Asian Research Journal of Mathematics

X(X): XX-XX, 20XX

SCIENCEDOMAIN international

www.sciencedomain.org

On the general linear recursive sequences

Aeran Kim*

A Private mathematics academy,

1-# 406, 23, Maebong 5-gil, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54921, Republic of Korea.

Research Article

Received: 02 September 2013 Accepted: 18 October 2013 Published: XX 20XX

Abstract

In this paper we investigate the properties of the general linear recursive sequences started from the Lucas sequence and give an application to matrices.

Keywords: Lucas series, Sequence, matrices

2010 Mathematics Subject Classification: 11B39, 11B50, 11C20

1 Introduction

For $a_1, a_2 \in \mathbb{Z}$, the corresponding Lucas sequence $\{u_n\}$ is given by $u_0 = 0$, $u_1 = 1$, and $u_{n+1} + a_1u_n + a_2u_{n-1} = 0$ $(n \ge 1)$. The comparable series have been studied by many mathematicians [1]; [2]; [3]. The general linear recursive sequences $\{u_n\}$ is given by $u_n + a_1u_{n-1} + \cdots + a_mu_{n-m} = 0$ $(n \ge 0)$. Here we comply [4] the Lucas series extended to general linear recursive sequences by defining $\{u_n(a_1, ..., a_m)\}$ as follows:

$$u_{1-m} = \dots = u_{-1} = 0, \quad u_0 = 1,$$

 $u_n + a_1 u_{n-1} + \dots + a_m u_{n-m} = 0 \quad (n = 0, \pm 1, \pm 2, \dots),$

where $m \geq 2$ and $a_m \neq 0$.

Throughout the Section 2 we assume that $a_1,...,a_m$ are complex numbers with $a_m \neq 0$, $x^m + a_1x^{m-1} + \cdots + a_m = (x - \lambda_1) \cdots (x - \lambda_m)$, $s_n = \lambda_1^n + \lambda_2^n \cdots + \lambda_m^n$ and $u_n = u_n(a_1,...,a_m)$. There we obtain convolution sums between u_n and s_n also state u_n by using s_n . After newly defining $Coef(u_n)$ which is the summation of the coefficients of s_i $(1 \leq i \leq n)$ and their multiplication terms in u_n , we prove $Coef(u_n) = 1$ for $n \in \mathbb{N}$. In that process, we especially find that

$$\sum_{\substack{k=1\\n_1+n_2+\cdots+n_k=n}}^n \frac{2^k}{n_1 n_2 \cdots n_k k!} = n+1.$$

In the Section 3 we treat the application of u_n in the powers of matrices and simplifies it by a modular p according to the Legendre symbol.

^{*}Corresponding author: E-mail: ae_ran_kim@hotmail.com

2 Relations between u_n and s_n

Theorem 2.1. For $n \in \mathbb{N}$ we have

(a)

$$\sum_{k=0}^{n} u_k u_{n-k} = \sum_{\substack{k=1\\n_1+n_2+\dots+n_k=n}}^{n} \frac{2^k s_{n_1} s_{n_2} \dots s_{n_k}}{n_1 n_2 \dots n_k k!},$$

(b)

$$\sum_{k=0}^{n} k u_k u_{n-k} = n \sum_{\substack{k=1\\n_1+n_2+\cdots+n_k=n}}^{n} \frac{2^{k-1} s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k k!}.$$

Proof. (a) First in ([4], p. 345) we can see that

$$\ln \sum_{n=0}^{\infty} u_n x^n = \sum_{n=1}^{\infty} \frac{s_n}{n} x^n.$$

This leads that

$$\sum_{n=1}^{\infty} \frac{2s_n}{n} x^n = \ln \sum_{n_1=0}^{\infty} u_{n_1} x^{n_1} + \ln \sum_{n_2=0}^{\infty} u_{n_2} x^{n_2}$$
$$= \ln \sum_{n_1, n_2=0}^{\infty} u_{n_1} u_{n_2} x^{n_1+n_2}$$

and

$$\sum_{n_1, n_2 = 0}^{\infty} u_{n_1} u_{n_2} x^{n_1 + n_2} = \exp \sum_{n=1}^{\infty} \frac{2s_n}{n} x^n.$$
 (2.1)

Then by (2.1) and Maclaurin series of an exponential function we have

$$\begin{split} &\sum_{n=0}^{\infty} \left(\sum_{n_1=0}^{n} u_{n_1} u_{n-n_1} \right) x^n \\ &= \exp \sum_{n=1}^{\infty} \frac{2s_n}{n} x^n \\ &= \sum_{N=0}^{\infty} \frac{1}{N!} \left(\sum_{n=1}^{\infty} \frac{2s_n}{n} x^n \right)^N \\ &= 1 + \sum_{n=1}^{\infty} \frac{2s_n}{n} x^n + \frac{1}{2!} \left(\sum_{n=1}^{\infty} \frac{2s_n}{n} x^n \right)^2 + \frac{1}{3!} \left(\sum_{n=1}^{\infty} \frac{2s_n}{n} x^n \right)^3 + \cdots \\ &= 1 + \sum_{n=1}^{\infty} \frac{2s_n}{n} x^n + \sum_{n=2}^{\infty} \left(\sum_{n_1+n_2=n} \frac{2^2 s_{n_1} s_{n_2}}{n_1 n_2} \right) \frac{x^n}{2!} \\ &+ \sum_{n=3}^{\infty} \left(\sum_{n_1+n_2+n_3=n} \frac{2^3 s_{n_1} s_{n_2} s_{n_3}}{n_1 n_2 n_3} \right) \frac{x^n}{3!} + \cdots \\ &= 1 + 2s_1 x + \left(s_2 x^2 + \sum_{n_1+n_2=2} \frac{2^2 s_{n_1} s_{n_2}}{n_1 n_2} \cdot \frac{x^2}{2!} \right) \\ &+ \left(\frac{2s_3}{3} x^3 + \sum_{n_1+n_2=3} \frac{2^2 s_{n_1} s_{n_2}}{n_1 n_2} \cdot \frac{x^3}{2!} + \sum_{n_1+n_2+n_3=3} \frac{2^3 s_{n_1} s_{n_2} s_{n_3}}{n_1 n_2 n_3} \cdot \frac{x^3}{3!} \right) \\ &+ \cdots + \left(\frac{2s_n}{n} x^n + \sum_{n_1+n_2=n} \frac{2^2 s_{n_1} s_{n_2}}{n_1 n_2} \cdot \frac{x^n}{2!} + \cdots \right) \\ &+ \sum_{n_1+n_2+\dots+n_n=n} \frac{2^n s_{n_1} s_{n_2} \cdots s_{n_n}}{n_1 n_2 \cdots n_n} \cdot \frac{x^n}{n!} \right) + \cdots \\ &= 1 + \sum_{n=1}^{\infty} \left(\sum_{n_1+n_2+\dots+n_k=n} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k} \cdot \frac{1}{k!} \right) x^n \end{split}$$

and so

$$\sum_{k=0}^{n} u_k u_{n-k} = \sum_{\substack{k=1\\n_1+n_2+\dots+n_k=n}}^{n} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k k!} \quad \text{for } n \ge 1.$$

(b) Effortlessly we can know that

$$\sum_{k=0}^{n} k u_k u_{n-k} = \sum_{K=0}^{n} (n-K) u_{n-K} u_K$$
$$= n \sum_{K=0}^{n} u_{n-K} u_K - \sum_{K=0}^{n} K u_{n-K} u_K$$

and

$$\sum_{k=0}^{n} k u_k u_{n-k} = \frac{n}{2} \sum_{k=0}^{n} u_k u_{n-k}$$

so we refer to part (a).

Lemma 2.2. We have

(a)

 $u_1 = s_1,$

(b)

$$u_2 = \frac{1}{2}s_1^2 + \frac{1}{2}s_2,$$

(c)

$$u_3 = \frac{1}{6}s_1^3 + \frac{1}{2}s_1s_2 + \frac{1}{3}s_3.$$

Proof. (a) Let us put n = 1 in Theorem 2.1 (a):

$$u_0u_1 + u_1u_0 = \sum_{k=0}^{1} u_k u_{1-k} = \sum_{\substack{k=1\\n_1 + n_2 + \dots + n_k = 1}}^{1} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k k!} = 2s_1.$$

Since $u_0 = 1$, we obtain $u_1 = s_1$.

(b) Placing n=2 in Theorem 2.1 (a), we note that

$$u_0u_2 + u_1u_1 + u_2u_0 = \sum_{k=0}^{2} u_k u_{2-k} = \sum_{\substack{k=1\\n_1 + n_2 + \dots + n_k = 2}}^{2} \frac{2^k s_{n_1} s_{n_2} \cdots s_{n_k}}{n_1 n_2 \cdots n_k k!}$$

$$= s_2 + 2s_1^2$$

and so

$$2u_2 + u_1^2 = s_2 + 2s_1^2.$$

Using part (a) in the above identity, we conclude that

$$u_2 = \frac{1}{2}s_1^2 + \frac{1}{2}s_2.$$

(c) In a similar manner we set n=3 in Theorem 2.1 (a) and use part (a) and (b).

Now Lemma 2.2 suggests that u_1, u_2 , and u_3 are represented by s_1, s_2, s_3 , and their multiplication terms, furthermore the summation of the coefficients of s_i $(1 \le i \le 3)$ and their multiplication terms is 1. For example, Lemma 2.2 (c) shows that

 $Coef(u_3)$

:= The summation of the coefficients of s_i and their multiplication terms in u_3

$$= \frac{1}{6} + \frac{1}{2} + \frac{1}{3}$$
$$= 1.$$

Thus we define $Coef(u_n)$ and generalize the above fact as follows:

Definition 2.1. $Coef(u_n)$ implies that the summation of the coefficients of s_i $(1 \le i \le n)$ and their multiplication terms in u_n for $n \in \mathbb{N}$.

Under this condition we can see that $Coef(u_n)$ is a linear transformation. To prove it let us put

$$u_n = a_1 s_1^{p_1} s_2^{p_2} \cdots s_n^{p_n} + a_2 s_1^{q_1} s_2^{q_2} \cdots s_n^{q_n} + \cdots + a_n s_1^{r_1} s_2^{r_2} \cdots s_n^{r_n},$$

$$u_{n'} = a'_1 s_1^{p'_1} s_2^{p'_2} \cdots s_{n'}^{p'_n} + a'_2 s_1^{q'_1} s_2^{q'_2} \cdots s_{n'}^{q'_n} + \cdots + a'_{n'} s_1^{r'_1} s_2^{r'_2} \cdots s_{n'}^{r_n},$$

where $p_i,q_i,r_i,p_i',q_i',r_i'\in\mathbb{N}\cup\{0\}$ and $a_i,a_j'\in\mathbb{R}$ for $(1\leq i\leq n,\quad 1\leq j\leq n')$. Then there exists a constant α and it satisfies

$$Coef(\alpha u_n)$$

$$= Coef(\alpha(a_1s_1^{p_1}s_2^{p_2} \cdots s_n^{p_n} + a_2s_1^{q_1}s_2^{q_2} \cdots s_n^{q_n} + \cdots + a_ns_1^{r_1}s_2^{r_2} \cdots s_n^{r_n}))$$

$$= Coef(\alpha a_1s_1^{p_1}s_2^{p_2} \cdots s_n^{p_n} + \alpha a_2s_1^{q_1}s_2^{q_2} \cdots s_n^{q_n} + \cdots + \alpha a_ns_1^{r_1}s_2^{r_2} \cdots s_n^{r_n})$$

$$= \alpha a_1 + \alpha a_2 + \cdots + \alpha a_n$$

$$= \alpha(a_1 + a_2 + \cdots + a_n)$$

$$= \alpha Coef(u_n).$$

In a similar manner,

$$Coef(u_{n} + u_{n'})$$

$$= Coef((a_{1}s_{1}^{p_{1}}s_{2}^{p_{2}} \cdots s_{n}^{p_{n}} + a_{2}s_{1}^{q_{1}}s_{2}^{q_{2}} \cdots s_{n}^{q_{n}} + \cdots + a_{n}s_{1}^{r_{1}}s_{2}^{r_{2}} \cdots s_{n}^{r_{n}})$$

$$+ (a'_{1}s_{1}^{p'_{1}}s_{2}^{p'_{2}} \cdots s_{n'}^{p'_{n'}} + a'_{2}s_{1}^{q'_{1}}s_{2}^{q'_{2}} \cdots s_{n'}^{q'_{n'}} + \cdots + a'_{n'}s_{1}^{r'_{1}}s_{2}^{r'_{2}} \cdots s_{n'}^{r'_{n'}}))$$

$$= (a_{1} + a_{2} + \cdots + a_{n}) + (a'_{1} + a'_{2} + \cdots + a'_{n'})$$

$$= Coef(u_{n}) + Coef(u_{n'}).$$

$$(2.2)$$

In addition we can find

$$Coef(u_n u_{n'}) = Coef(u_n)Coef(u_{n'}).$$
(2.3)

Theorem 2.3. We indicate u_n by s_i $(1 \le i \le n)$ and their multiplication terms, moreover $Coef(u_n) = 1$ for $n \in \mathbb{N}$.

Proof. Obviously we can represent u_n as s_i $(1 \le i \le n)$ and their multiplication terms by Theorem 2.1 and Lemma 2.2. Next we use the induction to deduce that $Coef(u_n) = 1$. Let us put

$$s_1 = s_2 = \dots = s_i = 1$$
 (2.4)

to exclude the effect of s_i $(1 \le i \le n)$. Then first since $u_1 = s_1$ in Lemma 2.2 (a), we have $Coef(u_1) = 1$. Second we suppose that $Coef(u_n) = 1$, which leads that

$$\sum_{k=0}^{n} u_k u_{n-k} = \sum_{\substack{k=1\\n_1+n_2+\dots+n_k=n}}^{n} \frac{2^k}{n_1 n_2 \dots n_k k!} \quad \text{for } n \in \mathbb{N}$$
 (2.5)

by Theorem 2.1 (a) and Eq. (2.4). And by (2.2) and (2.3) the above identity signifies

$$Coef\left(\sum_{\substack{k=1\\n_1+n_2+\dots+n_k=n}}^{n} \frac{2^k}{n_1n_2\dots n_kk!}\right)$$

$$= Coef\left(\sum_{k=0}^{n} u_k u_{n-k}\right)$$

$$= Coef(u_0u_n + u_1u_{n-1} + u_2u_{n-2} + \dots + u_{n-1}u_1 + u_nu_0)$$

$$= Coef(u_0)Coef(u_n) + Coef(u_1)Coef(u_{n-1}) + Coef(u_2)Coef(u_{n-2})$$

$$+ \dots + Coef(u_{n-1})Coef(u_1) + Coef(u_n)Coef(u_0)$$

$$= 2Coef(u_n) + n - 1$$

$$= 2 \cdot 1 + n - 1$$

$$= n + 1$$

and

$$\sum_{\substack{k=1\\n_1+n_2+\dots+n_k=n}}^n \frac{2^k}{n_1 n_2 \cdots n_k k!} = n+1.$$
 (2.6)

Similarly, by (2.5) and (2.6) we obtain

$$\begin{split} n+2 &= \sum_{n_1+n_2+\dots+n_k=n+1}^{n+1} \frac{2^k}{n_1n_2\cdots n_kk!} \\ &= Coef\left(\sum_{k=1}^{n+1} \frac{2^k}{n_1n_2\cdots n_kk!}\right) \\ &= Coef\left(\sum_{k=1}^{n+1} \frac{2^k}{n_1n_2\cdots n_kk!}\right) \\ &= Coef\left(\sum_{k=0}^{n+1} u_ku_{n+1-k}\right) \\ &= Coef(u_0u_{n+1} + u_1u_n + u_2u_{n-1} + \dots + u_nu_1 + u_{n+1}u_0) \\ &= Coef(u_0)Coef(u_{n+1}) + Coef(u_1)Coef(u_n) + Coef(u_2)Coef(u_{n-1}) \\ &+ \dots + Coef(u_n)Coef(u_1) + Coef(u_{n+1})Coef(u_0) \\ &= 2Coef(u_{n+1}) + n \end{split}$$

and so $Coef(u_{n+1}) = 1$.

3 Application of u_n to matrices

Proposition 3.1. Let p be an odd prime, $a,b,c,d \in \mathbb{Z}$, $p \nmid ad-bc$, $\Delta = (a-d)^2 + 4bc$. Then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{p - \left(\frac{\Delta}{p}\right)} \equiv \begin{cases} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\ \\ \frac{a + d}{2}I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\ \\ (ad - bc)I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = -1, \end{cases}$$

where I is the 2×2 identity matrix and $\left(\frac{\cdot}{p}\right)$ denotes the Legendre symbol.

Proof. See Corollary 3.3 in [4].

Theorem 3.1. Let p be an odd prime, $a,b,c,d \in \mathbb{Z}$, $p \nmid ad-bc$, $\Delta = (a-d)^2 + 4bc$. Then for $m,l \in \mathbb{N} \cup \{0\}$ satisfying $m \geq l$, we have

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{pm-l\left(\frac{\Delta}{p}\right)} \equiv \begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{m-l} \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\ \\ \left(\frac{a+d}{2}\right)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\ \\ (ad-bc)^l \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}^{m-l} \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = -1. \end{cases}$$

In particular, if m=l or $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{m-l} \equiv I \pmod p$ with m>l, then we obtain

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{pm-l\left(\frac{\Delta}{p}\right)} \equiv \begin{cases} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\ \left(\frac{a+d}{2}\right)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\ (ad-bc)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = -1. \end{cases}$$

Proof. Let $u_{-1} = 0$, $u_0 = 1$, and

$$u_{n+1} = (a+d)u_n - (ad-bc)u_{n-1}$$
 for $n \in \mathbb{N} \cup \{0\}.$ (3.1)

Then $u_n = u_n(-a - d, ad - bc)$. Moreover in ([4], p. 348) we can see that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^n = \begin{pmatrix} u_n - du_{n-1} & bu_{n-1} \\ cu_{n-1} & u_n - au_{n-1} \end{pmatrix}$$
(3.2)

and

$$u_{p-1-\left(\frac{\Delta}{p}\right)} \equiv 0 \pmod{p}, \qquad u_{p-1} \equiv \left(\frac{\Delta}{p}\right) \pmod{p}.$$
 (3.3)

Now, by Proposition 3.1, (3.2), and (3.3) we note that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{pm-l\left(\frac{\Delta}{p}\right)} \\
&= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{p} \right\}^{m-l} \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{p-\left(\frac{\Delta}{p}\right)} \right\}^{l} \\
&= \begin{pmatrix} u_{p} - du_{p-1} & bu_{p-1} \\ cu_{p-1} & u_{p} - au_{p-1} \end{pmatrix}^{m-l} \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{p-\left(\frac{\Delta}{p}\right)} \right\}^{l} \\
&\equiv \begin{pmatrix} u_{p} - d\left(\frac{\Delta}{p}\right) & b\left(\frac{\Delta}{p}\right) \\ c\left(\frac{\Delta}{p}\right) & u_{p} - a\left(\frac{\Delta}{p}\right) \end{pmatrix}^{m-l} \\
&\times \left\{ \begin{pmatrix} \frac{a+d}{2}I \end{pmatrix}^{l} \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\
\left((ad-bc)I)^{l} \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = -1 \end{pmatrix} \right\} \\
&\equiv \begin{pmatrix} \left(u_{p} - d & b \\ c & u_{p} - a \end{pmatrix}^{m-l} \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\
&\equiv \left\{ \left(\frac{a+d}{2}\right)^{l} \begin{pmatrix} u_{p} & 0 \\ 0 & u_{p} \end{pmatrix}^{m-l} \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\
\left((ad-bc)^{l} \begin{pmatrix} u_{p} + d & -b \\ -c & u_{p} + a \end{pmatrix}^{m-l} \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = -1. \end{pmatrix}$$

Here when $\left(\frac{\Delta}{p}\right)=1$, using (3.1) and (3.3) we deduce that

$$u_p = (a+d)u_{p-1} - (ad-bc)u_{p-2}$$

$$\equiv (a+d)\left(\frac{\Delta}{p}\right) - (ad-bc)u_{p-1-\left(\frac{\Delta}{p}\right)} \pmod{p}$$

$$\equiv (a+d)\cdot 1 - (ad-bc)\cdot 0 \pmod{p}$$

$$\equiv a+d \pmod{p}$$

thus

$$\begin{pmatrix} u_p - d & b \\ c & u_p - a \end{pmatrix}^{m-l} \equiv \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{m-l} \pmod{p}.$$

And when $\left(\frac{\Delta}{p}\right)=0$, referring to $u_{p-\left(\frac{\Delta}{p}\right)}=u_p\equiv \frac{a+d}{2}\pmod{p}$ in ([4], p. 349) we obtain

$$\begin{pmatrix} \frac{a+d}{2} \end{pmatrix}^l \begin{pmatrix} u_p & 0 \\ 0 & u_p \end{pmatrix}^{m-l} = \begin{pmatrix} \frac{a+d}{2} \end{pmatrix}^l (u_p I)^{m-l}$$

$$\equiv \begin{pmatrix} \frac{a+d}{2} \end{pmatrix}^l \left(\frac{a+d}{2} \right)^{m-l} I$$

$$\equiv \left(\frac{a+d}{2} \right)^m I \pmod{p}.$$

Similarly when $\left(\frac{\Delta}{p}\right)=-1$, by (3.3) we have $u_p=u_{p-1-\left(\frac{\Delta}{p}\right)}\equiv 0\pmod{p}$ and so

$$(ad - bc)^l \begin{pmatrix} u_p + d & -b \\ -c & u_p + a \end{pmatrix}^{m-l} \equiv (ad - bc)^l \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}^{m-l} \pmod{p}.$$

In consequence the above facts lead Eq. (3.4) to

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{pm-l\left(\frac{\Delta}{p}\right)} \equiv \begin{cases}
\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{m-l} \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\
\left(\frac{a+d}{2}\right)^{m} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\
(ad-bc)^{l} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}^{m-l} \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = -1.
\end{cases}$$
(3.5)

Especially, if m = l then Eq. (3.5) becomes

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{pm-l\left(\frac{\Delta}{p}\right)} \equiv \begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^0 \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\ \\ \left(\frac{a+d}{2}\right)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\ \\ (ad-bc)^m \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}^0 \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = -1 \end{cases}$$

$$\equiv \begin{cases} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\ \\ \left(\frac{a+d}{2}\right)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\ \\ (ad-bc)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = -1. \end{cases}$$

From the matrix theory we easily know when a matrix A satisfies $A^m=I$ for an identity matrix I and $m\in\mathbb{N}$, then the inverse matrix $A^{-1}=A^{m-1}$ since $A\cdot A^{m-1}=I$. Thus using this property we deduce as follows: If $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{m-l} \equiv I \pmod p$ with m>l then the inverse matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \equiv I \pmod p$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{m-l-1} \pmod{p} \text{ so }$$

$$\left\{ \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \right\}^{m-l} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \right\}^{m-l}$$

$$\equiv \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{m-l-1} \right\}^{m-l} \pmod{p}$$

$$\equiv (I^{-1})^{m-l} \pmod{p}$$

$$\equiv I \pmod{p}$$

and

$$\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}^{m-l} \equiv (ad - bc)^{m-l} I \pmod{p}.$$

Therefore Eq. (3.5) shows that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{pm-l\left(\frac{\Delta}{p}\right)} \equiv \begin{cases} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\ \left(\frac{a+d}{2}\right)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\ (ad-bc)^l \cdot (ad-bc)^{m-l} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = -1 \end{cases}$$

$$\equiv \begin{cases} I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 1, \\ \left(\frac{a+d}{2}\right)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \\ (ad-bc)^m I \pmod{p}, & \text{if } \left(\frac{\Delta}{p}\right) = 0, \end{cases}$$

4 Conclusion

The essential point of this article is that we define a new concept $Coef(u_n)$ and obtain

$$\sum_{\substack{k=1\\n_1+n_2+\dots+n_k=n}}^{n} \frac{2^k}{n_1 n_2 \cdots n_k k!} = n+1.$$

References

[1] L. E. Dickson, (1952). History of the Theory on Numbers. Vol. I, Ch. XVII. New York: Chelsea.[2]D. H. Lehmer, (1930). Annals of Math., 31.2, 419–448.

- [3] E. Lucas, (1878). "Théorie des fonctions numériques simplement périodiques.". Amer. J. Math., 1, 184–240.
- [4] Z. H. Sun, (2001). Linear recursive sequences and powers of matrices. Fibonacci Quart., No. 4, 39, 339–351.

^{© 2013} Kim; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.