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ABSTRACT 

According to [Soulie, 2018], computing the homology of a group is a fundamental question 
and can be a very difficult task. In his assertion, a complete understanding of all the 
homology groups of mapping class groups of surfaces and 3-manifolds remains out of reach 
at present time. It is imperative that we give the universal coefficient theorem the supposed 
needed attention. In this article, we study some product topologies as well as the kiinneth 
formula for computing the (co)homology group of product spaces. The paper begins with 
study on the algebraic background with specific definitions and extends into four theorems 
considered as the Universal Coefficient Theorem. Though this article does not proof the 
theorems, yet much is done on some properties of each of these theorems, which is enough 
for the calculation of (co)homology groups. 
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1. INTRODUCTION 
From the theory of topological spaces emerged, algebraic topology. Objects are classified 
according to the nature of their connectedness [Obeng-Denteh, 2019]. At the elementary 
level, algebraic topology separates naturally into the two broad channels of homology and 
homotopy. With a simple dualization in the definition of homology, cohomology an algebraic 
variant of homology is formed [Hatcher, 2002]. It is therefore not surprise that cohomology 
groups  satisfy axioms much like the axioms for homology, except that induced 
homomorphisms go in the opposite direction as a result of the dualization. The basic 
difference between homology and cohomology is that, cohomology groups are contravariant 
functors while homology groups are covariant. In terms of internal study, however, there is 
not much difference between homology groups and cohomology groups. The homology 
groups of a space determine its cohomology groups, and the converse holds at least when 



 

the homology groups are finitely generated. What is a little surprising is that, contravariance 
leads to extra structure in cohomology. [Hatcher, 2002 pg185] 
 
 
 
 
 
2. PRELIMINARIES 

2 .1: Exactness of a sequence 

Definition 1: For a given pair of homomorphism  is exact at N if 

 Hence a sequence  is exact if it 

actually exact at every, , that is between two homomorphisms. 

Proposition: A sequence  is exact if provided is injective (1 to 1). Furthermore, 

a sequence  is exact if and only if g is surjective (onto) [Rotman, 2009]. 

Proof: A sequence being exact has its implication, that is, kernel x is equal to the image of 
the homomorphism 0 → M, which is zero. There is an equivalence relation to the injectivity 
of homomorphism x [Rotman, 2009]. Similarly, the kernel of zero homomorphism Q → 0 is 
Q, and  if and only if y is surjective 

2.2 Product Structures of Abelian Groups 

2 .2.1 Tensor product. 

Definition 2: Let M and N be two abelian groups then the tensor product denoted by M⊗N 
is defined to be the abelian group with generators m⊗n for  m∈ M, n ∈ N, and relations 

(m + m′) ⊗n = m⊗ n + m′⊗ n and 

m⊗ (n + n′) = m⊗ n + m⊗ n′.[Milne,2017] 

So the zero element of M ⊗N is 0⊗0 = 0⊗n = m⊗0, and  

− (m⊗ n) = −m⊗ n = m⊗ (−n). [Friedlander & Grayson, 2007] 

Hence given the direct sums, 1 2 3 .....M m m m     and 

1 2 3 .....N n n n    i

i
M M  and j

j
N N   then there exists an isomorphism 

,

i J

i j

M N M N   .[Niroomand, 2011] 

Tensor product satisfies the following elementary properties 

1. M⊗ N ≈ M⊗ N.  

2. (M⊗ N) ⊗ Q ≈ M ⊗ (⊗ Q). 

3. ( ) (M )i i iM N N      

 4. ⊗M ≈. M⊗ ≈ M.  



 

5. n ⊗M ≈ M/nM.  

6. A pair of homomorphisms f: M→M′ and g: N→N′ induces a homomorphism 

f ⊗ g:M⊗ N→M′⊗N′ via (f ⊗g) (m⊗ n) = f(m)⊗g(n).[Anderson & Fuller, 1992] 

 7. A bilinear map : M×N→Q induces a homomorphism M⊗N→Q sending m ⊗ n to               

(m, n). 

 

In order to compute the tensor products of finitely generated abelian groups, properties1 to 5 
may be employed .Properties 1,2,3,6 and 7 remain valid for tensor products of R-modules. 
[Hajime, 2000] 

2 .3 Homomorphism 

Definition 3: let M, N be two abelian groups. A mapping  is called homomorphism 

if for all .  

For abelian groups M and N, we obtain the abelian group Hom(M, N) of the homomorphism 

of M and N. Particularly, given that i

i
M M  and j

j
N N  are direct sums as 

indicated, then 
,

( , )i j

i j

Hom M M  

Therefore, it is important to note that for any two finitely generated abelian groups M and N 
the following relations hold (over  ):  

1.  

2.  

3.  

4.  

5. )  

2 .4 Torsion Product 

Definition 4: Given that M and N are abelian groups, an abelian group called their torsion 
product over  , is given by  will be determined by the torsion part of M and N. 
That is, their respective subgroups consisting of the elements whose integral multiples 
become 0 for some integers. [Hatcher, 2002] 

Hence if M and N are i

i
M M  and j

j
N N  , then the torsion product  

 

It should be noted that, for any abelian groups M and N, .  

For a given abelian group M, 



 

 

Torsion product of two finitely generated abelian groups may be determined using the 
following relations; 

 

 

 

2 .5 Extensions 

Definition 5: Given two abelian groups, M and N, an extension of M by N is a group together 
with an exact sequence of the form: 

0→ N → Q → M→0 [Friedlander & Grayson, 2005] 

and is denoted by  for equivalent classes of extension of N by M which determine 

an abelian group. [Hatcher, 2002] 

moreover, if  are direct sums, i

i
M M  and j

j
N N   then it can be said that there 

exists an isomorphism 

,

(M, N) ( , N )i j

i j

Ext Ext M  

Lemma: for any abelian group M,  

 

It also follows that the following relations are equivalent 

 

 

 

3. MAIN THRUST 

3.1 The Kiinneth formula for (co)homology 

Let  be product spaces of topological spaces  given their respective 
(co)homology groups.  

Theorem: For each p, there exists a natural isomorphism 

 

In this regard, the left-side is the axiomatic homology of all the cell complex X which gives 
rise to the chain complex  computed algebraically. 

 The tensor product of the respective chains of  can be regarded naturally as a 
chain on X x Y, which induces a homomorphism 

 
Similarly, we now get the induced homomorphism  



 

 
It can therefore be said that these maps are induced by the cross product and the map 
induce by the cross product is injective [Friedlander & Grayson, 2005]. The following 
theorems affirm that. 

 

 

Theorem:  for the homology kiinneth formula 

 

Theorem:  for the cohomology kiinneth formula 

 

3.2   Cup Product 

For a topological space X, the diagonal map 

 

transforming  is continuous. Hence the composition of the cross 

product and the induced map  

 

This defines a homomorphism 

 

Hence for , we define their cup product  by 

 

There is an implication in the definition. That is, the structure induced on a cohomology 
theory by the cup product is homotopy invariant. The cup products satisfy the following 
properties:  

For  

 

For a map  

We see a product- preserving homomorphism in . The cohomology group  

 equipped with a product structure has become a ring.  

 

3.3 The Universal Coefficient Theorem 



 

In homology the universal coefficient theorem is a special case of the kiinneth theorem 
[Satya,2003]. Now let’s look at these four formulae considered as the universal coefficient 
theorem. By reminding ourselves about the product structures of abelian groups, the easier it 
is for to comprehend these theorems. 

Theorem: From the corresponding integral homology and the torsion product, we can 
calculate homology over a general coefficient group M: 

 

Theorem: Using the corresponding integral homology and the extension product, we may 
also calculate cohomology over a general coefficient group M: 

 

 

Theorem: We can compute cohomology over a general coefficient group M from the integral 
cohomology and the torsion product: 

 

Theorem: from the integral cohomology and the extension product, homology over a 
general coefficient group M can also be computed. 

 

4. CONCLUSION  

The general observation made so far is that, in our quest to look more into abelian groups 
such as M and N for the sake of this article as defined from the beginning, the tensor 
product, Homomorphism, torsion product and extension has to be defined. It must also be 
noted that cohomology groups become rings using the structure of a cup product. 

The identification of tensor products of respective homology and cohomology groups 
belonging to two topological spaces with the cohomology groups of the product spaces may 
be used. Cohomology groups of product spaces fall out from kiinneth formula and can be 
inferred from the product structures that, cross product homomorphism is injective. 
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