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Abstract: In this paper, pullback absorbing property for the stochastic reversible Selkov system
in an infinite lattice with additive noises is proved. In order to obtain the proof of absorption, a
transformation of addition involved with an Ornstein-Uhlenbeck process is used.
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1 Introduction

In this paper, we consider the stochastic lattice Selkov system with the cubic nonlinearity and

additive white noises on an infinite lattice as follows:

du; = [dy(uip1 — 2ui + ui—1) — a1u; + biuv; — boud + f1;]dt + aydw;, i € Z, t >0,

(1.1)

dv; = [dQ(UH_l —2u; + Ui—l) — agl; — blu?vi + bguf + f2i]dt + azdw;, 1 €Z, t >0,

with initial conditions
ui(O) = U;,0, Ul(O) = V;,0, 1€ Z, (1.2)

where Z denotes the integer set, u = (u;)iez € 2, v = (v;)iez € €2, di, da, a1,az,by,by are positive
constants, a = (;)iez € €2, {w;|i € Z} is independent Brownian motions.

The reversible Selkov model is derived from a set of the two reversible chemical reactions:
A+2B S 3B, BSQ.

The original Selkov model corresponds to the two irreversible reactions, where the product @ is an
inert product. Let u; and v; are respectively the concentrations of the reactants B and A, Equation

(1.1) can be regarded as a Selkov system (see [§]) on R:

up = diAu — aju + buv — bou® + f1 + awy,
(1.3)
v = do AU — agv — biuv + bou® + fo + awy.

Here A is a Laplacian, w; is the white noise to the respective components. We have obtained the
random dynamical system, see [5]. Pullback absorbing property is very important to describe the long-
time behavior of the equations for the mathematics and physics, especially, to prove the existence of

random attractor. Therefore, in this paper, we prove the pullback absorbing property for the Selkov

equations (1.1).

2 Preliminaries

In this section, we introduce the relevant definitions of absorbing property, which are taken from
21, 3], [4], [7].
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Assume X is a separable Banach space. For random parameters, we choose the standard probability
space (2, F, P) where Q = {w € C(R,R) : w(0) = 0}, F is the Borel g-algebra induced by the compact
open topology of 2, and P is the Wiener measure on (2, F).

Definition 2.1. If 6 : R x Q — Q is (B(R) x F,F) measurable, and

9021’95+t:9809t7 Vs, t € R,

6,P =P, VteR,

then (Q, F, P, (0;)icr) is called a metric dynamical system.
Definition 2.2. If a mapping

PR xOx X - X, (fw,2)+— (t,w,z),

s (B(R*) x F x B(X), B(X))-measurable and satisfies, for every w € Q,

(i) ¥(0,w,-) is the identity on X;

(ii) Cocycle property: ¥(t + s,w, ) = ¥(t,Osw, ¥ (s,w, ")) for all t,s € RT;

(iii) ¥(,w,-): RT x X — X is strongly continuous.
Then the map v is a continuous random dynamical system on X over a metric dynamical system
(Q,F, P, (0t)ter)-
Definition 2.3. If for every w € Q and a random bounded set D(w) C X,

lim e"'d(D(0_;w)) = 0 for all v > 0,

t—o0

where d(D) = sup,¢p ||| x. Then D(w) C X is called tempered with respect to (6;):cr.
Definition 2.4. A random set J(w) is called a pullback absorbing set in D, if for all D € D and
every w € €2, there exists a tp(w) > 0 such that

Y(t, 01w, D(0_w)) C J(w),Vt > tp(w).

Where D is a collection of random sets of X.

3 Ornstein-Uhlenbeck process
Let 12 = {u = (wi)iez, wi €R: Y5 |uil?> < 400}, with the inner product and norm as follows:

(u,v) = Zuivi, lull? = (u,u), u= (u;)iez,v = (v;)icz € 1°.
i€z
Then (2 = (.2, (-,-), || - ||) is a Hilbert space. Set E =% x 1? be the product Hilbert space. In view of
the cubic term +u?v, +u3, we need u € 1°,v € 5 to make (1.1) hold in /2.
To convert the stochastic equation to a deterministic one with random parameters, we introduce
an Ornstein-Uhlenbeck process (O-U process) (see [6]) in :2 on (Q, F, P, (6¢)tcr) given by the Wiener

process:

0
y(Ow) = — (a1 + 02)/ ela1%92)3(9, ) (s)ds, teR, weq,

— 00
and y solve the following Ité equations respectively:

dy + (a1 + a2)ydt = dw(t), t>0.

There exists a 0;-invariant set Q' C Q of full P measure such that

(1) the mappings s — y(fsw), is continuous for each w € Q;
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(2) the random variables ||y(f;w)|| is tempered.

To transform (1.3) into pathwise equations, Denote
a(t) =u(t) —y(Bw), () =v(t) — y(bw).
From (1.3), we have

Uy = —di AT+ y(0,w)) — a1t + azy(0iw) + b (@ + y(6:w))* (0 + y(Ouw))
—ba (@i + y(01w))* + f1 .
3.1

0y = —da A(D 4 y(Bpw)) — a2 + a1y (0rw) — by (G + y(0,w))* (0 + y(bw))
+02 (@ + y(0:w))? + fo

with the initial value condition

(0, w, tp) = to(w) = ug — y(w), (0, w, ) = Vp(w) = vo — y(w).

4 pullback absorbing property

Lemma 4.1. There exists a 0;-invariant set Q' C Q of full P measure and an absorbing random set
J(w),w € Q, VD €D and Vw € Q, there exists Tp(w) > 0 such that

Y(t, 01w, D(0_w)) C J(w) ¥Vt >Tpw).

Moreover, J € D.
Proof. Taking the inner product to (3.1) with (#,%)? in E, we obtain

S = (AR ) — di(Ay(8), ) — il + br G+ y(0) (0 + y(0)), D)
—ba (@ + y(0), ) + {1, ) + a2 (y(B), )
SR = —da(4,5) — da(Ay(6),7) — Bl — by (3 + y(B)) (0 + y(Bw)), )
b {( -+ Y(0)*, ) + (f2,5) + a1 (y(01), D). (41)

Summing the two equations up, we have

i[Ilﬂll2 + [[811%) + 2d1(Aa, @) + 2d2(AD, 0) + 2a1 ||al|* + 2az 0]

= —2d1<Ay(9tw) ) — 2d2(Ay(0iw), 0) + 2(f1, @) + 2(fa,0) + 2a2(y(0rw), @) + 2a1 (y(Osw), V)
+201 (@ + y(0:0))* (0 + y(O,w)), @) — 261 (@ + y(0,w))* (0 + y(O1w)), 0)
—2b((@ + y(6:w))°, @) + 2ba((@ + y(Ouw))®, ). (4.2)

Then we have

201((@ + y(0:w))? (0 + y(B:w)), @) — 261 (@ + y(0,w))*(0 + y(O,w)), D)
—2ba((@ + y(0uw))?, @) + 2b2((@ + y(0,w)), 0)
201 ((@ + y(0:w)) (0 + y(61w)), @ — D) — 2b2((@ + y(fiw))*, @ — )

< 2max{by, bo}((@ + y(0w))* (0 + y(dw) — @ — y(biw)), @ — 0)
= —2max{by, b} (@ + y(hiw))* (@ — D), @ — )
= =2 (i +yi(0w))* (@ — 7;)* < 0. (4.3)

€L
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By Young’s inequality in [9], we have the following estimate

2 (Ay(0), ) < Dl + 2 ayo)? (1.4
~ ag .
~2da(Ay(6u).7) < Lol + a—;nAywtw)H% (45)
_o_ar, . 3a3
2as{y(0), 1) < 2l + 22y 000) (46)
- az . 3a?)?
2an{y(6),7) < 2ol + 22y o), (@7)
- ai | - 3
2, < Hal? + > (45)
1
- ag | . 3
22, 8) < 21l + 2R (49)
2

By (4.2)-(4.9), we obtain that

d ., - _ . - ~
Sl + 118117 + 2d1 (4@, @) + 2d>(A, 5) + 201 |]]* + 22|15

>

IN

al . 3d2 3 aq . .
< llal? + == Ay(6:0)|I” + || 12+ IIAy(Gt WP+ —=I11f107 + - llall?
3 aq aq 3
3 2 02,2 3a§ 2, A1y ~2 1 2, A2 -2
el 22 222 010(6 21 2L 10(0 22
+a2||f2|| + 5 ol + o Il @ew) I + - l1all 2 o Il @)™ + 7119
_ 3d3 3 3d3 3
= aa)®+ CTI||sz/(9tW)II2 + ag||3]]” + =2 Ay(0:0) |* + — || f1]?
1 a aq
3 3a2 3a?
+—f2ll> + =2y (0:) I + =y ()%,
as al ag

hence we have,

dt[lluHQ + 1812 + arl|@)l* + azl|o]®
3d? 3 3 3a2 3a?

< flllAy(Gtw)IF + 2 Ay(B:w)|I” + =141 + =l f20? + =2y (Bw) ] + = [ly ()|

ay a2 ai a2 ai a2
< Cif|Ay(0:0) 1P + Colly(0w) 1> + Ca (Il f1]1* + [ £211%)
< Cullly@w)lI” + [ Ay (0o)||? + 1012 + 1 f201% + 1 3117), (4.10)

where
3d2 3d? 3a2 3a?
= max{— 2}, Cy = max{—= 2, 1}

Cs :max{—,—}, Cy = max{C1, Cy, C3}.
ay asg
By Gronwall’s inequality in [9], it follows that

l[a(t, w, do(w) I + [[5(t, w, To(w))II?
< emmintenad g, W) 12 + 50 (W) %] +

Cy

min{a;, as}

(112 + [ £211)
t
+C‘*/ e~ min{an.02} (6= (|y(,0) |2 + || Ay(6,0) |2)ds. (4.11)
0

Let ¢; = min{ay,as}. Now that the random variable y(6;w) is tempered and continuous in ¢. Tt

follows from Proposition 4.3.3 in [1], there is a tempered function j(w) > 0 that satisfies

ly (Bl + [ Ay(0,0)1* < 5(0,) < plw)e 1. (4.12)



Replacing w by §_,w in (4.11), by (4.12), we get

It 0o, G0 (0—ew))[I* + 52, 0o, To(0-ew))|®

< e o(0-w)IP + Ioo(0-)P)+ U + 1A 0P)
£0 [ Oy + Ay,
< a0 + 10(0-) P+ A+ 1£2IP)
s [ e (ly(Br)|1? + [ Ay(8) )7
< e o0 + 8-+ S+ 107 + 20

Define R%(w) = 2[C4(||f1lI* + I f2]|?) + 2C4l(w)]/c1; j(w) is a tempered function, so R(w) is also
tempered.
Define
J(w) = {(@,9) € * x &, [[al* + [|9]* < R*(w)}-
From Theorem 4.2 in [5], J(w) is an absorbing set for the random dynamical system (i (t, w, i), #(t, w, 7)),
i.e.,, VD € D and Vw € ', there exists Tp(w) such that

®(t,0_w,D(0_w)) C J(w) for t>Tp(w).

Let
J(w) = {(u,v) € ® x %, |Jull* + [|]v]|* < R}(w)},
where
R} (w) = 2R*(w) + 4[|y (0,w)|*.
since

Y(t, w, (uo,vo, 20))
= O(t,w, (uo — y(w),vo — y(W))) + (y(Osw), y(rw))
(a(t,w,uo — y(w)) + y(Orw), 0(t,w, v — y(w)) + y(Orw)),

so J(w) is an absorbing random set for ¢ (¢,w) and J € D. The proof of Lemma 4.1 is completed. [
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