Original research papers # Pullback Absorbing set for the stochastic lattice Selkov equations Hongyan Li College of Management, Shanghai University of Engineering Science, Shanghai 201620, China **Abstract**: In this paper, pullback absorbing property for the stochastic reversible Selkov system in an infinite lattice with additive noises is proved. In order to obtain the proof of absorption, a transformation of addition involved with an Ornstein-Uhlenbeck process is used. Keywords: pullback absorbing set; additive noise; Selkov system #### 1 Introduction In this paper, we consider the stochastic lattice Selkov system with the cubic nonlinearity and additive white noises on an infinite lattice as follows: $$\begin{cases} du_{i} = \left[d_{1}(u_{i+1} - 2u_{i} + u_{i-1}) - a_{1}u_{i} + b_{1}u_{i}^{2}v_{i} - b_{2}u_{i}^{3} + f_{1i}\right]dt + \alpha_{i}dw_{i}, & i \in \mathbb{Z}, \ t > 0, \\ dv_{i} = \left[d_{2}(v_{i+1} - 2v_{i} + v_{i-1}) - a_{2}v_{i} - b_{1}u_{i}^{2}v_{i} + b_{2}u_{i}^{3} + f_{2i}\right]dt + \alpha_{i}dw_{i}, & i \in \mathbb{Z}, \ t > 0, \end{cases}$$ (1.1) with initial conditions $$u_i(0) = u_{i,0}, \quad v_i(0) = v_{i,0}, \quad i \in \mathbb{Z},$$ (1.2) where \mathbb{Z} denotes the integer set, $u = (u_i)_{i \in \mathbb{Z}} \in \ell^2$, $v = (v_i)_{i \in \mathbb{Z}} \in \ell^2$, $d_1, d_2, a_1, a_2, b_1, b_2$ are positive constants, $\alpha = (\alpha_i)_{i \in \mathbb{Z}} \in \ell^2$, $\{w_i | i \in \mathbb{Z}\}$ is independent Brownian motions. The reversible Selkov model is derived from a set of the two reversible chemical reactions: $$A + 2B \leftrightarrows 3B$$, $B \leftrightarrows Q$. The original Selkov model corresponds to the two irreversible reactions, where the product Q is an inert product. Let u_t and v_t are respectively the concentrations of the reactants B and A, Equation (1.1) can be regarded as a Selkov system (see [8]) on \mathbb{R} : $$\begin{cases} u_t = d_1 \triangle u - a_1 u + b_1 u^2 v - b_2 u^3 + f_1 + \alpha w_t, \\ v_t = d_2 \triangle v - a_2 v - b_1 u^2 v + b_2 u^3 + f_2 + \alpha w_t. \end{cases}$$ (1.3) Here \triangle is a Laplacian, w_t is the white noise to the respective components. We have obtained the random dynamical system, see [5]. Pullback absorbing property is very important to describe the long-time behavior of the equations for the mathematics and physics, especially, to prove the existence of random attractor. Therefore, in this paper, we prove the pullback absorbing property for the Selkov equations (1.1). #### 2 Preliminaries In this section, we introduce the relevant definitions of absorbing property, which are taken from [2], [3], [4], [7]. Assume X is a separable Banach space. For random parameters, we choose the standard probability space (Ω, \mathcal{F}, P) where $\Omega = \{\omega \in C(\mathbb{R}, \mathbb{R}) : \omega(0) = 0\}$, \mathcal{F} is the Borel σ -algebra induced by the compact open topology of Ω , and P is the Wiener measure on (Ω, \mathcal{F}) . **Definition 2.1.** If $\theta: \mathbb{R} \times \Omega \to \Omega$ is $(\mathcal{B}(\mathbb{R}) \times \mathcal{F}, \mathcal{F})$ measurable, and $$\theta_0 = I, \theta_{s+t} = \theta_s \circ \theta_t, \quad \forall s, t \in \mathbb{R},$$ $$\theta_t P = P, \quad \forall t \in \mathbb{R},$$ then $(\Omega, \mathcal{F}, P, (\theta_t)_{t \in \mathbb{R}})$ is called a metric dynamical system. **Definition 2.2.** If a mapping $$\psi: \mathbb{R}^+ \times \Omega \times X \to X, \quad (t, \omega, x) \mapsto \psi(t, \omega, x),$$ is $(\mathcal{B}(\mathbb{R}^+) \times \mathcal{F} \times \mathcal{B}(X), \mathcal{B}(X))$ -measurable and satisfies, for every $\omega \in \Omega$, - (i) $\psi(0,\omega,\cdot)$ is the identity on X; - (ii) Cocycle property: $\psi(t+s,\omega,\cdot) = \psi(t,\theta_s\omega,\psi(s,\omega,\cdot))$ for all $t,s\in\mathbb{R}^+$; - (iii) $\psi(\cdot,\omega,\cdot):\mathbb{R}^+\times X\to X$ is strongly continuous. Then the map ψ is a continuous random dynamical system on X over a metric dynamical system $(\Omega, \mathcal{F}, P, (\theta_t)_{t \in \mathbb{R}})$. **Definition 2.3.** If for every $\omega \in \Omega$ and a random bounded set $D(\omega) \subset X$, $$\lim_{t\to\infty} e^{\gamma t} d(D(\theta_{-t}\omega)) = 0 \text{ for all } \gamma > 0,$$ where $d(D) = \sup_{x \in D} ||x||_X$. Then $D(\omega) \subset X$ is called tempered with respect to $(\theta_t)_{t \in \mathbb{R}}$. **Definition 2.4.** A random set $J(\omega)$ is called a pullback absorbing set in \mathcal{D} , if for all $D \in \mathcal{D}$ and every $\omega \in \Omega$, there exists a $t_D(\omega) > 0$ such that $$\psi(t, \theta_{-t}\omega, D(\theta_{-t}\omega)) \subset J(\omega), \forall t \geq t_D(\omega).$$ Where \mathcal{D} is a collection of random sets of X. # 3 Ornstein-Uhlenbeck process Let $t^2 = \{u = (u_i)_{i \in \mathbb{Z}}, u_i \in \mathbb{R} : \sum_{i \in \mathbb{Z}} |u_i|^2 < +\infty\}$, with the inner product and norm as follows: $$\langle u, v \rangle = \sum_{i \in \mathbb{Z}} u_i v_i, \quad ||u||^2 = \langle u, u \rangle, \quad u = (u_i)_{i \in \mathbb{Z}}, v = (v_i)_{i \in \mathbb{Z}} \in \iota^2.$$ Then $\iota^2 = (\iota^2, \langle \cdot, \cdot \rangle, \| \cdot \|)$ is a Hilbert space. Set $E = \iota^2 \times \iota^2$ be the product Hilbert space. In view of the cubic term $\pm u^2 v, \pm u^3$, we need $u \in \iota^6, v \in \iota^6$ to make (1.1) hold in ι^2 . To convert the stochastic equation to a deterministic one with random parameters, we introduce an Ornstein-Uhlenbeck process (O-U process) (see [6]) in ι^2 on $(\Omega, \mathcal{F}, P, (\theta_t)_{t \in \mathbb{R}})$ given by the Wiener process: $$y(\theta_t \omega) = -(a_1 + a_2) \int_{-\infty}^0 e^{(a_1 + a_2)s} (\theta_t \omega)(s) ds, \qquad t \in \mathbb{R}, \quad \omega \in \Omega,$$ and y solve the following Itô equations respectively: $$du + (a_1 + a_2)udt = dw(t), \quad t > 0.$$ There exists a θ_t -invariant set $\Omega' \subset \Omega$ of full P measure such that (1) the mappings $s \to y(\theta_s \omega)$, is continuous for each $\omega \in \Omega$; (2) the random variables $||y(\theta_t \omega)||$ is tempered. To transform (1.3) into pathwise equations, Denote $$\tilde{u}(t) = u(t) - y(\theta_t \omega), \qquad \tilde{v}(t) = v(t) - y(\theta_t \omega).$$ From (1.3), we have $$\begin{cases} \tilde{u}_t = -d_1 A(\tilde{u} + y(\theta_t \omega)) - a_1 \tilde{u} + a_2 y(\theta_t \omega) + b_1 (\tilde{u} + y(\theta_t \omega))^2 (\tilde{v} + y(\theta_t \omega)) \\ -b_2 (\tilde{u} + y(\theta_t \omega))^3 + f_1 \end{cases} \\ \tilde{v}_t = -d_2 A(\tilde{v} + y(\theta_t \omega)) - a_2 \tilde{v} + a_1 y(\theta_t \omega) - b_1 (\tilde{u} + y(\theta_t \omega))^2 (\tilde{v} + y(\theta_t \omega)) \\ +b_2 (\tilde{u} + y(\theta_t \omega))^3 + f_2 \end{cases} (3.1)$$ with the initial value condition $$\tilde{u}(0,\omega,\tilde{u}_0) = \tilde{u}_0(\omega) = u_0 - y(\omega), \qquad \tilde{v}(0,\omega,\tilde{v}_0) = \tilde{v}_0(\omega) = v_0 - y(\omega).$$ ### 4 pullback absorbing property **Lemma 4.1.** There exists a θ_t -invariant set $\Omega' \subset \Omega$ of full P measure and an absorbing random set $J(\omega), \omega \in \Omega', \forall D \in \mathcal{D}$ and $\forall \omega \in \Omega', \text{ there exists } T_D(\omega) > 0 \text{ such that}$ $$\psi(t, \theta_{-t}\omega, D(\theta_{-t}\omega)) \subset J(\omega) \quad \forall t \ge T_D(\omega).$$ Moreover, $J \in \mathcal{D}$. **Proof.** Taking the inner product to (3.1) with $(\tilde{u}, \tilde{v})^T$ in E, we obtain $$\frac{1}{2} \frac{d}{dt} \|\tilde{u}\|^{2} = -d_{1} \langle A\tilde{u}, \tilde{u} \rangle - d_{1} \langle Ay(\theta_{t}\omega), \tilde{u} \rangle - a_{1} \|\tilde{u}\|^{2} + b_{1} \langle (\tilde{u} + y(\theta_{t}\omega))^{2} (\tilde{v} + y(\theta_{t}\omega)), \tilde{u} \rangle -b_{2} \langle (\tilde{u} + y(\theta_{t}\omega))^{3}, \tilde{u} \rangle + \langle f_{1}, \tilde{u} \rangle + a_{2} \langle y(\theta_{t}\omega), \tilde{u} \rangle, \frac{1}{2} \frac{d}{dt} \|\tilde{v}\|^{2} = -d_{2} \langle A\tilde{v}, \tilde{v} \rangle - d_{2} \langle Ay(\theta_{t}\omega), \tilde{v} \rangle - a_{2} \|\tilde{v}\|^{2} - b_{1} \langle (\tilde{u} + y(\theta_{t}\omega))^{2} (\tilde{v} + y(\theta_{t}\omega)), \tilde{v} \rangle +b_{2} \langle (\tilde{u} + y(\theta_{t}\omega))^{3}, \tilde{v} \rangle + \langle f_{2}, \tilde{v} \rangle + a_{1} \langle y(\theta_{t}\omega), \tilde{v} \rangle.$$ (4.1) Summing the two equations up, we have $$\frac{d}{dt}[\|\tilde{u}\|^{2} + \|\tilde{v}\|^{2}] + 2d_{1}\langle A\tilde{u}, \tilde{u}\rangle + 2d_{2}\langle A\tilde{v}, \tilde{v}\rangle + 2a_{1}\|\tilde{u}\|^{2} + 2a_{2}\|\tilde{v}\|^{2}$$ $$= -2d_{1}\langle Ay(\theta_{t}\omega), \tilde{u}\rangle - 2d_{2}\langle Ay(\theta_{t}\omega), \tilde{v}\rangle + 2\langle f_{1}, \tilde{u}\rangle + 2\langle f_{2}, \tilde{v}\rangle + 2a_{2}\langle y(\theta_{t}\omega), \tilde{u}\rangle + 2a_{1}\langle y(\theta_{t}\omega), \tilde{v}\rangle$$ $$+2b_{1}\langle (\tilde{u} + y(\theta_{t}\omega))^{2}(\tilde{v} + y(\theta_{t}\omega)), \tilde{u}\rangle - 2b_{1}\langle (\tilde{u} + y(\theta_{t}\omega))^{2}(\tilde{v} + y(\theta_{t}\omega)), \tilde{v}\rangle$$ $$-2b_{2}\langle (\tilde{u} + y(\theta_{t}\omega))^{3}, \tilde{u}\rangle + 2b_{2}\langle (\tilde{u} + y(\theta_{t}\omega))^{3}, \tilde{v}\rangle.$$ (4.2) Then we have $$2b_{1}\langle(\tilde{u}+y(\theta_{t}\omega))^{2}(\tilde{v}+y(\theta_{t}\omega)),\tilde{u}\rangle-2b_{1}\langle(\tilde{u}+y(\theta_{t}\omega))^{2}(\tilde{v}+y(\theta_{t}\omega)),\tilde{v}\rangle$$ $$-2b_{2}\langle(\tilde{u}+y(\theta_{t}\omega))^{3},\tilde{u}\rangle+2b_{2}\langle(\tilde{u}+y(\theta_{t}\omega))^{3},\tilde{v}\rangle$$ $$=2b_{1}\langle(\tilde{u}+y(\theta_{t}\omega))^{2}(\tilde{v}+y(\theta_{t}\omega)),\tilde{u}-\tilde{v}\rangle-2b_{2}\langle(\tilde{u}+y(\theta_{t}\omega))^{3},\tilde{u}-\tilde{v}\rangle$$ $$\leq 2\max\{b_{1},b_{2}\}\langle(\tilde{u}+y(\theta_{t}\omega))^{2}(\tilde{v}+y(\theta_{t}\omega)-\tilde{u}-y(\theta_{t}\omega)),\tilde{u}-\tilde{v}\rangle$$ $$=-2\max\{b_{1},b_{2}\}\langle(\tilde{u}+y(\theta_{t}\omega))^{2}(\tilde{u}-\tilde{v}),\tilde{u}-\tilde{v}\rangle$$ $$=-2\sum_{i\in\mathbb{Z}}(\tilde{u}_{i}+y_{i}(\theta_{t}\omega))^{2}(\tilde{u}_{i}-\tilde{v}_{i})^{2}\leq0.$$ $$(4.3)$$ By Young's inequality in [9], we have the following estimate $$-2d_1 \langle Ay(\theta_t \omega), \tilde{u} \rangle \le \frac{a_1}{3} \|\tilde{u}\|^2 + \frac{3d_1^2}{a_1} \|Ay(\theta_t \omega)\|^2, \tag{4.4}$$ $$-2d_2\langle Ay(\theta_t\omega), \tilde{v}\rangle \le \frac{a_2}{3} \|\tilde{v}\|^2 + \frac{3d_2^2}{a_2} \|Ay(\theta_t\omega)\|^2, \tag{4.5}$$ $$2a_2\langle y(\theta_t \omega), \tilde{u} \rangle \le \frac{a_1}{3} \|\tilde{u}\|^2 + \frac{3a_2^2}{a_1} \|y(\theta_t \omega)\|^2, \tag{4.6}$$ $$2a_1 \langle y(\theta_t \omega), \tilde{v} \rangle \le \frac{a_2}{3} \|\tilde{v}\|^2 + \frac{3a_1^2}{a_2} \|y(\theta_t \omega)\|^2, \tag{4.7}$$ $$2\langle f_1, \tilde{u} \rangle \le \frac{a_1}{3} \|\tilde{u}\|^2 + \frac{3}{a_1} \|f_1\|^2, \tag{4.8}$$ $$2\langle f_2, \tilde{v} \rangle \le \frac{a_2}{3} \|\tilde{v}\|^2 + \frac{3}{a_2} \|f_2\|^2. \tag{4.9}$$ By (4.2)-(4.9), we obtain that $$\begin{split} \frac{d}{dt}[\|\tilde{u}\|^2 + \|\tilde{v}\|^2] + 2d_1\langle A\tilde{u}, \tilde{u} \rangle + 2d_2\langle A\tilde{v}, \tilde{v} \rangle + 2a_1\|\tilde{u}\|^2 + 2a_2\|\tilde{v}\|^2 \\ &\leq \frac{a_1}{3}\|\tilde{u}\|^2 + \frac{3d_1^2}{a_1}\|Ay(\theta_t\omega)\|^2 + \frac{a_2}{3}\|\tilde{v}\|^2 + \frac{3d_2^2}{a_2}\|Ay(\theta_t\omega)\|^2 + \frac{3}{a_1}\|f_1\|^2 + \frac{a_1}{3}\|\tilde{u}\|^2 \\ &\quad + \frac{3}{a_2}\|f_2\|^2 + \frac{a_2}{3}\|\tilde{v}\|^2 + \frac{3a_2^2}{a_1}\|y(\theta_t\omega)\|^2 + \frac{a_1}{3}\|\tilde{u}\|^2 + \frac{3a_1^2}{a_2}\|y(\theta_t\omega)\|^2 + \frac{a_2}{3}\|\tilde{v}\|^2 \\ &= a_1\|\tilde{u}\|^2 + \frac{3d_1^2}{a_1}\|Ay(\theta_t\omega)\|^2 + a_2\|\tilde{v}\|^2 + \frac{3d_2^2}{a_2}\|Ay(\theta_t\omega)\|^2 + \frac{3}{a_1}\|f_1\|^2 \\ &\quad + \frac{3}{a_2}\|f_2\|^2 + \frac{3a_2^2}{a_1}\|y(\theta_t\omega)\|^2 + \frac{3a_1^2}{a_2}\|y(\theta_t\omega)\|^2, \end{split}$$ hence we have, $$\frac{d}{dt}[\|\tilde{u}\|^{2} + \|\tilde{v}\|^{2}] + a_{1}\|\tilde{u}\|^{2} + a_{2}\|\tilde{v}\|^{2}$$ $$\leq \frac{3d_{1}^{2}}{a_{1}}\|Ay(\theta_{t}\omega)\|^{2} + \frac{3d_{2}^{2}}{a_{2}}\|Ay(\theta_{t}\omega)\|^{2} + \frac{3}{a_{1}}\|f_{1}\|^{2} + \frac{3}{a_{2}}\|f_{2}\|^{2} + \frac{3a_{2}^{2}}{a_{1}}\|y(\theta_{t}\omega)\|^{2} + \frac{3a_{1}^{2}}{a_{2}}\|y(\theta_{t}\omega)\|^{2}$$ $$\leq C_{1}\|Ay(\theta_{t}\omega)\|^{2} + C_{2}\|y(\theta_{t}\omega)\|^{2} + C_{3}(\|f_{1}\|^{2} + \|f_{2}\|^{2})$$ $$\leq C_{4}(\|y(\theta_{t}\omega)\|^{2} + \|Ay(\theta_{t}\omega)\|^{2} + \|f_{1}\|^{2} + \|f_{2}\|^{2} + \|f_{3}\|^{2}), \tag{4.10}$$ where $$C_1 = \max\{\frac{3d_1^2}{a_1}, \frac{3d_2^2}{a_2}\}, \quad C_2 = \max\{\frac{3a_2^2}{a_1}, \frac{3a_1^2}{a_2}\},$$ $$C_3 = \max\{\frac{3}{a_1}, \frac{3}{a_2}\}, \quad C_4 = \max\{C_1, C_2, C_3\}.$$ By Gronwall's inequality in [9], it follows that $$\|\tilde{u}(t,\omega,\tilde{u}_{0}(\omega))\|^{2} + \|\tilde{v}(t,\omega,\tilde{v}_{0}(\omega))\|^{2}$$ $$\leq e^{-\min\{a_{1},a_{2}\}^{t}}[\|\tilde{u}_{0}(\omega)\|^{2} + \|\tilde{v}_{0}(\omega)\|^{2}] + \frac{C_{4}}{\min\{a_{1},a_{2}\}}(\|f_{1}\|^{2} + \|f_{2}\|^{2})$$ $$+C_{4}\int_{0}^{t} e^{-\min\{a_{1},a_{2}\}(t-s)}(\|y(\theta_{s}\omega)\|^{2} + \|Ay(\theta_{s}\omega)\|^{2})ds. \tag{4.11}$$ Let $c_1 = \min\{a_1, a_2\}$. Now that the random variable $y(\theta_t \omega)$ is tempered and continuous in t. It follows from Proposition 4.3.3 in [1], there is a tempered function $j(\omega) > 0$ that satisfies $$||y(\theta_t \omega)||^2 + ||Ay(\theta_t \omega)||^2 \le j(\theta_t \omega) \le j(\omega)e^{\frac{c_1}{2}|t|}.$$ (4.12) Replacing ω by $\theta_{-t}\omega$ in (4.11), by (4.12), we get $$\|\tilde{u}(t,\theta_{-t}\omega,\tilde{u}_{0}(\theta_{-t}\omega))\|^{2} + \|\tilde{v}(t,\theta_{-t}\omega,\tilde{v}_{0}(\theta_{-t}\omega))\|^{2}$$ $$\leq e^{-c_{1}t}[\|\tilde{u}_{0}(\theta_{-t}\omega)\|^{2} + \|\tilde{v}_{0}(\theta_{-t}\omega)\|^{2}] + \frac{C_{4}}{c_{1}}(\|f_{1}\|^{2} + \|f_{2}\|^{2})$$ $$+C_{4}\int_{0}^{t}e^{-c_{1}(t-s)}(\|y(\theta_{s-t}\omega)\|^{2} + \|Ay(\theta_{s-t}\omega)\|^{2})ds$$ $$\leq e^{-c_{1}t}[\|\tilde{u}_{0}(\theta_{-t}\omega)\|^{2} + \|\tilde{v}_{0}(\theta_{-t}\omega)\|^{2}] + \frac{C_{4}}{c_{1}}(\|f_{1}\|^{2} + \|f_{2}\|^{2})$$ $$+C_{4}\int_{-t}^{0}e^{c_{1}\tau}(\|y(\theta_{\tau}\omega)\|^{2} + \|Ay(\theta_{\tau}\omega)\|^{2})d\tau$$ $$\leq e^{-c_{1}t}[\|\tilde{u}_{0}(\theta_{-t}\omega)\|^{2} + \|\tilde{v}_{0}(\theta_{-t}\omega)\|^{2}] + \frac{C_{4}}{c_{1}}(\|f_{1}\|^{2} + \|f_{2}\|^{2}) + \frac{2C_{4}l(\omega)}{c_{1}}. \tag{4.13}$$ Define $R^2(\omega) = 2[C_4(\|f_1\|^2 + \|f_2\|^2) + 2C_4l(\omega)]/c_1$; $j(\omega)$ is a tempered function, so $R(\omega)$ is also tempered. Define $$\tilde{J}(\omega) = \{(\tilde{u}, \tilde{v}) \in \iota^2 \times \iota^2, ||\tilde{u}||^2 + ||\tilde{v}||^2 < R^2(\omega)\}.$$ From Theorem 4.2 in [5], $\tilde{J}(\omega)$ is an absorbing set for the random dynamical system $(\tilde{u}(t,\omega,\tilde{u}_0),\tilde{v}(t,\omega,\tilde{v}_0))$, i.e., $\forall D \in \mathcal{D}$ and $\forall \omega \in \Omega'$, there exists $T_D(\omega)$ such that $$\Phi(t, \theta_{-t}\omega, D(\theta_{-t}\omega)) \subset \tilde{J}(\omega) \text{ for } t > T_D(\omega).$$ Let $$J(\omega) = \{(u, v) \in \iota^2 \times \iota^2, ||u||^2 + ||v||^2 \le R_1^2(\omega)\},\$$ where $$R_1^2(\omega) = 2R^2(\omega) + 4||y(\theta_t \omega)||^2.$$ since $$\psi(t, \omega, (u_0, v_0, z_0))$$ $$= \Phi(t, \omega, (u_0 - y(\omega), v_0 - y(\omega))) + (y(\theta_t \omega), y(\theta_t \omega))$$ $$= (\tilde{u}(t, \omega, u_0 - y(\omega)) + y(\theta_t \omega), \tilde{v}(t, \omega, v_0 - y(\omega)) + y(\theta_t \omega)),$$ so $J(\omega)$ is an absorbing random set for $\psi(t,\omega)$ and $J \in \mathcal{D}$. The proof of Lemma 4.1 is completed. **Acknowledgement.** The paper is supported by Shanghai Natural Science Foundation (16ZR1414000). #### References - L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. - [2] P. Bates, H. Lisei, K. Lu, Attractors for stochastic lattice dynamical systems, Stochastics and Dynamics, 6(2006), 1-21. - [3] H. Crauel, F. Flandoli, Attractor for random dynamical systems, Probability Theory and Related Fields, 100(1994), 365-393. - [4] J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Physica D, 233(2007), 83-94. - [5] H. Li, A random dynamical system of the stochastic lattice reversible Selkov equations, Differential Equations and Applications, 2019, submitted. - [6] H. Li, Random Attractor of the Stochastic Lattice Reversible Selkov Equations with Additive Noises, 2016 IEEE 13th International Conference on e-Business Engineering (ICEBE), 2016. - [7] H. Li, J. Tu, Random attractors for stochastic lattice reversible Gray-Scott systems with additive noise, Electron. J. Diff. Equ., 2015(2015), 1-25. - [8] E. Selkov, Self-oscillations in glycolysis. I. A simple kinetic model. Eur. J. Biochem., 4(1968), 79C86. - [9] R. Témam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68(1988), Springer-Verlag, New York.