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ABSTRACT 
This paper aims to estimate the stress-strength reliability parameter R = P(Y < X), considering the two 
different cases of stress strength parameters, when  the strength ‘X’ follows exponentiated inverse power 
Lindley distribution ,extended inverse Lindley and Stress ‘Y’ follows inverse power Lindley distribution and 
inverse Lindley distribution. The method of maximum likelihood estimation is used to obtain the reliability 
estimators. Illustrations are provided using R programming. 
KEYWORDS: Lindley distribution(LD), Inverse Lindley Distribution(ILD), Inverse Power Lindley 
Distribution(IPLD), Extended Inverse Lindley Distribution(EILD), Exponentiated Inverse Power Lindley 
Distribution(EIPLD), Maximum likelihood estimator(MLE). 

 
INTRODUCTION 
The LD was first introduced by D.V. Lindley [4]. The distribution is a mixture of the gamma distribution, 
with shape parameter 2 and scale parameter   and exponential distribution with scale parameter  . Its 
probability distribution function (pdf) is given by 
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The corresponding cumulative distribution function (cdf) is given by: 
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Since LD is only appropriate for modeling the data with monotonic increasing failure rate, its relevance may 
be restrained to the data that show non-monotonic shapes (bathtub and upside down bathtub) for their failure 
rates. Therefore, LD has been extended to various ageing classes and introduced various generalized class of 
lifetime distribution based on Lindley distribution. H.Zakerzadeh and A.Dolati [12] introduced three 
parameters extension of the Lindley distribution. S.Nadarajah et al. [6], M.E.Ghitany et al. [2] proposed two 
parameter generalizations of the LD, called as the generalized Lindley and power Lindley distributions. 
These distributions are generated using the exponentiation and power transformations to the Lindley 
distribution. F.Merovci [5] investigated transmuted Lindley and transmuted Lindley-geometric distributions 
respectively. The exponentiated power Lindley distribution (EPLD) was introduced by S.K.Ashour and 
M.A.Eltehiwy [1]. 

In the above cited reference, the authors mainly fixate on the estimation of increasing, decreasing and 
bathtub shaped failure rate. V.K.Sharma, S.K.Singh and U.Singh [9] proposed a lifetime model with upside-
down bathtub shape hazard rate function that is efficient of modeling many real problems, for example 
failure of washing machines, survival of head and neck cancer patients, and survival of patients with breast 
cancer. Considering the fact that all inverse distribution acquire the upside-down bathtub shape for their 
hazard rates, V.K.Sharma, S.K.Singh,U.Singh and V.Agiwal [11], proffered an inverted version of the LD 
that can be used to model the upside-down bathtub shape hazard rate data. 
The ILD take into account the inverse of a random variable with a LD. If a random variable Y has a LD, then 
a random variable Y=1/X follows ILD with probability distribution function defined by 
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The corresponding cumulative distribution function (cdf) is given  as: 



 

 

                               .
1

1
1);( xe

x
yF



















        

.0,0;  x       
                     

 

In order to accomplish more flexible family of distributions, another generalization is the  IPLD suggested by 

Barco, Mazucheli  and Janeiro [3] by considering the power transformation, 
1

YX  . Explicitly if a random 

variable Y follows ILD, then the random variable 
1

YZ  follows IPLD with density and cumulative 
distribution functions defined respectively as 
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A new extension of ILD was given by V.K.Sharma and Khandelwal [10], known as EILD which deals with 

more malleability with the effective shape parameter. Its probability density function (pdf) is given by:  
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The analogous cumulative distribution function (cdf)  given by: 
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A new three parameter probability distribution introduced by R.Jan et.al [13] known as Exponentiated 
inverse power Lindley distributed  (EIPLD). Its pdf  and cdf is given by: 
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The stress strength parameter plays an important role in the reliability analysis. For example if X is the 
strength of a system which is subjected to stress Y, then the parameter R = P  XY   measures the system 
performance and it is very common in the context of mechanical reliability of a system. Moreover, R 
provides the probability of a system failure, if the system fails whenever the applied stress is greater than its 
strength. Many authors developed the estimation procedures for estimating the stress–strength reliability 
from various lifetime models, see [7,8] and references cited therein. Recently, M. M. Mohie El-Din,  A. 
Sadek and Sh. H. Elmeghawry obtained Stress-Strength Reliability Estimation for Exponentiated 
Generalized Inverse Weibull Distribution [14]. T.R.Rasethuntsa and M.Nadar, derived Stress–strength 
reliability of a non-identical-component-strengths system based on upper record values from the family of 
Kumaraswamy generalized distributions [15].  A.Iranmanesh, K.F. Vajargah and M. Hasanzadeh studied 
estimation of stress strength reliability parameter of inverted gamma distribution [16] 
 
 In this paper, we have addressed the problem of estimating R = P(Y < X) considering the two different cases 
for stress strength reliability 
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1) When stress follows IPLD and strength follows EIPLD. 
2) When stress follows ILD and strength follows  EILD. 
 
 
 RELIABILITY AND ITS MAXIMUM LIKELIHOOD FUNCTION: 
CASE 1: Let Y ~ IPLD( 1, ) and X ~ EIPLD (  ,, 2 ) be independent random variables, Suppose that X 

represent the strength of a component exposed to Y stress, then the stress strength reliability(SSR) of this 
component is obtained as follows, 
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 where R is independent of   
Suppose nxxx ,...,, 21  is a random sample of size 1n  from EIPLD ),,( 1  and nyyy ,..., 21  is an 

independent random sample of size 2n  from IPL ),( 2 . The likelihood function l=l )( where ),,,( 21  
based on the two independent random sample is given by:   
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The MLE ̂  of   is the solution of non-linear equations (1.2), (1.3), (1.4) (1.5)  
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Where ̂  is the solution of non linear equation : 
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Case 2: Let X ~ EILD( ), 1  and Y ~ ILD( 2 ) be independent random variables, Suppose that X represent 

the strength of a component exposed to Y stress, then the Stress Strength Reliability (SSR) of this component 
is obtained as follows, 
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Suppose nxxx ,...,, 21  is a random sample of size 1n  from EILD ),( 1 and nyyy ,..., 21  is an 
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CONCLUSION: 
In this paper, we have studied the stress strength reliability considering the two different cases of stress 
strength parameters. When strength X ~ EIPLD (  ,, 2 ) and stress Y ~ IPL ( 1, ), it was observed that with 

increase in the value of strength parameter  with fixed parameters  21, , the stress strength reliability 

increases. However it is seen that, with increase in the value of stress parameter 2 , the stress strength 

reliability decreases keeping  1,  fixed (table 1). Further the graphical overview of Stress strength 
reliability for 321 ,,   for different values of  21,  are shown in fig. (1.1, 1.2, 1.3) respectively. Also, 
when  the strength X ~ EILD( ), 1 and Stress Y ~ ILD( 2 ), it was found that as the value of stress parameter 

2  increases, keeping the strength parameters fixed  1, , the stress strength parameter decreases. While as, 
with increase in the value of strength parameter 1 , the stress strength reliability increases, keeping 2,  
fixed (table 2). Hence we conclude that with decrease in the value of stress parameter and increase in value 
of strength parameter, reliability of single component system increases resulting in efficiency of system 
model. 
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