1 2	Original Research Article
3	Phaeophytin and Triterpenoids from Brachystelma togoense Schltr, a
4	Nigerian Medicinal Herb
5	
6	ABSTRACT
7	The medicinal herb Brachystelma togoense schtlr (Apocynaceae) is used traditionally for
8	treatment of ailments. The secondary metabolites, phaeophytin a , α -amyrin and lupeol were
9	isolated from the CH ₂ Cl ₂ and MeOH extracts of Brachystelma togoense. The structures were
10	elucidated using ¹ H, ¹³ C and 2D NMR. These phytochemicals have previously being reported
11	to have various biological activities such as anti-inflammatory, anti-fungal and anti-cancer.
12	The presence of phaeophytin a , α -amyrin and lupeol in $Brachystelma$ togoense justified the
13	use of the plant for medicinal purpose in Nigeria.
14	
15	Keywords: Secondary metabolites; phaeophytin a ; α -amyrin; lupeol; $Brachystelma\ togoense$
16	schtlr
17	
18	1. INTRODUCTION
19	Brachystelma was first described by Robert Brown in 1822. The genus Brachystelma R. Br.
20	(Apocynaceae: Asclepiadoideae) is represented by about 100-120 species (1). It is an erect
21	perennial herb, growing up to 30 cm high. The genus Brachystelma is chiefly distributed in
22	South Africa, South-East Asia and Australasia (2). A total of 18 species are known in India
23	(3) and out of them, 3 species in Maharashtra. Brachystelma is found from Ghana to Nigeria,
24	in lowlands to montane areas(4). The raw tuber is said to be edible (4). Many of the tuberous

Brachystelma are known to be used medicinally for the treatment of headache, stomachache

- and colds in children(5). Brachystelma togoense has being medicinally used for the treatment
- of dysentery, cough and cold, wounds, stomach ache, typhoid and erectile dysfunction.

28 2. MATERIAL AND METHOD

29 **2.1 Collection**

- 30 The aerial parts of Brachystelma togoense was collected during April 2018 from the
- 31 Ugbokolo forest in Okpokwu, which is the local government area of Benue State-Nigeria.
- 32 The plant was collect and stored in a plastic container before it was air-dried. The collected
- 33 specimen was positively identified by Mr. Namadi Sanusi, a botanistat Ahmadu Bello
- University, Zaria as *Brachystelma togoense*. A specimen (no. 25856) had been retained at the
- 35 Department of Biological Sciences, Ahmadu Bello University, Zaria-Nigeria (Figure 1).

2.2 Extraction and isolation

- 37 The air-dried *B. togoense* was manually reduced to powder using mortar and pestil. Exactly
- 38 1000 g of the powdered plant material was extracted on a shaker at room temperature using
- 39 100 % dichloromethane (CH₂Cl₂) for 72 h. The extracts were concentrated using a rotary
- evaporator at 40° C resulting in a brown gum-like texture (32 g). The same procedure was
- 41 used for methanol (MeOH) which yielded a brown gum-like texture (36 g). The CH₂Cl₂ and
- 42 MeOH extracts were separated by flash chromatography (Biotage system) over silica gel
- 43 using three solvents. Firstly, a hexane/ CH₂Cl₂ gradient starting with 100 % hexane and
- gradually increasing the polarity to 100 % CH₂Cl₂. Secondly, CH₂Cl₂/EtOH/Ac from a 100
- 45 % CH₂Cl₂ to 50 % EtOH/Ac and to 100 % EtOH/Ac to yield various fractions (fr. 1-100).
- 46 Fr.20 was spotted on the TLC plate using 100 % CH₂Cl₂ and appeared a pure compound 1
- 47 (51.0 mg). The same procedure was repeated for the MeOH extract yielding compounds 2
- 48 (32.0 mg) and 3 (28.0 mg) which were spotted as pure compounds using CH₂Cl₂/EtOH/Ac
- 49 (7:3) from fr.30.

50

2.2 General experimental procedure

- 51 NMR spectra were recorded in CDCl₃ on a 400MHz or 500 MHz Bruker AVANCE III NMR
- instrument at room temperature. HREIMS were recorded on an Agilent Technologies 6550
- iFunnel Q-TOF LC/MS with samples dissolved in CH₂Cl₂. Infrared spectra were recorded
- using a Perkin-Elmar (2000 FTIR) spectrometer on NaCl plates.

3. Results and Discussion

- The following following compounds phaophytin a (51.0 mg; 0.16 %), α -amyrin (32.0 mg;
- 57 0.10 %) and lupeol (28.0 mg; 0.09 %) were isolated from *Brachystelma togoense* using flash
- 58 chromatography (biotage system). These compounds (Figure 2) were elucidated based on
- 59 comparison of previous data (6–8).
- 60 Phaeophytin-a was isolated as a dark green solid from the CH₂Cl₂ extract of the aerial parts
- of *B. togoense* that was previously described (6). The IR spectrum showed absorbance bands
- 62 for vinyl proton (3056 cm⁻¹) and sp³ CH (2987, 2932 cm⁻¹) and carbonyl (1736 cm⁻¹) groups.
- A molecular ion could not be seen in the HRMS spectrometer despite repeated attempts.
- From the ¹H and ¹³C NMR spectra, it was evident that phaeophytin-a belonged to the
- phaeophytin class. This was particularly evident by the downfield shifts at δ_{H} 9.32 s, 9.48 s
- and 8.56 s which could be assigned as H-5, H-10 and H-20 respectively. The deshielded
- methyl groups proton resonances occurred at δ_H 3.19 (3H-2'), δ_H 3.3 (3H-7') and δ_H 3.38 (3H-
- 68 12') and a methoxy group proton resonance occurred at $\delta_{\rm H}$ 3.89 (3H-13⁴). The presence of a
- 69 C-20 phytol tail was evident from the presence of four methyl protons ($\delta_{\rm H}$ 0.80 d, J = 7.3, $\delta_{\rm H}$
- 70 0.82 d, J = 7.3, $\delta_{\rm H}$ 0.79 s, $\delta_{\rm H}$ 1.61 s) and ester carbonyl resonance at $\delta_{\rm C}$ 173.8 (C-13³). A
- 71 comparison of the NMR data of phaeophytin-a against literature values for phaeophytin a
- showed the enabled assignment of a keto group carbon resonances at δ_C 189.9 to C-13¹ (6,9).
- 73 The ¹H and ¹³C NMR spectra for compound 1 were assigned using HSQC and HMBC as
- given in table 1.

Amyrin (α) was isolated as a brown solid from the CH₂Cl₂ extract of the aerial parts of *B. togoense*, which had been isolated previously from the methanol extract of *Sacoglottis uchi* (7). The IR spectrum showed absorbance bands for hydroxyl (3055 cm⁻¹) and sp³ CH (2987 cm⁻¹) in conjugation and unsymmetrical ethylenic double bond (1733 cm⁻¹) and olefinic carbon (1422 cm⁻¹) groups.

- The molecular ion was not observed in the HRMS spectrum, however 30 carbons could be counted in the ¹³C NMR spectrum, indicating the compound was a triterpenoid.
- The ¹H and ¹³C NMR spectra (spectrum 2.2 and 2.3) showed the presence of one trisubstituted double bond. A hydroxyl group was placed on C-3 confirmed by the C-3 (δ_C 79.3) resonance correlating with both the 3H-23 ($\delta_{\rm H}$ 0.99 s), 3H-24 ($\delta_{\rm H}$ 0.78 s) and H-5 ($\delta_{\rm H}$ 0.73 d, J = 11.5) resonances. A further singlet ($\delta_{\text{H}} 0.79, 0.93, 0.99, 0.78$ and 1.24) and two doublet ($\delta_{\rm H}$ 0.86 d, J= 6.2 and $\delta_{\rm H}$ 0.95 d, J= 6.2) methyl group proton resonances were present and the typical 12-olaenene double bond (δ_H 5.25, δ_C 126.1, δ_C 138.2) was seen. A comparison against literature data (7) confirmed that this compound was α-amyrin which has been isolated previously from the stem bark of *Sacoglottis uchi* (Humiriaceae)(7).
 - The configuration of the hydroxyl group at C-3 was confirmed as β by the coupling constant of H-3 (J = 5.1, 11.3). The configurations at the chiral centres were confirmed using the NOESY spectrum. The ¹H and ¹³C NMR spectra for compound **2** were assigned using HSQC and HMBC as given in table 2.
 - Lupeol was isolated as a brown solid from the MeOH extract of the aerial parts of *B. togoense* which had been isolated previously from the hexane extract of *Magnolia salicifilia* (10) as well as synthesised (8). The IR spectrum showed an absorbance band for hydroxyl (3363 cm⁻¹). The molecular ion was no seen in the HRMS spectrum, however 30 carbons could be counted in the ¹³C NMR spectrum indicating the compound was a triterpenoid.

The NMR spectra of lupeol showed the presence of an *iso*-propenyl group typical of the lupene-type of pentacyclic triterpenoids. Coupled 2H-29 methylene protons ($\delta_{\rm H}$ 4.69 d, J = 2.1, $\delta_{\rm H}$ 4.57 d, J = 2.4) and 13 C NMR resonances ($\delta_{\rm C}$ 105.9, $\delta_{\rm C}$ 151.2, $\delta_{\rm C}$ 19.5) could be assigned to two H-29 and C-29, C-20 and C-30 respectively (11).

Lupeol was identified as the known 3β -hydroxylup-20(29)-ene, commonly referred to as lupeol. A literature search revealed that the ^{13}C NMR chemical shifts were similar to those of lupeol. The configurations at the chiral centres were confirmed using the NOESY spectrum. The ^{1}H and ^{13}C NMR spectra for compound 3 were assigned using HSQC and HMBC as given in table 3.

Previously, pheophytin *a* has been reported to possess antimicrobial activity against *Candida albicans* (ATCC 90028) and *C. albicans* (ATCC 76615) (12) as well as antioxidant activity (13). Amyrin (α) has been reported to exhibit antimicrobial activity against *Escherichia coli*, *Pseudomonas aeruginosa*, *C. albicans*, *Staphylococcus aureus* and *Trichophyton mentagrophytes* (14). Antiprotozoal, anti-inflammatory, antitumor and antimicrobial activity had been reported for lupeol (15).

Conclusion

103

104

105

106

107

108

109

110

111

112

113

114

120

- Phaeophytin a, α -amyrin and lupeol are reported here for the first time from B. togoense.
- This was also the first report of the phytochemical quantification in *B. togoense* in Nigeria.
- However, these secondary metabolites, i.e phaeophytin a, α -amyrin and lupeol were reported
- previously to show various biological activities. Therefore, the results of chemical compound
- analysis of B. togoense justified the ethnomedicinal uses of this plant in Nigeria.

Acknowledgments

The author wishes to thank the Natural Product Research Group, University of Surrey, UK for the opportunity to carry out my research work using their laboratory, Chemicals and Instruments.

Competing Interests

Authors have declared that no competing interests exist.

Figure 1: Brachystelma togoense in its natural habitat (16)

130

- Fig.2: Structures of isolated compounds 1-3 from *B.togoense* schtlr
- 132 1. Phaeophytin *a*
- 133 2. α-Amyrin
- 134 3. Lupeol

135

References

- Bruyns P V. Three New Species of *Brachystelma* (Apocynaceae, Asclepiadoideae,
 Ceropegieae) from South Tropical and Southern Africa. Vol. 19. SPIE; 2009. 5 p.
- 2. Ollerton J, Masinde S, Meve U, Picker M, Whittington A. Fly pollination in Ceropegia (Apocynaceae: Asclepiadoideae): biogeographic and phylogenetic perspectives.

 Annals of Botany. 2009;103(9):1501–14.
- 3. Britto SJ, Bruyns P V. Three new species of *Brachystelma* from Tamil Nadu, India. Haseltonia. 2016;(22):48–54.
- 4. Kew Royal Botanical Gardens. Electronic Plant Information Centre (ePIC) [Internet].

- 2019 [cited 2019 Feb 7]. Available from: http://epic.kew.org/index.htm
- Rajaram MS, Rathod J, Dilip V. I S S N 2278 4357 Pharmacognostical Studies on the Tuber of Brachystelma Edulis Coll. and Helmsl. an Endemic To Peninsular, India . 2014;3(6):1958–65.
- 6. Schwikkard SL, Mulholland DA, Hutchings A. Phaeophytins from *Tapura fischeri*. Phytochemistry. 1998;49(8):2391–4.
- 7. Abreu VG da C, Corrêa GM, Lagos IA dos S, Silva RR, Alcântara AF de C. Pentacyclic triterpenes and steroids from the stem bark of *uchi* (Sacoglottis uchi, Humiriaceae). Acta Amazonica. 2013;43:525–8.
- Cmoch P, Korda A, Rárová L, Oklešťková J, Strnad M, Luboradzki R, et al. Synthesis and structure–activity relationship study of cytotoxic lupane-type 3β-O-monodesmosidic saponins with an extended C-28 side chain. Tetrahedron [Internet].
 2014;70(17):2717–30. Available from: http://www.sciencedirect.com/science/article/pii/S0040402014003123
- 9. Matsuo A, Ono K, Hamasaki K, Nozaki H. Phaeophytins from a cell suspension culture of the liverwort *Plagiochila ovalifolia*. Phytochemistry [Internet]. 1996;42(2):427–30. Available from: http://www.sciencedirect.com/science/article/pii/0031942296000179
- 10. Silva ATM e, Magalhães CG, Duarte LP, Mussel W da N, Ruiz ALTG, Shiozawa L, et al. Lupeol and its esters: NMR, powder XRD data and in vitro evaluation of cancer cell growth. Brazilian Journal of Pharmaceutical Sciences [Internet]. 2018 Feb 1 [cited 2019 Feb 19];53(3). Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-82502017000300621&lng=en&tlng=en
- 11. Silva ATM e, Magalhães CG, Duarte LP, Mussel W da N, Ruiz ALTG, Shiozawa L, et

- al. Lupeol and its esters: NMR, powder XRD data and in vitro evaluation of cancer cell growth. Brazilian Journal of Pharmaceutical Sciences. 2018 Feb;53(3).
- 12. Gomes RA, Teles YCF, Pereira F de O, Rodrigues LA de S, Lima E de O, Agra M de F, et al. Phytoconstituents from *Sidastrum micranthum* (A. St.-Hil.) Fryxell (Malvaceae) and antimicrobial activity of pheophytin a. Brazilian Journal of Pharmaceutical Sciences [Internet]. 2015;51:861–7. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-82502015000400861&nrm=iso
- 13. Kusmita L, Puspitaningrum I, Limantara L. Identification, isolation and antioxidant activity of pheophytin from green tea (*Camellia sinensis* (L.) Kuntze). Procedia Chemistry [Internet]. 2015;14:232–8. Available from: https://dx.doi.org/10.1016/j.proche.2015.03.033
- 14. Ragasa CY, Puno MRA, Sengson JMAP, Shen C-C, Rideout JA, Raga DD. Bioactive triterpenes from *Diospyros blancoi*. 2009;23(13):1252–8. Available from: https://dx.doi.org/10.1080/14786410902951054
- 15. Gallo M, Miranda bullet, Sarachine J. Biological activities of lupeol. In: International Journal of Biomedical and Pharmaceutical Sciences. 2009. p. 46–66.
- 16. Erpenbach A. West African Plants A Photo Guide Brachystelma togoense Schltr.
 [Internet]. 2009 [cited 2019 Feb 18]. Available from:
 http://www.westafricanplants.senckenberg.de/root/index.php?page_id=14&id=4246

SUPPLIMENTARY INFORMATION

Table 1: Correlation table for NMR data of compound 1: phaeophytin-a

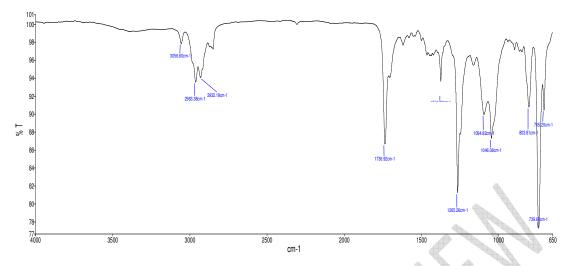
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NOESY
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 2 20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3^{1}, 3^{2}\alpha, 20$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 22 220
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a^{1}, 3^{2}\alpha, 3^{2}\beta, 5$
136.5 C	1 , 3^{1} , $3^{2}\beta$, 5
5 97.7 CH 97.3 9.32 s 3, 4, 7 - 3 6 155.8 C 155.5 - <	$3^1, 3^2\alpha$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 , $3^{2}\alpha$, $3^{2}\beta$, 7^{1} , 10
7^1 12.2 CH ₃ 11.2 3.30 s 7, 6, 8 - 8 145.4 C 145.2 - - - $8^1α$ 19.6 CH ₂ 19.7 3.64 d, J = 9.2 7, 8, 8 ² , 9 $8^1β$, 8 ² $8^1β$ 3.64 d, J = 9.2 7, 8, 8 ² , 9 $8^1α$, 8 ² 8^2 17.6 CH ₃ 16.3 1.67 t, J = 7.6 8, 8 ¹ $8^1α$, 8 ² 9 151.2 C 151.0 - - - - 10 104.6 CH 104.4 9.48 s - - - 11 138.1 C 137.9 - - - - 12 129.2 C 129.1 - - - - 12 ¹ 12.3 CH ₃ 12.2 3.38 s 11, 12, 13 - - 13 ¹ 189.9 C 189.6 - - - - 13 ² 64.9 CH 64.7 6.27s - - - 13 ³ 173.2 C <td>-</td>	-
8 145.4 C 145.2 - - - - - - 8 ¹ α 19.6 CH ₂ 19.7 3.64 d, $J = 9.2$ 7, 8, 8 ² , 9 8 ¹ β, 8 ² 8 ¹ β, 8 ² 8 ¹ α, 8 ² 7 8 8 ¹ α, 8 ² 8 ¹ α, 8 ² β 7 7 9 151.2 C 151.0 - - - - - - - - - - - - - - - - -	-
8¹α 19.6 CH₂ 19.7 3.64 d, $J = 9.2$ 7, 8, 8², 9 8¹β, 8² 8¹β 3.64 d, $J = 9.2$ 7, 8, 8², 9 8¹α, 8² 8² 17.6 CH₃ 16.3 1.67 t, $J = 7.6$ 8, 8¹ 8¹α, 8¹β 7 9 151.2 C 151.0 - - - - 10 104.6 CH 104.4 9.48 s - - - 11 138.1 C 137.9 - - - - - 12¹ 129.2 C 129.1 -	
8 1β 3.64 d, $J = 9.2$ 7, 8, 8 2 , 9 8 1α , 8 2 82 17.6 CH ₃ 16.3 1.67 t, $J = 7.6$ 8, 8 1 8 1α , 8 1β 7 9 151.2 C 151.0 - - - - 10 104.6 CH 104.4 9.48 s - - - 11 138.1 C 137.9 - - - - - 12 129.2 C 129.1 - <td>-</td>	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$7^1, 8^2, 10$
9 151.2 C 151.0	$7^1, 8^2, 10$
10 104.6 CH 104.4 9.48 s - - 11 138.1 C 137.9 - - - 12 129.2 C 129.1 - - - 12 ¹ 12.3 CH ₃ 12.2 3.38 s 11, 12, 13 - 13 129.1 C 129.0 - - - 13 ¹ 189.9 C 189.6 - - - 13 ² 64.9 CH 64.7 6.27s - - 13 ³ 173.2 C 173.0 - - - 13 ⁴ 53.1 OCH ₃ 53.0 3.89 s 13 ³ - 14 149.9 C 150.0 - - - 15 105.4 C 105.2 - - 16 161.5 C 161.3 - - 51.4 CH 51.1 4.22 m 17 ¹ 17 ² 17 ¹ 18 ¹ 10 17 ¹ 17 ¹ 18	1 , $8^{1}\alpha$, $8^{1}\beta$, 10 , 13^{4}
10 11 138.1 C 137.9 - - - 12 129.2 C 129.1 - - - 12 ¹ 12.3 CH ₃ 12.2 3.38 s 11, 12, 13 - 13 129.1 C 129.0 - - - 13 ¹ 189.9 C 189.6 - - - 13 ² 64.9 CH 64.7 6.27s - - 13 ³ 173.2 C 173.0 - - - 13 ⁴ 53.1 OCH ₃ 53.0 3.89 s 13 ³ - 14 149.9 C 150.0 - - - 15 105.4 C 105.2 - - - 16 161.5 C 161.3 - - - 51.4 CH 51.1 4.22 m 17 ¹ 17 ² 18 ¹ 10 17 ¹ a 17 ¹ 8	-
11 138.1 C 137.9 - - - 12 129.2 C 129.1 - - - 12 ¹ 12.3 CH ₃ 12.2 3.38 s 11, 12, 13 - 13 129.1 C 129.0 - - - 13 ¹ 189.9 C 189.6 - - - 13 ² 64.9 CH 64.7 6.27s - - 13 ³ 173.2 C 173.0 - - - 13 ⁴ 53.1 OCH ₃ 53.0 3.89 s 13 ³ - 14 149.9 C 150.0 - - - 15 105.4 C 105.2 - - - 16 161.5 C 161.3 - - - 51.1 4.22 m 17 ¹ 17 ² 18 ¹ 10 17 ¹ 17 17 18	$5, 8^{1}\alpha, 8^{1}\beta,$ $3^{2}, 12^{1}, 13^{4}$
12¹ 12.3 CH ₃ 12.2 3.38 s 11, 12, 13 - 13 129.1 C 129.0 - - - 13¹ 189.9 C 189.6 - - - 13² 64.9 CH 64.7 6.27s - - 13³ 173.2 C 173.0 - - - 13⁴ 53.1 OCH ₃ 53.0 3.89 s 13³ - 14 149.9 C 150.0 - - - 15 105.4 C 105.2 - - - 16 161.5 C 161.3 - - - 51.4 CH 51.1 4.22 m 17¹ 17² 18¹ 10 17¹ 17² 18¹ 10	-
13 129.1 C 129.0 - - - 13¹ 189.9 C 189.6 - - - 13² 64.9 CH 64.7 6.27s - - 13³ 173.2 C 173.0 - - - 13⁴ 53.1 OCH ₃ 53.0 3.89 s 13³ - 14 149.9 C 150.0 - - - 15 105.4 C 105.2 - - - 16 161.5 C 161.3 - - - 51.4 CH 51.1 4.22 m 17¹ 17² 18¹ 10 17¹ 17² 18¹ 10	-
13¹ 189.9 C 189.6 - - - 13² 64.9 CH 64.7 6.27s - - 13³ 173.2 C 173.0 - - - 13⁴ 53.1 OCH ₃ 53.0 3.89 s 13³ - 14 149.9 C 150.0 - - - 15 105.4 C 105.2 - - - 16 161.5 C 161.3 - - - 51.4 CH 51.1 4.22 m 17¹ 17² 18¹ 10 17¹ 0 17¹ 8	10
13² 64.9 CH 64.7 6.27s - - 13³ 173.2 C 173.0 - - - 13⁴ 53.1 OCH₃ 53.0 3.89 s 13³ - 14 149.9 C 150.0 - - - 15 105.4 C 105.2 - - - 16 161.5 C 161.3 - - - 51.4 CH 51.1 4.22 m 17¹ 17² 18¹ 10 17¹ 17² 18¹ 10	-
13³ 173.2 C 173.0 - - - 13⁴ 53.1 OCH₃ 53.0 3.89 s 13³ - 14 149.9 C 150.0 - - - 15 105.4 C 105.2 - - - 16 161.5 C 161.3 - - - 51.4 CH 51.1 4.22 m 17¹ 17² 18¹ 10 17¹ 17² 18¹ 10	-
13 ⁴ 53.1 OCH ₃ 53.0 3.89 s 13 ³ - 14 149.9 C 150.0 - - - 15 105.4 C 105.2 - - - 16 161.5 C 161.3 - - - 51.4 CH 51.1 4.22 m 17 ¹ 17 ² 18 ¹ 10 17 ¹ g 17 ¹ 18	-
14 149.9 C 150.0	-
15 105.4 C 105.2	8^2 , 10
16 161.5 C 161.3	-
51 4 CH 51 1 4 22 m 17 17 17 19 10 17 10 17 10	-
17 51.4 CH 51.1 4.22 m 17^1 , 17^2 , 18^1 , 19 $17^1\alpha$, $17^1\beta$	-
	$17^{1}\alpha, 17^{1}\beta, 18^{1}$
17 ¹ α 29.8 CH ₂ 29.8 2.49 m 16, 17, 17 ² , 17 ³ , 18 17, 17 ¹ β, 17 ² α, 17 ² β	17, $17^{1}\beta$, $17^{2}\beta$,
$17^{1}\beta$ 2.22* m $17, 17^{2}, 17^{3}, 18$ $17, 17^{1}\alpha, 17^{2}\alpha, 17^{2}\beta$	17, $17^{1}\alpha$,
17^2 α 32.1 CH ₂ 31.2 $1.26*$ m $17, 17^1, 17^3$ 17^1 α, 17^1 β, 17^2 β	$\frac{17^2\alpha, 18}{17^1\beta}$
1.26* m 17, 17^1 , 17^3 $17^1\alpha$, $17^2\beta$, $17^2\alpha$	$17, 17^{1}\alpha,$ $17^{1}\beta, 17^{2}\alpha,$ 18
17 ³ 173.8 C 172.0	-
	$18^{1}, 17^{1}\beta, 17^{2}\beta, 20$
18 ¹ 22.8 CH ₃ 22.7 0.85 d, $J = 6.6$, 17, 18, 19 18	P1α, P1β,

						17, 18, 20
19	172.4 C	170.0	-	-	-	-
20	93.3 CH	93.1	8.56 s	1, 2, 18	-	2 ¹ , 18 ¹ , 18
Ρ1α	61.7 CH ₂	61.0	4.48 m	P2, P3, 17 ³	P1β, P2, P20	18 ¹
P1β			4.48 m	P2, P3, 17 ³	P1α, P2, P20	18 ¹
P2	117.9 CH	118.0	5.13 m	P4, P20	Ρ1α, Ρ1β, Ρ20	
P3	143.1 C	142.0	-	-	-	-
P4α	40.0 CH ₂	62.0	1.89 m	P2, P3, P20	Ρ4β, Ρ5α, Ρ5β	
Ρ4β			1.89 m	P2, P3, P20	Ρ4α, Ρ5α, Ρ5β	
Ρ5α	25.2 CH ₂	39.5	1.26 m	P3, P4, P6	P4α, P4β, P5β, P6α, P6β	
Ρ5β			1.26 m	P3, P4, P6	P4α, P4β, P5α, P6α, P6β	
Ρ6α	36.9 CH ₂	37.0	1.14* m	P4, P5, P7, P8, P19	Ρ5α, Ρ5β, Ρ6β, Ρ7	
Р6β			1.01* m	P5, P7, P8, P19	Ρ5α, Ρ5β, Ρ6α, Ρ7	
P7	32.9 CH	37.0	1.32 m	P6, P8	Ρ6α, Ρ6β, Ρ8α, Ρ8β, Ρ19	
P8a	37.6 CH ₂	36.5	1.99* m	P6, P7, P9, P10, P19	Ρ7, Ρ8β, Ρ9α, Ρ9β	
Р8β			1.00* m	P6, P7, P9, P10, P19	Ρ7, Ρ8α, Ρ9α, Ρ9β	
Ρ9α	24.6 CH ₂	25.0	1.31 m	P8, P10	Ρ8α, Ρ8β, Ρ9β, Ρ10α, Ρ10β	
Ρ9β			1.31 m	P8, P10	Ρ8α, Ρ8β, Ρ9α, Ρ10α, Ρ10β	
Ρ10α	37.5 CH ₂	24.8	1.99* m	P8, P9, P11, P12, P18	Ρ9α, Ρ9β, Ρ10β, Ρ11	
Ρ10β			1.00* m	P8, P9, P11, P12, P18	Ρ9α, Ρ9β, Ρ10α, Ρ11	
P11	32.8 CH	24.2	1.32* m	P9, P10, P12, P13, P18	P10α, P10β, P12α, P12β, P18	
Ρ12α	37.4 CH ₂	40.0	1.99* m	P10, P11, P13, P18	P11, P12β, P13α, P13β	
Ρ12β			1.00* m	P10, P11, P13, P14, P18	P11, P12α, P13α, P13β	
Ρ13α	24.9 CH ₂	28.0	1.63 m	P11, P12, P14	P12α, P12β, P13β, P14α, P14β	
Ρ13β			1.63 m	P11, P12, P14	P12α, P12β, P13α, P14α, P14β	
Ρ14α	39.6 CH ₂	32.5	1.19 m	P12, P13, P16, P17	P13α, P13β, P14β, P15	
Ρ14β			1.10 m	P12, P13, P16, P17	P13α, P13β, P14α, P15	
P15	28.2 CH	32.5	1.49 sep J = 6.6	P13, P14, P16, P17	Ρ14α, Ρ14β, Ρ16, Ρ17	
P16	22.9 CH ₃	22.7	0.81 d, J = 7.3	P14, P15, P17	P15, P17	
P17	23.3 CH ₃	22.6	$0.80 \mathrm{d}, J = 7.3$	P14, P15, P16	P15, P16	
P18	19.9 CH ₃	19.6	0.82 d, J = 7.3	P10, P11, P12	P11	
P19	19.8 CH ₃	19.4	0.79 d, J = 9.2	P6, P7, P8	P7	
P20	16.5 CH ₃	16.2	1.61 d, J = 4.2	P2, P3, P4	Ρ1α, Ρ1β, Ρ2	

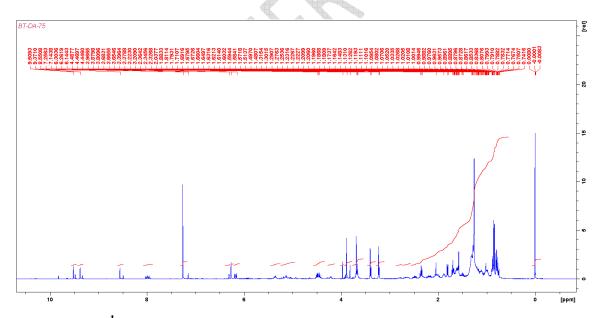
^{*}Overlapped proton resonances

Table 2: Correlation table for NMR data of compound 2: α -amyrin

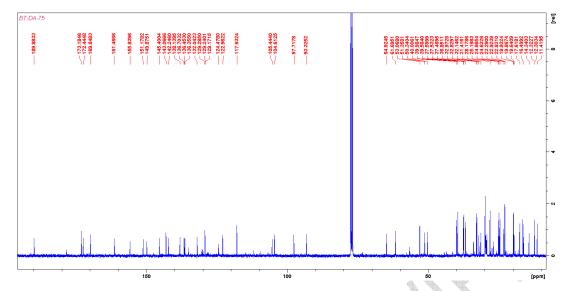
	¹³ C	¹³ C	1			
С	NMR(100MHz) in CDCl ₃	NMR(100MHz) in CDCl ₃ (7)	¹ H NMR (400MHz) CDCl ₃ (<i>J</i> in Hz)	HMBC (H→C)	COSY	NOESY
1α	38.8 CH ₂	38.7	1.66 m	2,3, 5, 9 10, 25	1β, 2α, 2β	2α,3
1β			1.63 m		1α, 2α,2β	2β
2α	27.4 CH ₂	27.2	1.62 m	1, 3, 4, 10	1α, 1β, 2β,3	3α
2β			1.61 m		1α,1β, 2α,3	3β
3	79.3 CH	79.1	3.22 dd, J = 5.1, 11.3	1, 2, 4, 5, 23, 24	2α, 2β	23, 27, 30
4	38.9 C	38.9	-			-
5	55.4 CH	55.2	0.74 d, <i>J</i> = 11.7	1, 3, 4, 6, 7, 9,	6α, 6β	6α
6α	18.5 CH ₂	18.4	1.55 m	4, 5, 7, 8	5,6β,7α,7β	5, 7α
6β			1.52 m		5,6α,7α,7β	7β
7α	33.2 CH ₂	33.9	1.49 m	5, 6, 8, 9	6α,6β,7β	5, 6α
7β			1.32m		6α,6β,7α	6β
8	39.7 C	40.0			-	-
9	47.8CH	47.8	1.51 d, $J = 9.1$	1, 5, 7, 8, 10, 11, 12, 14, 25, 26	11α,11β	5, 24,25,26
10	37.2 C	37.2	-		-	-
11α	23.5 CH ₂	23.1	1.92 d, <i>J</i> =3.6	8, 9, 10, 12, 13	9,11β,12	12α
11β			1.91 d, <i>J</i> =3.6		9,11 α,12	11β
12	126.1 CH	124.5	5.25 t, J = 4.5	9, 11, 13, 14, 18, 27	11α,11β	11α,18,27,30
13	138.2 C	139.9	-		-	-
14	42.2 C	42.3	-		-	-
15α	28.2 CH ₂	28.0	1.0*	8, 13, 14, 16, 17, 27	15β,16α,16 β	16α
15β					15α,16α,16 β	16β
16α	24.4 CH ₂	26.7	2.02 d, <i>J</i> =4.7	14, 15, 17, 18, 28	15 α,16α,16β	15α

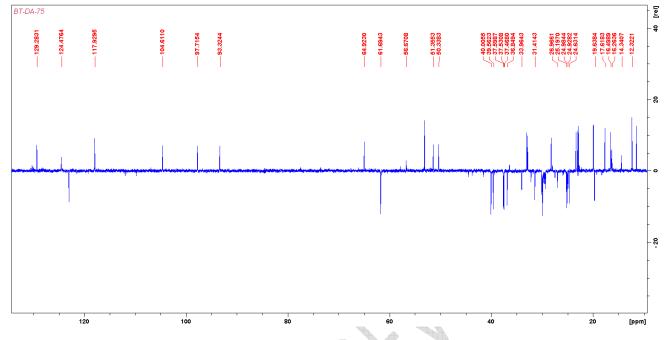

16β			1.66 m		15α,15β,16 α	15β
17	48.1 C	33.9	-	-	-	-
18	52.9 CH	59.1	2.19 d, <i>J</i> = 11.4	12, 13, 14, 17, 20, 28	19	12, 23, 27, 30
19	39.3 CH	39.6	1.37 m	13, 17, 18, 20, 21, 29, 30	18	3, 18, 23,27, 30
20	39.0 CH	39.6	1.33 m	18, 19, 21, 22, 29, 30	19, 21α 21β	24, 25, 26, 28
21α	30.8 CH ₂	31.5	1.52 d, <i>J</i> = 9.4	17,19,20,22	20,21β,22α ,22β	22α
21β					20,21β,22α ,22β	22β
22α	36.9 CH ₂	41.5	1.74 m	16, 17, 18, 20, 28	21β,21α,22 β	21α
22β			1.68 m		21α, 21β,22α	21β
23	28.4 CH ₃	28.0	0.99 s	2, 3, 4, 5	-	-
24	15.8 CH ₃	16.0	0.78 s	3, 4, 5	-	3-OH
25	15.7 CH ₃	16.0	0.93 s	1, 2, 9, 10	-	24,26,28
26	17.3 CH ₃	16.8	0.79 s	7, 8, 9, 14	-	24, 25, 28
27	22.9 CH ₃	23.1	1.24 s	8, 13, 14, 15	-	23, 18, 30
28	23.8 CH ₃	28.0	1.08 s	16, 17, 18, 22	-	23,25, 26, 29
29	17.2 CH ₃	17.5	0.86 d, J = 6.2	18, 19, 20	-	24,25, 26, 28,
30	21.4 CH ₃	21.1	0.95 d, J = 6.2	19, 20, 21	-	3α, 27, 30

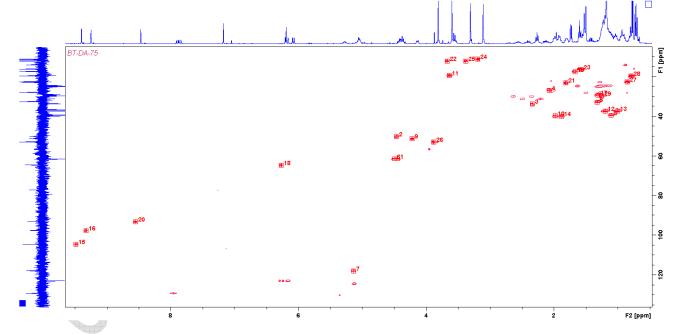
*Overlapped proton resonances

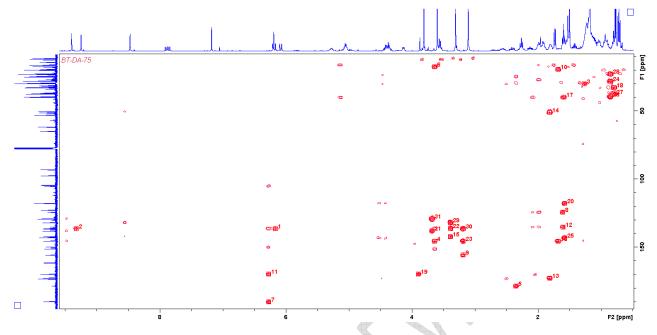

Table 3: Correlation table for NMR data of compound 3: Lupeol (3β-hydroxylup-20(29)-ene)

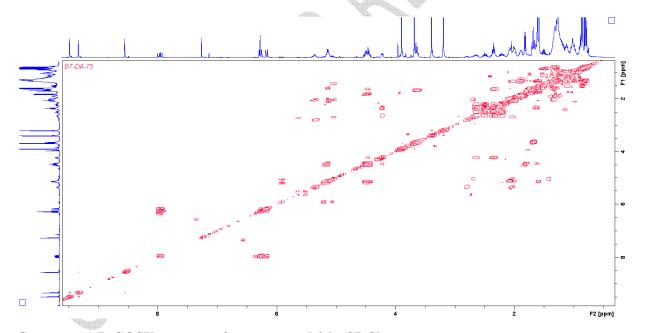
C	13C NMR(100 MHz) in CDCl ₃	¹³ C NMR(50 MHz) in CDCl ₃ (11)	¹ H NMR (400MHz) CDCl ₃ (<i>J</i> in Hz)	HMBC (H→C)	COSY	NOESY
1α	38.9 CH ₂	38.1	1.66 d, J = 3.8	2, 3, 5, 10, 25	1β, 2α, 2β	2α,3
1β			0.90 d, <i>J</i> =4.2		1α, 2α,2β	2β
2α	27.7 CH ₂	27.4	2.02 d, J = 3.3	1, 3, 4, 10, 23	1α, 1β, 2β,3	3α
2β			1.03 m		1α,1β, 2α,3	3β
3	79.2 CH	79.1	3.19 dd, J = 5.1, 11.2	1, 2, 4, 5, 23, 24	2α, 2β	23, 27, 30
4	39.1 C	38.7	-	-		-
5	55.5 CH	55.3	0.68 d, J=10.5	4, 6, 7, 10, 23, 4, 25	6α, 6β	6α
6α	18.5 CH ₂	18.3	1.52 d, J = 3.6	4, 5, 7, 8,1 0	5,6β,7α,7β	5, 7α
6β			1.39 d, J = 1.3		5,6α,7α,7β	7β
7α	34.5 CH ₂	34.3	2.29 m	5, 6, 8, 9, 26	6α,6β,7β	5, 6α
7β			1.38 d, J = 1.4		6α,6β,7α	6β
8	41.1 C	40.9	-	-	-	-
9	50.7 CH	50.5	1.26 m	7, 8, 10, 15, 25, 26	11α,11β	5, 24,25,26
10	37.4 C	37.2	-	1, 2, 4, 5, 6, 8, 9, 11,25	-	-
11α	21.1 CH ₂	20.9	1.41 d, $J = 2.9$	8, 9, 10, 12, 13	9,11β,12α,12β	12α
11β			1.26 m			11β
12α	25.4 CH ₂	25.2	1.66 d, $J = 2.3$	9, 11, 13,1 4, 18	11α,11β,12β,13	11α,18,27,30
12β			1.66 d, J = 2.3		11α,11β,12α,13	-
13	38.3 CH	38.9	1.65 m	8, 11, 12, 14, 15, 17, 18,19	12α,12β	-
14	43.2 C	42.9	-	-	-	16α
15 α	27.6 CH ₂	27.5	1.68 m	8, 13, 14, 16, 17, 27	15β,16α,16β	16β
15β			1.59 d, <i>J</i> = 4.1		15 α,16α,16β	15α
16 α	35.8 CH ₂	35.6	1.67 d, J = 5.0	14, 15, 17, 18, 28	15α,15β,16α	15β
16β			1.38 d, J = 1.4		15α,15β,16 β	2α,3

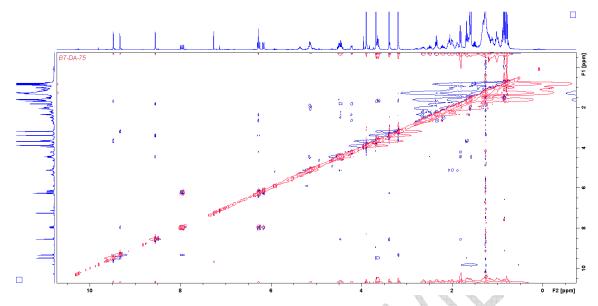

17	43.0 C	43.0	-	-	-	
18	48.5 CH	48.3	1.36 m	12, 13, 14, 19, 21, 20, 29	13,19	5,12, 20, 23, 27
19	48.2 CH	48.0	2.37 m	13, 17, 18, 20, 21, 22, 29, 30	18, 21α,21β	3, 18, 23,27
20	151.2 C	150.9	-	-	-	-
21α	30.0 CH ₂	29.9	1.92 d, J = 4.9	17, 18, 19, 20, 22, 28	19,21β,22α,22β	22α
21β			1.76 d, J = 1.0		19,21α 22α,22β	22β
22α	40.2 CH	40.0	1.99 d, $J = 3.3$	16, 17, 19, 21, 28	22α, 21β, 22β	21α
22β			1.99 d, <i>J</i> =3.3		21α, 21β, 22α	21β
23	28.2 CH3	28.0	0.97 s	3, 4, 5, 23		3-OH, 25, 26, 28
24	15.6 CH ₃	15.4	0.76 s	3, 4, 5, 24	-	3, 5, 9, 19, 27
25	16.3 CH ₃	16.1	0.83 s	1, 2, 5, 9, 10	-	24,26,28
26	16.2 CH ₃	16.0	1.03 s	7, 8, 9, 14	-	24, 25, 28
27	14.8 CH ₃	14.6	0.94 s	8, 13, 14, 15	-	23, 18, 30
28	18.2 CH3	18.0	0.79 s	16, 17, 18, 22	-	23,25, 26, 29
29α	109.5 CH ₂	109.3	4.69 d <i>J</i> = 2.1	19, 20, 30	29β	3α,19, 23,27
29β			4.57 q, J = 2.4		29α	3-OH, 24, 25, 26, 28
30	19.5 CH ₃	19.3	1.68 s	19, 20, 29	-	

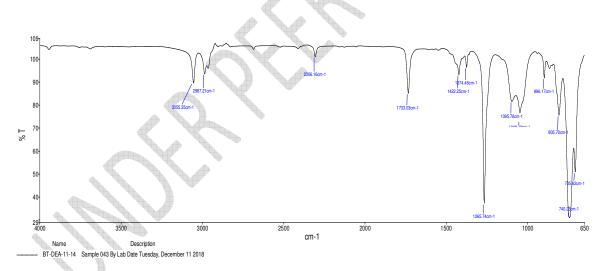

Spectrum 1.1: FTIR spectrum for compound 1

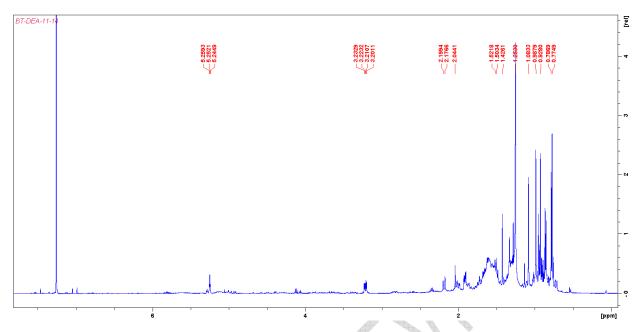

Spectrum 1.2: ¹H NMR spectrum for compound 1 in CDCl₃

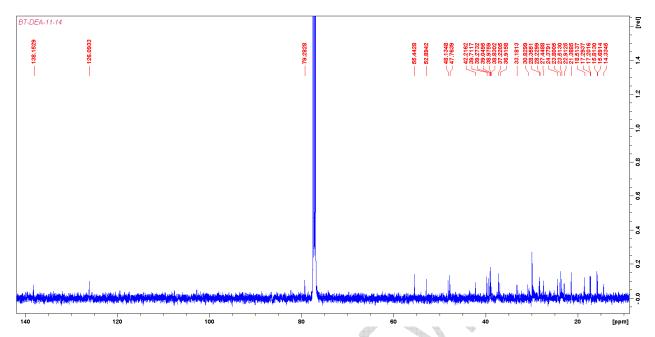

Spectrum 1.3: ¹³C NMR spectrum for compound 1 in CDCl₃

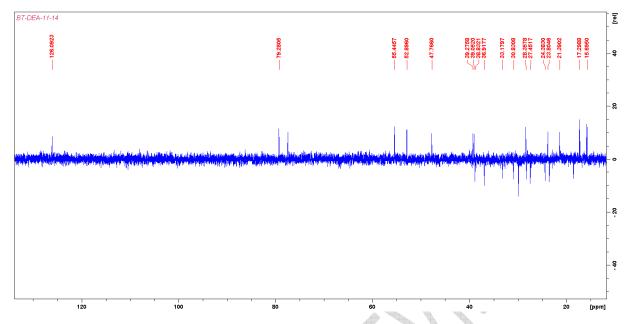

Spectrum 1.4: DEPT spectrum for compound 1 in CDCl₃

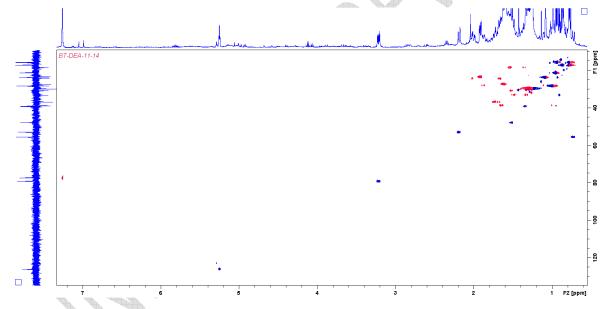

Spectrum 1.5: HSQCDEPT spectrum for compound 1 in CDCl₃

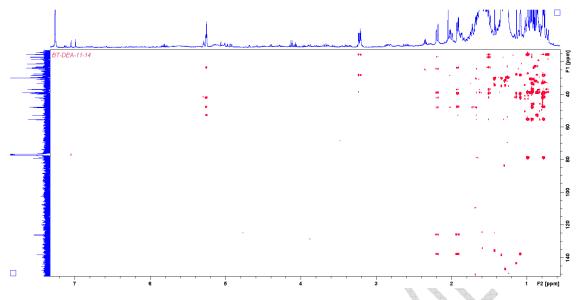

Spectrum 1.6: HMBC spectrum for compound 1 in CDCl₃

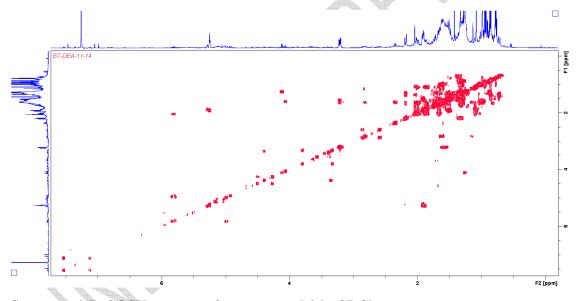

Spectrum 1.7: COSY spectrum for compound 3 in CDCl₃

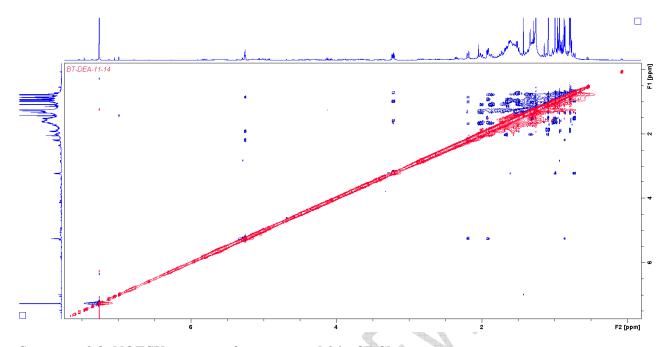

Spectrum 1.8: NOESY spectrum for compound 1 in CDCl₃

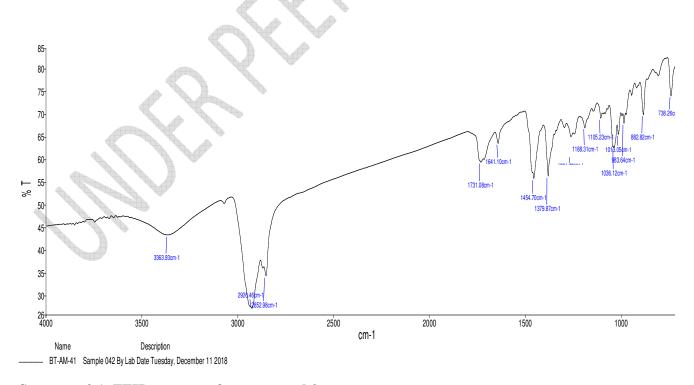

Spectrum 2.1: FTIR spectrum for compound 2

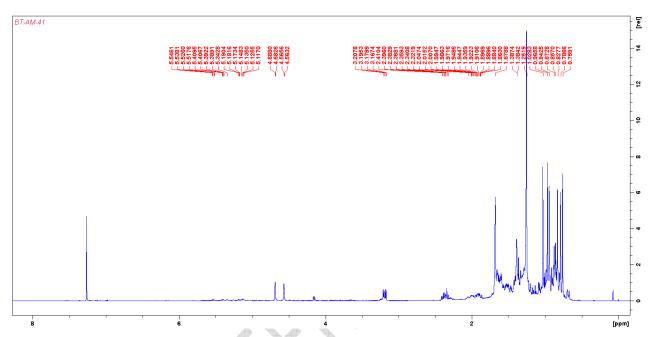

Spectrum 2.2: ¹H NMR spectrum for compound 2 in CDCl₃

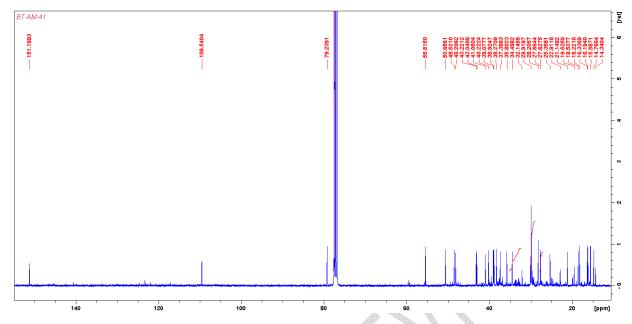

Spectrum 2.3: ¹³C NMR spectrum for compound 2 in CDCl₃

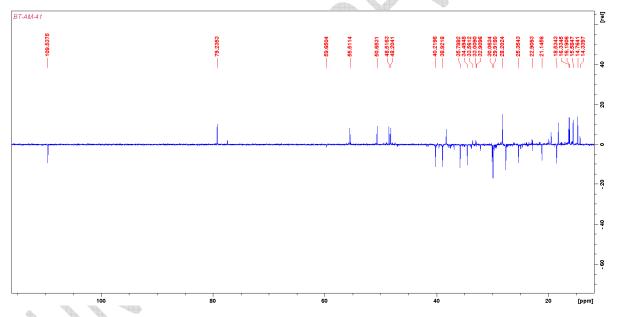

Spectrum 2.4: DEPT spectrum for compound 2 in CDCl₃

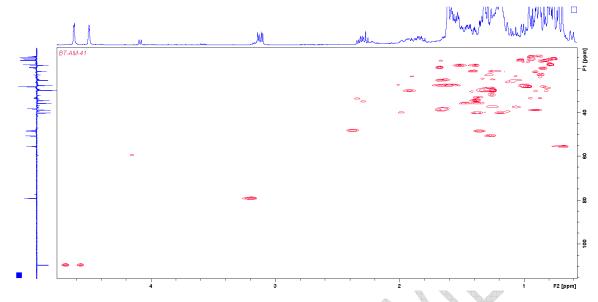

Spectrum 2.5: HSQCDEPT spectrum for compound 2 in CDCl₃

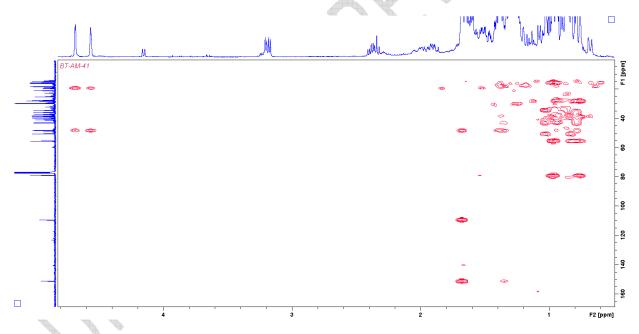

Spectrum 2.6: HMBC spectrum for compound 2 in CDCl₃

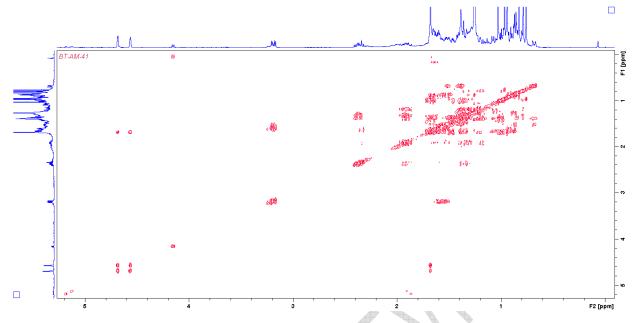

Spectrum 2.7: COSY spectrum for compound 2 in CDCl₃

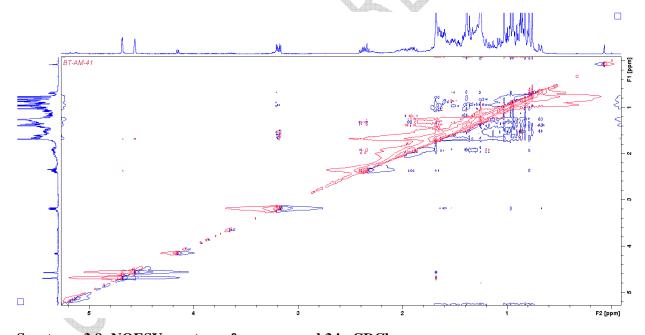

Spectrum 2.8: NOESY spectrum for compound 2 in CDCl₃


Spectrum 3.1: FTIR spectrum for compound 3


Spectrum 3.2: ¹H NMR spectrum for compound 3 in CDCl₃


Spectrum 3.3: ¹³C NMR spectrum for compound 3 in CDCl₃


2 Spectrum 3.4: DEPT spectrum for compound 3 in CDCl₃


4 Spectrum 3.5: HSQCDEPT spectrum for compound 3 in CDCl₃

7 Spectrum 3.6: HMBC spectrum for compound 3 in CDCl₃

Spectrum 3.7: COSY spectrum for compound 3 in CDCl₃

Spectrum 3.8: NOESY spectrum for compound 3 in CDCl₃