino mice

46.11^{ns} 86.61^{ns} 92.77^{ns} 115.27^{ns} 114.11^{ns} Concentration Х 10 Replicate Error 42 Total 96 **Concentrated Total** 95 *, ** are significant and highly significant values at p < 0.05 and p<0.01 respectively.

52.86^{ns}

427.47**

10

21

174 175

167 168

Extract x Replicate

Extract x Concentration

176 177

178

179

180

182	Table 6:	Therapeutic	effects c	of extract	types,	replicates,	concentration	on
183	weigl	hts in albino r	nice durin	g the per	iod of in	fection		

					Weight			
Sou	rce of Variation	df	Day 7	Day 8	Day 9	Day 10	Day 11	Day
Extr	act Types	5	53.46**	46.34	65.55 [*]	73.31 [*]	54.21 ^{ns}	44.1
Rep	licate	2	0.99 ^{ns}	5.26 ^{ns}	23.99 ^{ns}	39.46 ^{ns}	1.37 ^{ns}	5.88
Con	centration	5	27.40	19.68	40.05 ^{ns}	76.33	110.19 ^{ns}	75.8
Extr	act x Replicate	10	10.17	18.82	54.99 ^{ns}	49.95	34.38 ^{ns}	28.3
Extr	ract x Concentration	on 21	18.57	33.67	50.16	63.91 [°]	76.80	66.8
Con	centration x Repli	cate 10	13.65	21.09	52.63 ^{ns}	51.93	34.38 ^{ns}	28.3
Erro	or	42						
Tota	al	96						
Cor	rected Total	95						
35 36 37	respectively.				Ì	7.		
58 39 30 31 32 33 34		antitativo P	bytechen		ononts of t	ho fundi ov	tracts	
8 9 0 1 2 3 4 5	Table 7: Qua	antitative P	<u>Phytochen</u>	nical compo	onents of the	he fungi ex	tracts	
8 9 0 1 2 3 4 95	Table 7: Qua Phytochemicals	antitative P	Phytochen Mix	nical compo Fom	onents of t	he fungi ex PT	tracts	
89 90 91 92 93 94 95	Table 7: Qua Phytochemicals Tannin Steroid	antitative P Lent 0.52 0.64	Phytochen Mix 0.02 3 35	nical compo Fom 0.53 1.06	onents of the present	he fungi ex PT 0.67 0.91	tracts <u>Term</u> 0.50 1.76	
88 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Table 7: Qua Phytochemicals Tannin Steroid Oxalate	antitative P Lent 0.52 0.64 nd	Phytochen <u>Mix</u> 0.02 3.35 0.01	nical compo Fom 0.53 1.06 nd	0nents of th PP 0.17 1.24 nd	he fungi ex PT 0.67 0.91 0.01	ttracts Term 0.50 1.76 0.01	
90 90 91 92 93 94 95	Table 7:Quadra of the second seco	antitative P Lent 0.52 0.64 nd nd	Phytochen Mix 0.02 3.35 0.01 nd	nical compo Fom 0.53 1.06 nd nd	0nents of t PP 0.17 1.24 nd 0.12	he fungi ex PT 0.67 0.91 0.01 nd	tracts Term 0.50 1.76 0.01 nd	
58 39 30 31 32 33 34 35	Table 7: Qua Phytochemicals Tannin Steroid Oxalate Saponin Flavonoid	antitative P Lent 0.52 0.64 nd nd nd	Phytochen Mix 0.02 3.35 0.01 nd nd	nical compo Fom 0.53 1.06 nd nd nd	0.17 0.17 1.24 nd 0.12 0.72	he fungi ex PT 0.67 0.91 0.01 nd nd	tracts Term 0.50 1.76 0.01 nd 0.58	
89 90 91 92 93 94 95	Table 7:QuaPhytochemicalsTanninSteroidOxalateSaponinFlavonoidAlkaloid	antitative P Lent 0.52 0.64 nd nd nd nd	Phytochen Mix 0.02 3.35 0.01 nd nd 0.01	nical compo Fom 0.53 1.06 nd nd nd nd nd	onents of the predict	he fungi ex PT 0.67 0.91 0.01 nd nd nd	tracts <u>Term</u> 0.50 1.76 0.01 nd 0.58 nd	
89 90 91 92 93 94 95	Table 7:QuaPhytochemicalsTanninSteroidOxalateSaponinFlavonoidAlkaloidCvanogenic	antitative P Lent 0.52 0.64 nd nd nd nd 0.15	Phytochen Mix 0.02 3.35 0.01 nd nd 0.01 0.01 0.01	nical compo Fom 0.53 1.06 nd nd nd nd 0.10	0.17 0.17 1.24 nd 0.12 0.72 nd 0.20	he fungi ex PT 0.67 0.91 0.01 nd nd nd 0.15	tracts Term 0.50 1.76 0.01 nd 0.58 nd 4.00	
99 90 91 92 93 94 95	Table 7:QuaPhytochemicalsTanninSteroidOxalateSaponinFlavonoidAlkaloidCyanogenicglucoside	antitative P <u>Lent</u> 0.52 0.64 nd nd nd nd 0.15	Phytochen Mix 0.02 3.35 0.01 nd nd 0.01 0.01	nical compo Fom 0.53 1.06 nd nd nd nd nd 0.10	0nents of t PP 0.17 1.24 nd 0.12 0.72 nd 0.20	he fungi ex PT 0.67 0.91 0.01 nd nd nd nd 0.15	tracts Term 0.50 1.76 0.01 nd 0.58 nd 4.00	
58 39 30 31 32 33 34 35	Table 7:QuaPhytochemicalsTanninSteroidOxalateSaponinFlavonoidAlkaloidCyanogenicglucosidePhenol	antitative P 0.52 0.64 nd nd nd nd 0.15 0.28	Phytochen Mix 0.02 3.35 0.01 nd 0.01 0.01 0.01	nical compo Fom 0.53 1.06 nd nd nd nd 0.10 0.28	0.17 0.17 1.24 nd 0.12 0.72 nd 0.20 0.72	he fungi ex PT 0.67 0.91 0.01 nd nd nd 0.15 0.45	tracts <u>Term</u> 0.50 1.76 0.01 nd 0.58 nd 4.00 0.02	
58 39 90 91 92 93 94 95	Table 7:QuaPhytochemicalsTanninSteroidOxalateSaponinFlavonoidAlkaloidCyanogenicglucosidePhenolDPPH	antitative P Lent 0.52 0.64 nd nd nd 0.15 0.28 73.40	Phytochem Mix 0.02 3.35 0.01 nd nd 0.01 0.01 0.005 85.34	nical compo Fom 0.53 1.06 nd nd nd 0.10 0.28 89.30	0nents of t PP 0.17 1.24 nd 0.12 0.72 nd 0.20 0.72 85.20	he fungi ex PT 0.67 0.91 0.01 nd nd 0.15 0.45 83.20	tracts Term 0.50 1.76 0.01 nd 0.58 nd 4.00 0.02 69.08	

DPPH- 2, 2–diphenyl-1-picrylhydrazyl; nd- not detected; FOM - *Fomes lignosus;* PT - *Pleurotus tuber-regium;* PP - *Pleurotus pulmonarius;* Term- *Termitomyces robustus;* Lent - *Lentinus subnudus*; Mix - Mixture of all the fungi samples in equal proportion.

202

203 4. CONCLUSION

204

205 It is apparent from this study that the tested fungi extracts possess prophylactic and therapeutic antiplasmodial potentials. L. subnudus proved as the extract with the 206 highest prophylactic effect against the malaria parasite, Plasmodium berghei 207 berghei in the experimental mice while P. tuber-regium had the best therapeutic 208 effect. In both prophylactic and therapeutic experiments, concentrations 0.4mg/mL 209 210 and 0.04mg/ mL produced the best effect against the malaria parasite, P. berghei berghei in the albino mice. Therefore, the study on interactions of the higher fungi 211 212 extracts in the prevention and treatment of malaria could be integrated in antimalarial study. 213

214

- 215
- 216
- 217
- 218

219

220 **COMPETING INTERESTS**

221 Authors have no competing interest.

222

223 224

225 **REFERENCES**

1.Dubuex, JCB. Jr., Sollenberger, LE., Interrante, SM., Vendramini, JMB and Steward, RL.,
 Jr. Litter decomposition ad mineralization in bahiagrass pastures managed at different
 intensities. Crop Sci., (2006) 46: 1303 – 1310.

229 2. Jonathan, S.G. Vegetative growth requirements and antimicrobial activities of some higher 230 fungi in Nigeria. Ph.D thesis, University of Ibadan (2002).

3. Opige, M., Kateyo, E. and Olila, D. Indigenous knowledge and indigenous usage of edible
and medicinal mushrooms among the Teso people of Eastern Uganda. Journal of Food
Technology(2006) 4(4): 325-330.

4. WHO. Guidelines for the treatment of malaria. Fact Sheet'94 (2015)

5. Redfren J, Kinnimonth M, Burdass D, Verran J (2014) Using soxhlet ethanol extraction to
produce and test plant material (essential oils) for their antimicrobial properties. *J Microb. Biol. Edu* 15(1): 45-46

6. Katsayal, UA., Abdurahman, EM., Abubakar, MS., Musa, KY., Ambah, SF., and Jahun,

MB. Fungi as potential source of antimalarial agents. Nig Journal Pharma.Sci(2009)8(1):
138-142.

7. Jonathan, SG., and Olawuyi, OJ., Popoola, OO. and Aina, DA. Antibacterial activities of
 extracts of *Daldina concentrica*. African J. Biomed. Res. (2011)14: 57 – 61.

8. White, SR., Obradovic, T. Imeh, KM., Wheaton, MJ. The effects of
methylenedioxmethamphetamine (MDMA, "Estasy") on monoaminergic neurotransmission in
the central nervous system. Progress in Neurobiology (1996)49:455-479

246 9. Agbenin, NO., Marley, PS. *In vitro* assay of some plant extracts against *Fusarium*247 *oxysporum* F. sp lycopersici causal agent of tomato wilt. Journal of Plant Protection
248 Research in Plant Biology (Poland) (2006) 46: 117-121

10. Babu, J., Muzafar, AD., Vinod, K. Bioefficacy of Plant Extracts to control *Fusarium solani*

F. sp Melanogenae Incitant of Brinjal Wilt. Global Journal of Biotechnology and Biochemistry(2008).3(2): 56-59

- 11. Akanmu, AO., Olawuyi, OJ., Abiala, MA., Yaya, OS., Odebode, AC. Interactive effects of
 some botanicals and *Fusarium* spp on the growth of millet seedlings. Research in Plant
 Biology. (2013) 4(1): 01-11
- 255 12. Hasler, CM., Blumberg, JG. Symposium on phytochemicals: Biochemistry and Physiology.Journal of Nutrition (1999)129:7565-7575.
- 13. Smith, RA., Mettlin CJ., Davis, KJ., Eyre, H. American Cancer Society guidelines for the earlydetection of cancer. A cancer Journal for Clinicians. (2000) 50(1): 34-49.

14. Saxena, J. and Patra, AK. Dietary phytochemicals as rumen modifiers: a review of the
 effects of on microbial populations. Antonie van Leeuwenhoek(2009)96: 363-375

- 15. Gracia, EJ., Oldoni, TLC., de Alencar, SM., Reis, A., Luguerio, AD., Grande, HM.
 Antioxidant activity of DPPH of potential solution to be applied on bleached teeth. Branzilian
 Dental Journal(2012)23(1): 22-27
- 16. Ilondu, EM. Myco- chemical composition and efficacy of four mushroom extracts in the control of *Rhizoctania solani*, a damping-off pathogen of garden egg (*Solanum melongena* b) seedlings. American Journal of Scientific and Industrial Research(2013) 4(5):429-437
- L.) seedlings. American Journal of Scientific and Industrial Research(2013) 4(5):429-437.
- 17. Chelela, BL., Chacha, M., Matemu, A. O. Wild edible mushroom value chain for improved
 livelihoods in Southern Highlands of Tanzania. American Journal of Research
 Communication 2014 2(8):1-14
- 18. Walker, MG., Page, CP., Hoffman, BF., Curtis, M. Integrated Pharmacology. (3rd ed.). St.
 Louis: Mosby. 2006. ISBN 0-323-04080-2
- 272

273

274

275

276

277

278

279

280

281

282

283