1	Original Research Article
2	
3	Phaeophytin and Triterpenoids from Brachystelma togoense Schltr, a
4	Nigerian Medicinal Herb
5	
6	ABSTRACT
7	The medicinal herb Brachystelma togoense schtlr (Apocynaceae) is used traditionally for
8	treatment of ailments. The secondary metabolites, phaeophytin a , α -amyrin and lupeol were
9	isolated from the CH ₂ Cl ₂ and MeOH extracts of <i>Brachystelma togoense</i> . The structures were
10	elucidated using ¹ H, ¹³ C and 2D NMR. These phytochemicals have being previously reported
11	to have shown various biological activities such as anti-inflammatory, anti-fungal and anti-
12	cancer. The presence of phaeophytin a , α -amyrin and lupeol in Brachystelma togoense
13	justified this use of the plant for medicinal purpose in Nigeria.
14	
15	Keywords: Secondary metabolites; phaeophytin <i>a</i> ; α-amyrin; lupeol; <i>Brachystelma togoense</i>
16	schtlr
17	
18	1. INTRODUCTION
19	Brachystelma was first described by Robert Brown in 1822. The genus Brachystelma R. Br.
20	(Apocynaceae: Asclepiadoideae) is represented by about 100-120 species (1). It is an erect
21	perennial herb, growing up to 30 cm high. The genus Brachystelma is chiefly distributed in
22	South Africa, South-East Asia and Australasia (2). A total of 18 species are known in India
23	(3) and out of them, 3 species in Maharashtra. <i>Brachystelma</i> is found from Ghana to Nigeria,
24	in lowlands to montane areas(4). The raw tuber is said to be edible (4). Many of the tuberous
25	Brachystelma are known to be used medicinally for the treatment of headache, stomachache

and colds in children(5). *Brachystelma togoense* has being medicinally for the treatment of

27 dysentery, cough and cold, wounds, stomach ache, typhoid and erectile dysfunction.

28 2. MATERIAL AND METHOD

29 **2.1 Collection**

The aerial parts of *Brachystelma togoense* was collected during April 2018 from the Ugbokolo forest in Okpokwu, which is the local government area of Benue State-Nigeria. The plant was collect around 10:00h and stored in a plastic container before it was air dried. The collected specimen was positively identified by Mr. Namadi Sanusi, a botanistat Ahmadu Bello University, Zaria as *brachystelma togoense*. A specimen (no. 25856) had been retained at the Department of Biological Sciences, Ahmadu Bello University, Zaria-Nigeria (Figure 1).

2.2 Extraction and isolation

The air dried *B. togoense* was manually reduced to powder using mortar and pistil. Exactly 38 (1000 g) of the powdered plant material was successfully extracted on a shaker at room 39 temperature using 100 % dichloromethane (CH₂Cl₂) for 72 h. The extracts were concentrated 40 41 using a rotary evaporator at 40° C resulting in a brown gum-like texture (32 g). The same 42 procedure was used for methanol (MeOH) which yielded a brown gum-like texture (36 g). 43 The CH₂Cl₂ and MeOH extracts were separated by flash chromatography (Biotage system) 44 over silica gel using three solvents. Firstly, a hexane/ CH_2Cl_2 gradient starting with 100 % 45 hexane and gradually increasing the polarity to 100 % CH₂Cl₂. Secondly, CH₂Cl₂/EtOH/Ac 46 from a 100 % CH₂Cl₂ to 50 % EtOH/Ac and to 100 % EtOH/Ac to yield various fractions (fr. 47 1-100). Fr.20 was spotted on the TLC plate using 100 % CH₂Cl₂ and appeared a pure 48 compound 1 (51.0 mg). The same procedure was repeated for the MeOH extract yielding 49 compounds 2 (32.0 mg) and 3 (28.0 mg) which were spotted as pure compounds using 50 CH_2Cl_2 /EtOH/Ac (7:3) from fr.30.

51 **2.2 General experimental procedure**

NMR spectra were recorded in CDCl₃ on a 400MHz or 500 MHz Bruker AVANCE III NMR
instrument at room temperature. HREIMS were recorded on an Agilent Technologies 6550
iFunnel Q-TOF LC/MS with samples dissolved in CH₂Cl₂. Infrared spectra were recorded
using a Perkin-Elmar (2000 FTIR) spectrometer on NaCl plates.

56 **4. Results and Discussion**

The air-dried aerial parts *B. togoense* (1000 g) collected at Ugbokolo forest (Okpokwu local flash chromatography (biotage system), this extract phaophytin *a* (51.0 mg; 0.16 %), α amyrin (32.0 mg; 0.10 %) and lupeol (28.0 mg; 0.09 %). The compounds (Figure 2) were elucidated based on comparison of previous data (6–8).

Phaeophytin-a was isolated as a dark green solid from the CH_2Cl_2 extract of the aerial parts of *Brachystelma togoense* that had previously described (7). The IR spectrum showed absorbance bands for vinyl proton (3056 cm⁻¹) and sp³ CH (2987, 2932 cm⁻¹) and carbonyl (1736 cm⁻¹) groups. A molecular ion could not be seen in the HRMS spectrometer despite repeated attempts.

From the ¹H and ¹³C NMR spectra, it was evident that phaeophytin-a belonged to the 66 phaeophytin class. This was particularly evident by the downfield shifts at $\delta_{\rm H}$ 9.32 s, 9.48 s 67 and 8.56 s which could be assigned as H-5, H-10 and H-20 respectively. The deshielded 68 methyl groups proton resonances occurred at $\delta_H 3.19 (3H-2')$, $\delta_H 3.3 (3H-7')$ and $\delta_H 3.38 (3H-7')$ 69 12') and a methoxy group proton resonance occurred at $\delta_{\rm H}$ 3.89 (3H-13⁴). The presence of a 70 C-20 phytol tail was evident from the presence of four methyl protons ($\delta_{\rm H}$ 0.80 d, J = 7.3, $\delta_{\rm H}$ 71 0.82 d, J = 7.3, $\delta_H 0.79$ s, $\delta_H 1.61$ s) and ester carbonyl resonance at $\delta_C 173.8$ (C-13³). A 72 73 comparison of the NMR data of phaeophytin-a against literature values for phaeophytin a showed the enabled assignment of a keto group carbon resonances at $\delta_{\rm C}$ 189.9 to C-13¹ (7,9). 74

⁷⁵ α-Amyrin was isolated as a brown solid from the CH_2Cl_2 extract of the aerial parts of ⁷⁶ *Brachystelma togoense*, which had been isolated previously from the methanol extract of ⁷⁷ *Sacoglottis uchi* (6). The IR spectrum showed absorbance bands for hydroxyl (3055 cm⁻¹) and ⁷⁸ sp³ CH (2987 cm⁻¹) in conjugation and unsymmetrical ethylenic double bond (1733 cm⁻¹) ⁷⁹ olefinic carbon (1422 cm⁻¹) groups. The molecular ion was no seen in the HRMS spectrum, however 30 carbons could be counted in the 13 C NMR spectrum, indicating the compound was a triterpenoid.

The ¹H and ¹³C NMR spectra (spectrum 3.2 and 3.3) showed the presence of one 82 trisubstituted double bond. A hydroxyl group was placed on C-3 confirmed by the C-3 ($\delta_{\rm C}$ 83 79.3) resonance correlating with both the 3H-23 ($\delta_{\rm H}$ 0.99 s), 3H-24 ($\delta_{\rm H}$ 0.78 s) and H-5 ($\delta_{\rm H}$ 84 0.73 d, J = 11.5) resonances. A further singlet ($\delta_{\rm H} 0.79, 0.93, 0.99, 0.78$ and 1.24) and two 85 doublet ($\delta_{\rm H}$ 0.86 d, J= 6.2 and $\delta_{\rm H}$ 0.95 d, J= 6.2) methyl group proton resonances were 86 87 present and the typical 12-olaenene double bond ($\delta_{\rm H}$ 5.25, $\delta_{\rm C}$ 126.1, $\delta_{\rm C}$ 138.2) was seen. A comparison against literature data (6) confirmed that this compound was α-amyrin which has 88 been isolated previously from the stem bark of *Sacoglottis uchi* (Humiriaceae)(6). 89

90 The configuration of the hydroxyl group at C-3 was confirmed as β by the coupling constant 91 of H-3 (J = 5.1, 11.3). The configurations at the chiral centres were confirmed using the 92 NOESY spectrum

Lupeol was isolated as a brown solid from the MeOH extract of the aerial parts of *Brachystelma togoense* which had been isolated previously from the hexane extract of *Magnolia salicifilia* (10) as well as synthesised (8). The IR spectrum showed an absorbance band for hydroxyl (3363 cm⁻¹). The molecular ion was no seen in the HRMS spectrum, however 30 carbons could be counted in the ¹³C NMR spectrum indicating the compound was a triterpenoid.

The NMR spectra of lupeol showed the presence of an *iso*-propenyl group typical of the lupene-type of pentacyclic triterpenoids. Coupled 2H-29 methylene protons ($\delta_{\rm H}$ 4.69 d, J =2.1, $\delta_{\rm H}$ 4.57 d, J = 2.4) and ¹³C NMR resonances ($\delta_{\rm C}$ 105.9, $\delta_{\rm C}$ 151.2, $\delta_{\rm C}$ 19.5) could be assigned to two H-29 and C-29, C-20 and C-30 respectively (11).

Lupeol was identified as the known 3β-hydroxylup-20(29)-ene, commonly referred to as lupeol. A literature search revealed that the ¹³C NMR chemical shifts similar to those of lupeol had been reported for lupeol. The configurations at the chiral centres were confirmed using the NOESY spectrum

107

108

Previusly, pheophytin *a* has been reported to possess antimicrobial activity against *Candida albicans* (ATCC 90028) and *C. albicans* (ATCC 76615) (12) as well as antioxidant activity
(13). Amyrin (α) has been reported to exhibit antimicrobial activity against *Escherichia coli*, *Pseudomonas aeruginosa*, *Candida albicans*, *Staphylococcus aureus* and *Trichophyton mentagrophytes* (14). Antiprotozoal, anti-inflammatory, antitumor and antimicrobial activity
had been reported for lupeol (15).

115 Conclusion

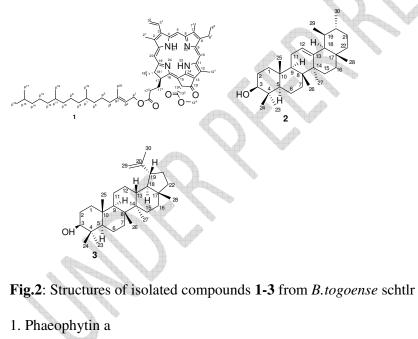
116 Phaeophytin a, α -amyrin and lupeol are reported here for the first time from B. togoense.

117 This was also the first report of the phytochemical quantification in *B. togoense* in Nigeria.

- 118 However, these secondary metabolites, i.e phaeophytin a, α -amyrin and lupeol were reported
- 119 previously to show various biological activities. Therefore, the results of chemical compound
- analysis of *B. togoense* justified the ethnomedicinal uses of this plant in Nigeria.

121 Acknowledgments

122 The author wishes to thank the natural product group, university of Surrey, UK for the 123 research work.


124 Competing Interests

125 Authors have declared that no competing interests exist.

126

Figure 1: Brachystelma togoense in its natural habitat (16)

- 2. α-Amyrin
- 3. Lupeol

References

- 1. Bruyns P V. Three New Species of Brachystelma (Apocynaceae, Asclepiadoideae,

139		Ceropegieae) from South Tropical and Southern Africa. Vol. 19. SPIE; 2009. 5 p.
140	2.	Ollerton J, Masinde S, Meve U, Picker M, Whittington A. Fly pollination in Ceropegia
141		(Apocynaceae: Asclepiadoideae): biogeographic and phylogenetic perspectives. Ann
142		Bot. 2009;103(9):1501–14.
143	3.	Britto SJ, Bruyns P V. Three new species of Brachystelma from Tamil Nadu, India.
144		Haseltonia. 2016;(22):48–54.
145	4.	Kew Royal Botanical Gardens. Electronic Plant Information Centre (ePIC) [Internet].
146		2019 [cited 2019 Feb 7]. Available from: http://epic.kew.org/index.htm
147	5.	Rajaram MS, Rathod J, Dilip V. I S S N 2278 – 4357 Pharmacognostical Studies on
148		the Tuber of Brachystelma Edulis Coll . and Helmsl an Endemic To Peninsular,
149		India . 2014;3(6):1958–65.
150	6.	Abreu VG da C, Corrêa GM, Lagos IA dos S, Silva RR, Alcântara AF de C.
151		Pentacyclic triterpenes and steroids from the stem bark of uchi (Sacoglottis uchi,
152		Humiriaceae). Acta Amaz. 2013;43:525–8.
153	7.	Schwikkard SL, Mulholland DA, Hutchings A. Phaeophytins from Tapura fischeri.
154		Phytochemistry. 1998;49(8):2391-4.
155	8.	Cmoch P, Korda A, Rárová L, Oklešťková J, Strnad M, Luboradzki R, et al. Synthesis
156		and structure-activity relationship study of cytotoxic lupane-type 3β-O-
157	•	monodesmosidic saponins with an extended C-28 side chain. Tetrahedron [Internet].
158		2014;70(17):2717–30. Available from:
159		http://www.sciencedirect.com/science/article/pii/S0040402014003123
160	9.	Matsuo A, Ono K, Hamasaki K, Nozaki H. Phaeophytins from a cell suspension
161		culture of the liverwort Plagiochila ovalifolia. Phytochemistry [Internet].
162		1996;42(2):427–30. Available from:
163		http://www.sciencedirect.com/science/article/pii/0031942296000179

- 164 10. Silva ATM e, Magalhães CG, Duarte LP, Mussel W da N, Ruiz ALTG, Shiozawa L, et
- al. Lupeol and its esters: NMR, powder XRD data and in vitro evaluation of cancer
- 166 cell growth. Brazilian J Pharm Sci [Internet]. 2018 Feb 1 [cited 2019 Feb 19];53(3).
- 167 Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-
- 168 82502017000300621&lng=en&tlng=en
- 169 11. Silva ATM e, Magalhães CG, Duarte LP, Mussel W da N, Ruiz ALTG, Shiozawa L, et
- al. Lupeol and its esters: NMR, powder XRD data and in vitro evaluation of cancer
- 171 cell growth. Brazilian J Pharm Sci. 2018 Feb;53(3).
- 172 12. Gomes RA, Teles YCF, Pereira F de O, Rodrigues LA de S, Lima E de O, Agra M de
- 173 F, et al. Phytoconstituents from *Sidastrum micranthum* (A. St.-Hil.) Fryxell
- 174 (Malvaceae) and antimicrobial activity of pheophytin a. Brazilian J Pharm Sci
- 175 [Internet]. 2015;51:861–7. Available from:
- 176 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-
- 177 82502015000400861&nrm=iso
- 178 13. Kusmita L, Puspitaningrum I, Limantara L. Identification, isolation and antioxidant
- activity of pheophytin from green tea (*Camellia sinensis* (L.) Kuntze). Procedia Chem
- 180 [Internet]. 2015;14:232–8. Available from:
- 181 https://dx.doi.org/10.1016/j.proche.2015.03.033
- 182 14. Ragasa CY, Puno MRA, Sengson JMAP, Shen C-C, Rideout JA, Raga DD. Bioactive
- 183 triterpenes from *Diospyros blancoi*. 2009;23(13):1252–8. Available from:
- 184 https://dx.doi.org/10.1080/14786410902951054
- 185 15. Gallo M, Miranda bullet, Sarachine J. Biological activities of lupeol. In: International
- 186 Journal of Biomedical and Pharmaceutical Sciences. 2009. p. 46–66.
- 187 16. Erpenbach A. West African Plants A Photo Guide Brachystelma togoense Schltr.
- 188 [Internet]. 2009 [cited 2019 Feb 18]. Available from:

189 http://www.westafricanplants.senckenberg.de/root/index.php?page_id=14&id=4246

190

191

HARAC