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Abstract

In this paper we investigate the properties of the general linear recursive sequences started from
the Lucas sequence and give an application to matrices.
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1 Introduction

For a1,a2 € Z, the corresponding Lucas sequence {u,} is given by ug = 0, u1 = 1, and w,4+1 +
a1un + a2un—1 = 0 (n > 1). The comparable series have been studied by many mathematicians [1];
[2]; [3]- The general linear recursive sequences {uy,} is given by w, + a1tun—1 + -+ + aGmtn—m =0
(n > 0). Here we comply [4] the Lucas series extended to general linear recursive sequences by
defining {un(a1,...,am)} as follows:

ul_m:...:u_lzo7 UO:L

Un + @1Un—1 + -+ + GmUn—m =0 (n=0,%1,+2,...),

where m > 2 and a., # 0.

Throughout the Section 2 we assume that a1,...,a,», are complex numbers with a,, # 0, x™ +
a1x™ Yt a, = (z—=M) - (x=Am), Sn = AT+ A3 -+ A7, and un = un(ai,...,am). There we
obtain convolution sums between w,, and s,, also state w,, by using s,,. After newly defining Coe f(uy,)
which is the summation of the coefficients of s; (1 < ¢ < n) and their multiplication terms in u,,, we
prove Coef(u,) = 1for n € N. In that process, we especially find that

n

2k
E —_— = 1.
n1n2~-nkk! TL+

k=1
nitna+--+ng=n

In the Section 3 we treat the application of u,, in the powers of matrices and simplifies it by a
modular p according to the Legendre symbol.
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2 Relations between «,, and s,

Theorem 2.1. Forn € N we have

n n k
2%8n, 8ny " Sny,
E UkUn—k = E o 1
1 n1n2~~~nkk.
ni+no+--+n=n

n n k—1
2 SnqSng *** Sny,
E kuptn—r =n g -
— Pt ning - - - nik!
nit+na+-tnp=n

Proof. (a) Firstin ([4], p. 345) we can see that

anun = Z%m"

n=1

This leads that

L
:\“’

anunl 1+1nZun2 "2

n=1 n1=0 no=0
=In E Un, unzxnlJr"z
ni,na=0

and

Z Uny Uny T lJrn2fexpz 25n z" (2.1)

ni,n2=0
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Then by (2.1) and Maclaurin series of an exponential function we have

0o 2 0o 3
:Hz?yxu;(y;zx) R

n=

-

n

_1+§:25n n i 25n1$nz x
n ning 2!
n=1 n=2 n1+n2 n
oo
D
n=3 \nji+nz2+nz=n 1213
225, 8 x?
=142s12+ 821‘2+ E Z omon2
ning 2'
ni+ng=2
3 3 3
283 23 22 2°Sn,Sny, T 250, 80580, X
M Y w2
ni+n2=3 1z ’ ni+ng+nz=3 1t ’

28n n 225,80, X"
+ +<n + > +

nin 2!
ni+ng=n 12

n
Py 25n8n$nx'> L
nit+ng+-+np=n 12 "
n

) k
2%85, Sny t Sny, 1 n
+ —'ﬁ x
— Pt 1n2 k

nitng+-tng=n

and so

n

2F 5, Sny -+

E UpUp—f = E Z °niong ONk for n 2 1.

— b1 n1n2~~-nkk!
ni+no+--+n=n

(b) Effortlessly we can know that

n n
Z kurtn—r = (n — K)un—ruK
K=0
n
=n Un— KUK — Z Kun_ruk
K=0 K=0

and

n n

n
E kugun—r = 3 E Uk Un—k
k=0 k=0
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so we refer to part (a).

O
Lemma 2.2. We have
(a)
ur = 81,
(b)
U2 = 132 + 1s
2 = 2 1 2 2,
()
U *753—1-13 s —I—ls
3 = 6 1 2 152 3 3.
Proof. (a) Letusputn =1inTheorem 2.1 (a):
! ! %5, s S
= _ = —nl n2 o nk = 2 .
uUoU1 + U1UO kzzoukm k kz::l Tt - Tk S1
ni+ng+-+np=1

Since ug = 1, we obtain u; = sj.

(b) Placing n = 2 in Theorem 2.1 (a), we note that
2 2 %5, s s
_ _ niong " oOng
UoU2 + u1u1 + +u2up = kzzoukusz = é Trang gkl
ni+no+-4ng=2
= S5 + 28?
and so
2us + u% = 89 + 28?.
Using part (a) in the above identity, we conclude that
_la 1
U = 281 282.
(c) In a similar manner we set n = 3 in Theorem 2.1 (a) and use part (a) and (b).
O

Now Lemma 2.2 suggests that u1, uz2, and ug are represented by s1, s2, s3, and their multiplication
terms, furthermore the summation of the coefficients of s; (1 < i < 3) and their multiplication terms
is 1. For example, Lemma 2.2 (c) shows that

Coef(us)

:= The summation of the coefficients of s; and their multiplication terms in us

_1. 11
6 2 3

=1

Thus we define Coef(u») and generalize the above fact as follows:
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Definition 2.1. Coef(u,) implies that the summation of the coefficients of s; (1 < ¢ < n) and their
multiplication terms in u,, for n € N.

Under this condition we can see that Coef(u») is a linear transformation. To prove it let us put

Ty T T
Unp, :algﬁjlsgz...sﬁ" +a28(111832 sgl" +...+an511522...sn”7

’ / ! / / / ’ / !
_ . JP1 P2 Pt /41 92 q, ;ororh Ty
Up, = @181 Sy~ 8,7 + Q2817 83" -8 + -+ an S Sy 8,

where ps, gi, 74,0}, ¢i, v € NU{0} and as,a; € Rfor (1 <i<mn, 1<j<n'). Then there exists a
constant « and it satisfies

Coef(aun)

= Coef (a(als’flng ceesht 4 agsitsd sl 4o+ an syl sy? - ~SZ”))

= Coef (ozals’flsg2 s 8P b aagsPtst st -+ aansytsg? s:{‘)

=wa1 +aaz + -+ aan
=alar +az+ - +an)
= aCoef(uy).

In a similar manner,

Coef(un + unr)

_ p1 P2 P a1 a2 q 1 ra r
—C'oef((als1 sh2 o shm +aosTtsd? o sit - ansytss? o sy")

+(ahsPrsh? - R ahsTh 522 st g ol st ot ~~-327’)) (2.2)
=(a14az+-4an)+ (a1 +ar+ - +ay)
= Coef(un) + Coef(un).
In addition we can find
Coef(unun) = Coef(un)Coef (). (2.3)

Theorem 2.3. We indicate u., by s; (1 < i < n) and their multiplication terms, moreover Coe f (u,) =
1 forn € N.

Proof. Obviously we can represent u,, as s; (1 < i < n) and their multiplication terms by Theorem
2.1 and Lemma 2.2. Next we use the induction to deduce that Coef(u,) = 1. Let us put

81282:“'281‘:1 (24)

to exclude the effect of s; (1 < i < n). Then first since u; = s; in Lemma 2.2 (a), we have
Coef(u1) = 1. Second we suppose that Coef(u,) = 1, which leads that

n

n k
> uktin g = > — % forneN (2.5)
k=0

ning - - -nik!
=1 1n2 k
ni+no+---+np=n
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by Theorem 2.1 (a) and Eq. (2.4). And by (2.2) and (2.3) the above identity signifies

n

ok
Coef Z ning - - - nik!

k=1
ni+ng+--+np=n

= Coef (Z ukun—k>
k=0

= Coef(uotun + U1tUn—1 + U2Un—2 + - - + Un—1U1 + UnUo)

= Coef(uo)Coef(un) + Coef(ui)Coef(un-1) + Coef(uz)Coef(un—2)
+ -+ Coef(un—1)Coef(ur) + Coef(un)Coef(uo)

=2Coef(un) +n—1

=2-1+n-1

=n+1

and

n

ok 7
Z . A——— (2.6)

ning - - - nik!
e1 1712 k
ni+ng+--+np=n

Similarly, by (2.5) and (2.6) we obtain

n+ 2
B ning - - npk!

k=1
ni+no+--+np=n+l

n+1 2k
= C _—
oef Z nang - gkl

k=1
ni+ng+--4ng=n+1

n+1
= Coef (Z ukUrH—l—k)
k=0

= Coef(uotns1 + UrUn + U2Un—1 + - - - + UnU1 + Un41U0)

= Coef(uo)Coef(unt1) + Coef(ur)Coef(un) + Coef(uz)Coef(tun—1)
+ -+ Coef(un)Coef(ur) + Coef(uny1)Coef(uo)

=2Coef(Uunt1) +n

and so Coef(unt+1) = 1. O
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3 Application of «, to matrices

Proposition 3.1. Letp be an odd prime, a,b,c,d € Z, p 1 ad — bc, A = (a — d)? + 4bc. Then
I (mod p), if (%) —1,
A
a )" (%) a+d .
(c d) = 5 I (mod p), if (%) =0,
(A
(ad — bc)I (mod p), if (;) =-1,

where I is the 2 x 2 identity matrix and <5> denotes the Legendre symbol.

Proof. See Corollary 3.3 in [4].

Theorem 3.1. Let p be an odd prime, a,b,c,d € Z, p f ad — be, A = (a — d)* + 4bc.

m,l € NU {0} satisfyingm > 1, we have

—C a

b

m—1
d) = I (mod p) withm > I, then we obtain

)=
)
)

In particular, if m =1 or (Z

I (mod p), if(

) ()

(ad — bc)™I (mod p), if(

|

S1

0,

S

Proof. Letu_1 =0, uo =1, and
Unt1 = (a4 d)un — (ad — be)u,—1  forn € NU{0}.

Then u, = un(—a — d,ad — bc). Moreover in ([4], p. 348) we can see that
a b\" _ fun —dun—1 bun—1
c d) ClUn—1 Un — QUp—1

0, (320 (modp), = (%) (mod p).

and

m—1
(a b) (mod p), if(%)
c d
OO .

(ad-bo)l<d b>ml (mod p), if(%):—l.

-1

O

Then for
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Now, by Proposition 3.1, (3.2), and (3.3) we note that
a b pm=1($)
(« 2)
l
a B\ a b p_(%>
Gy ()
l A !
bup—_1 me a b p_(?)
Up — QUp—1 c d

m—1

(up —dup—1

CUp—1

I' (mod p), if (%) =1,
X (“‘gd.r)l (modp), it (2) =0,
((a - bc)[)l (mod p), if (&) =1

m—1
a+d\' u, O
( 5 ) (0 up) (mod p),
m—l1
up +d —b .
(ad — be)! < v " +a) (mod p), if (%)
P

—C
= 1, using (3.1) and (3.3) we deduce that

Here when (%)

up = (a + d)up—1 — (ad — bc)up—2

= (a+d) (%) ~(ad~be)u, , (s} (modp)

(a+d)-1—(ad—bc)-0
a+d

(mod p)

(mod p)

thus

up—d b "'
c Up — @

(3.4)
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And when (%) = 0, referring to U, (8)=up = L (mod p) in ([4], p. 349) we obtain

(45 (5 0)" = (557 e

(%3
(5597
E(a;—d) (mod p).

Similarly when (%) = —1, by (8.3) we have u, = Uy 1 (2) = 0 (mod p) and so

(d _b)MZ (mod p).

—C a

m—l1
oy (W Td b — (] —
(ad — bc) ( ¢ w+ta = (ad — bc)

In consequence the above facts lead Eq. (3.4) to

(a Z) " (mod p), if (%) =1,
(CCL Z)pm_l(?) = (a ;L d)m I (mod p), if (%) —0, (3.5)
(ad — be)' (_dc _ab> " (mod p), if (%) =-1.

Especially, if m = [ then Eq. (3.5) becomes

§ Z)O (mod p), i(2)=1.

P R C D R O
(ad = be)™ (_d _ab>o (mod p), it (2) =1
I (mod p), it(8) =1,

(a;dyl (mod p), if (&) =0,

(ad —bc)™I (mod p), if (%) =-1.

From the matrix theory we easily know when a matrix A satisfies A™ = I for an identity matrix I
and m € N, then the inverse matrix A=* = A™ ! since A- A™~! = I. Thus using this property we

m—l1 —1
deduce as follows : If (i Z) = I (mod p) with m > [ then the inverse matrix (Z Z) =
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(=

L (2 D)

U

(e
{2

m—1—1) m—!
= Z } (mod p)
= (I_l)m_ (mod p)
=1 (modp)

and

—C a

(d _b>ml:(ad—bc)mlf (mod p).

Therefore Eq. (3.5) shows that

I (mod p), if (%) —1,
(Z Z)me(p) _ <a42rd>m1 (mod p), if (%) —0,
(ad — be)' - (ad — be)™ I (mod p), if (%) -1

I (mod p), if (%) =1,

<a;rd>m1 (mod p). if (2) =0,

(ad — bc)™I (mod p), if (%) =-1.

4 Conclusion

The essential point of this article is that we define a new concept Coef(u,) and obtain

—_—_— = 1.
Z nang - gkl n+

k=1
ni+ng+-4np=n
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