

11 ABSTRACT

Aims: Antimicrobial resistance motivates the search for new antimicrobials. Besides Methicillin-Resistant *Staphylococcus aureus,* Carbapenem-Resistant *Klebsiella pneumoniae* strain has emerged worldwide over the last decade, posing a great challenge to healthcare. This paper reports a survey of Maasai ethno-pharmacy practices.

16 Study design: Key informant interviews and utilization of e-questionnaires for data collection

Methodology: Plants were identified, and the applicable parts taken as samples, dried, powdered then subjected to aqueous extraction. Using agar well diffusion method, the extracts were screened against gram positive, gram negative and fungal strains to establish antimicrobial activity.

Place and Duration of Study: The study was conducted at the School of Pharmacy & Health Sciences
 of the United States International University, Africa in Nairobi from January 2017 to December 2018.

22 Results: Out of the 24 different plant samples collected, 33% were leaves while 17%, 12.5% and 37.5% 23 were fruits, stem bark and roots, respectively. The highest extract percentage yields were from the leaves 24 of Biden Pilosa (5.11%), Psidium guajava (4.65%) and Tarchononthus comphoratus (4.31%). While the 25 minimum extracts yields were from Solanum incum roots (0.08%) and stem bark (0.09%). The extracts of 26 Toddalia asiatica stem bark and roots; Rhamnus staddo roots; Tarchonanthus camphoratus stem bark 27 and roots; and Zanthroxyleum chelybeum stem bark, all exhibited well defined inhibition diameters 28 against M.R.S. aureus in the range 8mm to 14mm as compared to the standard drug (10mm). All these 29 were extracts of non-leafy samples. The significant antimicrobial activity corresponded to presence of 30 flavonoids and alkaloids as seen on TLC plates during phytochemical screening.

Conclusion: The results obtained is a good rationale for utilization of the plants identified as alternatives
 to antibiotics for management of antimicrobial infections.

33

Key words: Ethnopharmacology; Antimicrobials; Bioautography; Maasai; phytochemicals

34 1. INTRODUCTION

35 Microbial infections remain a threat to millions of lives globally [1] as antimicrobial resistance (AMR) is 36 reported to be on the increase against commonly used antibiotics [2, 3]. This rapid rise in AMR to 37 synthetic and semi-synthetic drugs continues to inspire search for new antimicrobial agents. In the last 38 two decades, β-lactamase producing Enterobacteriaceae (e.g. Escherichia coli, Salmonella typhi and 39 Klebsiella pneumoniae) have been identified as the main gram-negative bacteria responsible for 40 multidrug resistance [4, 5]. In addition to the methicillin resistant Staphylococcus aureus (MRSA), a 41 carbapenem-resistant strain of Klebsiella pneumoniae has emerged worldwide over the last decade, 42 posing a great challenge to healthcare [6, 7]. Multi-drug resistant (MDR) Salmonella typhi and Shigella dysenteriae strains have also notably worsened the AMR problem [8]. 43

In this regard, focus has turned to research on the efficacy of natural plant secondary metabolites. We draw inspiration from the fact that most African communities have always used herbal remedies as a readily and cheaply available alternative to contemporary medicines. The gradual change from a nomadic to a more sedentary lifestyle for the Maasai of Narok, Kenya, has not really led to any dramatic loss of traditional plant knowledge. Medicinal plants continue to be used frequently for human ailments and for veterinary purposes.

The World Health Organizations estimates that more than 80% of the developing countries rely on traditional plant-based medicine for their primary healthcare needs. Furthermore, at least 25% of drugs in modern pharmacopoeia are derived from plants with many synthetic drugs also having been developed based on template compounds isolated from plants [9]. A major fraction of the plants in their natural habitat have not been investigated for phytochemical composition, antimicrobial and toxicity activities. Additionally, it is indicated that overdose by patients due to imprecise nature of diagnosis is a worldwide experience particularly with herbal remedies [10].

57 This paper reports an exploration of the cultural and ethnopharmacological practices of Maasai in the 58 application of medicinal plants in infective conditions. It enumerates the identified commonly utilized 59 plants that were collected, authenticated and extracted with water. Results of screening the aqueous 60 extracts against typical bacterial and fungal stains to mimic the traditional herbal in treating human and

61 livestock microbial infections are presented. The subsequent phytochemicals evaluations are also

62 displayed. Substantial information is thus presented revealing the place of medicinal plants utilized by the

- 63 Maasai as alternative to antibiotics and their potency for development into conventional medicine
- 64 therapies.

65 2. MATERIALS AND METHODS

66 2.1 Study setting - the Maasai people of Narok, Kenya

- 67 The Maasai populations of east Africa are mainly pastoralist for their socioeconomic well-being. Since time immemorial, these communities have used different wild plants as dietary and medicinal additives in 68 69 beverages and in form of other food preparations. Based on recent reports [11], the study was designed 70 with investigations correlated to utilization by Maasai people. Literature searches with 'Maasai herbal medicines' as search phrase guided study plant selection with particular reference to the ingredients of 71 72 popular preparations among the Maasai such as "almajani" (tea or herbal concoction); "motorí" (traditional 73 soup); and "okiti" (psychoactive herbal tea). We also rationalized the cultural use of these Maasai food-74 medicines; and document their frequency of use through self-reports.
- 75

76 2.2 Apparatus, reagents and organism strains

Smart phones pre-installed with electronic questionnaire application; polyethene bags; cutter knives;
Analar grade hexane, methanol, Dimethylsulphoxide all from Sigma-Aldrich Germany; MacConkey agar
from Thermo-ScientificTM, OxoidTM Mueller-Hinton agar, BD DifcoTM Sabouraud Dextrose Agar;
FisherbrandTM Plastic Petri Dishes; Strains of standard organisms of *Methicillin Resistant Staphylococcus aureus* (ATTC N0. 2913), *Escherichia coli* (ATTC N0. 25922) and *Candida albicans* (ATTC N0.14053)
cultivated in sterile BD TM Trypticase soy broth.

83 2.3 Ethnopharmacy practices survey

Traditional use of medicinal plants is prevalent amongst most Kenyan communities, the Maasai included. In this study, we surveyed systems and practices among the Maasais of Narok. A dual mode of study was adopted that involved direct collection of the medicinal plants based on published literature while at the same time interviewing the locals on their uses. Field surveys were conducted from the month of April to
September and November to February to cover all the seasons of the year. Electronic Questionnaires on
smart phones were used to conduct interviews.

90 Interviews were conducted during field visits, followed by examination of the specimens collected from 91 their natural habitats by our Maasai community contacts. The respondents were chosen without bias in 92 regard to gender or age. A standardized set of questions were pre-loaded to the E-Questionnaire used to 93 inquire about each plant collected. This was by showing the locals collected plants and asking them 94 questions about each plant regarding the traditional uses particularly related to bacterial and fungal 95 infections. More specific information was recorded later by using structured interviews in which the e-96 questionnaire was completed to capture precise method of use and preparation of the folk medical 97 remedies for each folk taxon quoted.

98 2.4 Key informant interviews

99 Because the Maasai people, based on locality, use different names to refer to the same species of plants 100 [12], key informant interviews were conducted with 10 locals of mixed gender and age to verify the 101 collected plants and their ethno-pharmacologic applications. This was through open-ended, semi-102 structured interviews to investigate the different utilization and relation to bacterial antifungal related 103 ailments for linkage to the plant exploration as antibiotics alternatives. The identified key informants were 104 adults comprising of 6 males and 4 females all residing within the community in the area where the plant 105 specimens were collected.

106 2.5 Plant sampling, processing and extraction

Various parts of the identified plants were harvested as per ethno-pharmacological application. Portions of leaves, stem bark and roots were collected carefully, ensuring none destruction of the plant. The fresh plant parts were hygienically transported to the laboratory, and Voucher specimens prepared and deposited at the United States Internal University – Africa, School of Pharmacy & Health Sciences, Herbarium. The plant specimen were openly aerated at room temperature to dry completely before grinding into fine powder using a Willy mill. The plant samples were extracted as total extracts by subjecting each to hot continuous extraction techniques. Digestion extraction method was then applied for extracting the active principles. In 500ml round bottom flasks, 100 g of the plant part powder was extracted with 250 ml of distilled water over a heating mantle at 45 °C to afford decoctions of the various plant parts. The aqueous extracts were then filtered through gauze cloth and then subjected to lyophilization obtaining powder samples ready for antimicrobial activity assays.

118 **2.6 Antimicrobial sensitivity assays**

119 To investigate the antibacterial and antifungal activity of plant samples, the lyophilized extracts were 120 subjected to bioautographic evaluation against M.R.S. aureus, E. coli and C. albicans as also used by 121 Dewanjee et al. [13]. Aliquots at a concentration of 100µg/mL were spotted on silica gel Kieselgel 122 DGF254 TLC plates and eluted with Chloroform: Methanol (98:2) with drops of glacial acetic acid. After 123 evaporation of the organic solvent the TLC plate was placed on sterile petri dish and flooded with 100mL of Muller Hinton agar seeded in 1% aqueous *M.R.S. aureus* suspension (10⁸ cells mL⁻¹). Similarly, other 124 two sets were prepared and flooded with E. coli and C. albicans. The TLC plates were then incubated at 125 126 37 °C for 48hours and 72hours for bacteria and fungi respectively. These were then flooded each with 127 50mL of microbial agar (10g) containing 0.05% of MTT (3-(4, 5-Dimethylthiazzol-2-yl)-2, 5-128 diphenyltetrazolium bromide). Cell growth inhibition indicating antibacterial and antifungal phytochemicals 129 was observed as yellowish TLC spots on a purple background, allowing chromatographic retention 130 factors to be established against the solvent front. The same was repeated with separate TLC plates, 131 however, without flooding microorganism suspension but eluting in the usual way and observing under 132 UV lamp to mark out the eluted spots. The retention factors established was then correlated to the TLC plates developed and flooded with microorganism suspensions. 133

134 2.7 Phytochemical screening

The categories of the active phytochemical principles in the active extracts was carried out by Thin Layer Chromatography. Qualitative chemical screening for identification of the various classes of constituents was done by spotting and developing the TLC plates with Chloroform: Methanol (98:2). The spots were then visualized after reactions with specific reagents as per methods of Haborne (1998) and under

- 139 ultraviolent lamp. Spotted and developed TLC plates were sprayed by the visualization agents and upon
- 140 observation under the ultraviolet light both positive and negative results were realized for the
- 141 phytochemical groups in the various plant extracts.

142 3. RESULTS AND DISCUSSION

143 3.1 Ethnopharmacy practices

144 From the survey, we found 13 plants most regularly utilized for antibacterial and antifungal related 145 ailments. All these were reported by two or more participants as being utilized by addition into beverages 146 like traditional tea. Out of the 24 different parts combination utilizations, 33% applications in ethno-147 pharmacy was by plant leaves while 17%, 12.5% and 37.5% utilized fruits, stem bark and roots 148 respectively (Table 1). The rationales for utilization of the plants identified as antimicrobial alternatives 149 was deduced from the commonly mentioned ailments. These included skin infections, fever, sexually 150 transmitted infections, stomach discomforts, tooth aches, oral pains, worm infestations, constipation, flu, 151 back pain, breast pain, tonsils and constipation. All these could be highly attributable to ailments related to infections with bacteria or fungi. 152

- 153 3.2 Plant samples extractions
- 154 The percentage yields calculated per plant part. This is appropriately tabulated in table 2.
- 155
- 156

Table 1: Ethno-pharmacologic practices utilizing plants identified

NO	BOTANICAL	FAMILY	VERNACULAR	USE	PART	METHOD OF APPLICATION
	NAME		NAME: Maasai		USED	
1.	Solanum incanum	Solanaceae	Entulele/endulelei	Treats wound, skin	Fruits	- Fruit sap applied on swollen part to
				infection, malaria		reduce pain
						- Fresh leaves soaked in warm water,
					$\langle , \neg \rangle$	applied for skin infection
						- Roots cut in small pieces then boiled for
					$\langle \cdot \rangle$	fever treatment
						- Stem soaked in water, treats stomach
						disturbance
2.	Carissa edulis	Apocynaceae	Olamuriaki	Venereal disease,	Roots, stem	- Crushed roots are boiled and taken by
			Ochoka	Stomach ache,	sap	women who are preparing to conceive to
				Eye infection		clean uterus infection.
				(animal)		- Boiled and mixed with tea, soup, cream to
						treat kidney
						- Sap tapped from the stem and used to
						treat eye infection in livestock
3.	Euclea divinorum	Ebenaceae	olkinyei olkinye(e)	Stomach problem,	Fruits, roots	- Leaves are mixed with beverages to treat
			\mathcal{N}	chicken pox, tooth		chicken pox
				ache		- Fresh roots chewed to treat tooth aches
						- Fruits treat stomach problems
4.	Asystasia	Acanthaceae	Olosida	Malaria,	Leaves,	- Fresh leaves are boiled and patients
	mysoriensis			amoeba/typhoid	roots	inhale steam to relieve fever

dh.

					-	Leaves crushed and soaked in water and taken orally to treat stomach upsets Roots ground, soaked and taken to relieve
5.	Warbugia salutaris	Canellaceae	ol-sogunoi	Stomach	Leaves,	Dried stem bark/roots are boiled together
	(formerly		,	disturbance, tooth	stem, roots	with soup to treat stomach disturbance
	ugandensis)			ache, deworming,		Fresh stem bark is boiled and mixed with
				organic farming		soup/milk cream/goat fat and decoction is
					$\mathcal{N} \rightarrow$	take by women after delivery
					<u></u> .	Stem used as tooth brush to stop tooth
						ache
6.	Toddalia asiatica	Rutaceae	Olebarmonyo,	Malaria, flu	Leaves, -	Leaves are boiled and taken for relieving
					roots	fever
			4		-	Steam from boiled leaves treat flu and
				\times \vee		fever
					-	Roots soaked in cold water and taken for
						seven days by new mothers who have low
						milk production
7.	Bidens pilosa L.	Asteraceae	Black jack	Stomach upsets	Leaves -	Leaves are crushed, boiled in water for
		(deworming and stomach upset
8	Rhamnus staddo	Rhamnaceae	Olkokokola	Back pain, STI's,	Roots, -	Leaves are crushed, soaked in water and
			\sim	headache,	leaves	given to calves for deworming
				deworming	-	Roots boiled and mixed with soup for
						sexually transmitted infections treatment
						and back pain

9	Tarchonanthus	Asteraceae	Oleleshwa	Stomach ache,	Roots,	- Root back boiled & mixed with soup to
	camphoratus			Breast pain,	leaves	treat back pain, stomach problems,
						- Boiled roots also treat breast pain
						- Burnt leaves' smoke used to treat cows
						with breathing problem and can also be
						soaked in water and extract used as
						droplets
10	Psiadia punctulata	Asteraceae	Olabaai le partolu	Flu, joint ache,	Roots	- Fresh/dried roots are boiled, and extract
				malaria, blood		filtered, then mixed with cream/
				pressure, ulcers		soup/animal fat and decoction is taken for
						joint pain
11	Olinia rochetiana	Penaeaceae	Orkirenyi	Stomach problem,	Fruits,	- Fresh fruits taken to treat stomach
				Diarrhoea, tooth	leaves,	disturbance and stop diarrhoea though in
				ache, chicken pox	roots	excess is poisonous
			e e e e e e e e e e e e e e e e e e e			- Fresh roots chewed treat tooth ache but
				$\mathcal{I} \mathcal{V}$		extract is not swallowed
12	Zanthroxyleum	Rutaceae	Oluisuti	Tonsils, tooth ache,	Stem	- Fresh stem bark is chewed to relief tooth
	chelybeum			relief constipation	bark,	ache/mouth infection and tonsils
					leaves	- Crushed leaves are mixed with water and
			\sim			given to cow to relief constipation
13	Psidium guajava	Myrtaceae				- No clear information however infections
			\sim			
159						
160						
101						

Table 2: Percentage yields for plant extracts

Plant species	Sample code	Part utilized	Extract weight	% yield
			(grams)	
Psidium guajava	SR/N. 001	Leaves	4.65	4.65%
		Fruits	0.13	0.13%
		Stem bark	0.07	0.07%
		Roots	1.04	1.04%
Solanum incanum	SR/N. 002	Leaves	2.01	2.01%
		Fruits	1.09	1.09%
		Stem bark	0.09	0.09%
		Roots	0.08	0.08%
Ageratum convzoides	SR/N. 003	Leaves	2.04	2.04%
		Fruits	1.21	1.21%
		Stem bark	0.24	0.24%
		Roots	1.46	1.46%
Carissa edulis	SR/N. 004	. 004 Leaves 0.73 Fruits 0.57	0.73	0.73%
			0.57	0.57%
		Stem bark	1.02	1.02%
	\sim	Roots	0.91	0.91%
Euclea divinorum	SR/N. 005	SR/N. 005 Leaves 2	2.11	2.11%
		Fruits	0.48	0.48%
		Stem bark	0.11	0.11%
		Roots	1.09	1.09%
Asystasia mysoriensis	SR/N. 006	Leaves	1.22	1.22%
		Fruits	0.21	0.21%
		Stem bark	0.44	0.44%
		Roots	0.41	0.41%
Warbugia salutaris	SR/N. 007	Leaves	3.65	3.65%
		Fruits	0.96	0.96%
		Stem bark	1.21	1.21%
		Roots	1.09	1.09%
Toddalia asiatica	SR/N. 008	Leaves	0.34	0.34%
		Fruits	1.09	1.09%
		Stem bark	1.55	1.55%
		Roots	0.91	0.91%

D'data alla alla		1	E 44	E 440/
Bidens pilosa L.	SR/N. 009	Leaves	5.11	5.11%
		Fruits	2.09	2.09%
		Stem bark	0.33	0.33%
		Roots	0.19	0.19%
Rhamnus staddo	SR/N. 010	Leaves	3.19	3.19%
		Fruits	0.35	0.35%
		Stem bark	0.11	0.11%
		Roots	2.98	2.98%
Tarchonanthus camphoratus	SR/N. 011	Leaves	4.31	4.31%
		Fruits	3.01	3.01%
		Stem bark	0.49	0.49%
		Roots	2.77	2.77%
Psiadia punctulate	SR/N. 012	Leaves	2.21	2.21%
		Fruits	0.77	0.77%
		Stem bark	2.11	2.11%
		Roots	3.09	3.09%
Olinia rochetiana	SR/N. 013	Leaves	0.32	0.32%
		Fruits	3.11	3.11%
		Stem bark	0.67	0.67%
	\sim	Roots	1.87	1.87%
Zanthroxyleum chelybeum	SR/N. 014	Leaves	3.21	3.21%
		Fruits	1.29	1.29%
		Stem bark	0.91	0.91%
		Roots	1.07	1.07%

The highest extract percentage yields were realized from the leaves of *Biden pilosa, Psidium guajava* and *Tarchononthus comphoratus*, with 5.11%, 4.65% and 4.31% respectively. While the minimum extracts yields were from *Solanum incum* as 0.08% and 0.09% for the roots and stem bark respectively. This was considered an indication that the phytochemicals in the *S. incum* were of a varied polarity range from that of water, the extraction solvent. The higher percentage yields in the leaves is typical for previous analysis of plants of the same family of asteraceae that showed similar trends for Percentage yields [14].

171

173 3.3 Antimicrobial activity screening

The ethno-pharmacologic practices indicated that the Maasai utilized the identified plants for both human ailments and treatments of animal diseases. The specific plants and respective parts that are applied most commonly for human ailments were the only ones screened in this study for antibacterial antifungal activity. Results indicated inhibitions by several samples. Extracts showed well defined inhibition zones in the assays respectively indicated in the Table 3. These are consistent with several other studies reporting plants that elicit medicinal activity against bacterial and fungal microorganisms [15].

180

The plant extract samples SR/N 008-S, SR/N 008-R, SR/N 010-R, SR/N 011-S, SR/N 011-R and SR/N 181 182 014-S, all illustrated well defined inhibition diameters on assaying with the gram positive bacteria M.R.S. 183 aureus in the range 8mm to 14mm as compared to the standard drug that displayed an inhibition zone of 184 10mm. Incidentally these were noted to be either stem bark or roots of the plant. The diameter of 185 inhibition were in correspondence to that identified to belong to flavonoids and alkaloids from the TLC 186 plates developed in the phytochemical screening. This is also in agreement with past reports [16]. Activity against the gram-negative bacteria was only exhibited by SR/N 008-R and SR/N 009-L, illustrated by 187 188 well-defined inhibition zones in the range 8mm to 12mm compared to 14mm for the standard.

189

190 Table 3: Bactericidal, fungicidal activity inhibition zones

Sample code	Part utilized		Inhibition spots band	
Sample code		M.R.S. aureus	E. coli	C. albicans
-ve control	DMSO	6±0.8	6±0.3	6±0.5
+ve control	Flucloxacillin	10±0.1	14±0.7	6±0.2
	Nyastatin	6±0.4	6±0.1	16±0.6
SR/N. 001	Leaves	6±0.4	6±0.7	14±0.4
SR/N. 003	Leaves	6±0.8	6±0.9	12±0.9
SR/N. 006	Leaves	6±0.7	6±0.6	6±0.1
SR/N. 007	Leaves	6±0.5	6±0.1	10±0.8
SR/N. 008	Stem bark	14±0.7	6±0.2	6±0.7
	Roots	10±0.3	8±0.7	16±0.9

SR/N. 009	Leaves	6±0.8	12±0.1	8±0.6
SR/N. 010	Leaves	6±0.3	6±0.6	6±0.5
	Roots	8±0.7	6±0.3	12±0.2
SR/N. 011	Leaves	6±0.9	6±0.2	10±0.4
	Stem bark	8±0.7	6±0.9	8±0.8
	Roots	10±0.7	6±0.2	12±0.5
SR/N. 014	Stem bark	10±0.7	6±0.9	6±0.4

192 6±0.0mm = diameter of agar well = no inhibition band (not sensitive)

- 193 -ve control = Negative control (Dimethyl sulfoxide DMSO)
- +ve control = Bactericidal and fungicidal drugs (Flucloxacillin and Nystatin respectively)
- 195

Activity against fungal strain was by the samples SR/N 001-L, SR/N 003-L, SR/N 007-L, SR/N 009-L, 196 197 SR/N 010-R, SR/N 011-L, SR/N 011-S and SR/N 011-R with minimum diameter of inhibition at 8mm and 198 highest as 16mm which was interestingly equivalent to the diameter displayed by the standard antifungal 199 drug. Although the results attest and justifies the ethno-pharmacologic utilization be the Maasai, it is 200 difficult to compare the findings directly to previous studies. The witnessed antimicrobial activity cuts 201 across the various species of plants in similar families. The sensitivity results nevertheless are sufficient to warrant next level investigations of the plants utilized as antimicrobial alternatives by Maasai of Narok 202 203 Kenya

- 204 3.4 Phytochemical screening
- 205 These were appropriately tabulated as follows in table 4:

206 Table 4: Phytochemical profiling of active extracts

Sample code	Part utilized	Phytochemical group				
Sample code		Glycosides	Flavonoids	Terpenoids	Steroids	Alkaloids
SR/N. 001	Leaves	-	++	-	+	++
SR/N. 003	Leaves	-	+	-	++	++
SR/N. 006	Leaves	-	+	++	+	+

207 - negative results (phytochemical group absent)

208 + positive results (phytochemical group present)

209 ++ positive results (high amounts of phytochemical group)

210

Glycosides were mostly present in stem barks and roots of the plant samples while the other phytocompounds groups including flavonoids, terpenoids, steroids and alkaloids were distributed across different plant parts to varying degrees. The presence of flavonoids and Terpenoids are found to correlate well with the witnessed antibacterial and antifungal activities. This is found to be in line with other reports. The array of antimicrobial activity has been variously attributed to these phytochemicals [17-19].

216

219 4. CONCLUSION

220 Extensive achievement has been attained in the development of synthetic medicines, yet the demand for antimicrobials remains unmet particularly in developing countries, and due to antimicrobial resistance. 221 222 This has warranted exploration of the flora which continues to play an important role in drug discovery. 223 Application was the main rationale for plant selection by the Maasai of Narok as herbal alternatives of antibiotics. This resonates well with confirmatory antibacterial and antifungal efficacies witnessed in 224 225 screening of the aqueous plants extracts. The extracts of Toddalia asiatica stem bark and roots; Rhamnus staddo roots; Tarchonanthus camphoratus stem bark and roots; and Zanthroxyleum chelybeum 226 227 stem bark, all exhibited well defined inhibition diameters against M.R.S. aureus in the range 8mm to 228 14mm as compared to the standard drug (10mm). All these were extracts of non-leafy samples. The 229 significant antimicrobial activity corresponded to presence of flavonoids and alkaloids as seen on TLC 230 plates during phytochemical screening. The results could be regarded as sufficient rationale for utilization 231 of the plants identified as alternatives to antibiotics for management of antimicrobial infections.

COMPETING INTERESTS 232

233

234

- 235
- 236

REFERENCES 237

238 1. Saikia, J. (2012). Ethnomedicinal, Antibacterial and Antifungal Potentiality of Centella asiatica, Nerium indicum and Cuscuta reflexa-Widely Used In Tiwa Tribe of Morigaon district of Assam, 239 240 India. International Journal of Phytomedicine, 4(3), 380-385.

The authors wish to to declare no competing interests exist for this work.

- 241 2. Kitonde, C. K., Fidahusein, D. S., Lukhoba, C. W., & Jumba, M. M. (2013). Antimicrobial activity 242 and phytochemical study of vernonia glabra (steetz) oliv. & hiern. in Kenya. African Journal of 243 Traditional, Complementary and Alternative Medicines, 10(1), 149-157.
- 244 3. Yang, Y.-S., Ku, C.-H., Lin, J.-C., Shang, S.-T., Chiu, C.-H., Yeh, K.-M., . . . Chang, F.-Y. (2010). 245 Impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae

- on the outcome of community-onset bacteremic urinary tract infections. *Journal of Microbiology, Immunology and Infection, 43*(3), 194-199.
- Breurec, S., Guessennd, N., Timinouni, M., Le, T., Cao, V., Ngandjio, A., . . . Dufougeray, A.
 (2013). Klebsiella pneumoniae resistant to third-generation cephalosporins in five African and two
 Vietnamese major towns: multiclonal population structure with two major international clonal
 groups, CG15 and CG258. *Clinical microbiology and infection, 19*(4), 349-355.
- 5. Namboodiri, S. S., Opintan, J. A., Lijek, R. S., Newman, M. J., & Okeke, I. N. (2011). Quinolone
 resistance in Escherichia coli from Accra, Ghana. *BMC microbiology*, *11*(1), 1.
- Poirel, L., Potron, A., & Nordmann, P. (2012). OXA-48-like carbapenemases: the phantom
 menace. *Journal of Antimicrobial Chemotherapy*, *67*(7), 1597-1606.
- Watkins, R., Papp-Wallace, K. M., Drawz, S. M., & Bonomo, R. A. (2013). Novel β-lactamase
 inhibitors: a therapeutic hope against the scourge of multidrug resistance. *Frontiers in microbiology*, *4*, 392.
- 8. Harrois D, B. S., Seck A, Delauné A, Le Hello S, Pardos de la Gándara M, Sontag L, Perrier-Gros-Claude JD, Sire JM, Garin B, Weill FX. (2014 Feb). Prevalence and characterization of extended-spectrum β-lactamase-producing clinical Salmonella enterica isolates in Dakar, Senegal, from 1999 to 2009. *Clin Microbiol Infect., 20*(2), O109-116. doi:doi: 10.1111/1469-0691.12339.
- Geneva, W. (2002). Traditional medicine-growing needs and potential. WHO Policy Perspectives
 Med. 2002; 2: 1, 6.
- 10. Nguta, J., Mbaria, J., Gakuya, D., Gathumbi, P., Kabasa, J., & Kiama, S. (2011). Biological
 screening of Kenyan medicinal plants using Artemia salina (Artemiidae). *Pharmacologyonline, 2*,
 458-478.
- 269 11. Quinlan, M. B. (2017). The freelisting method. In *Handbook of Research Methods in Health Social* 270 *Sciences* (pp. 1-16): Springer.

12. Roulette, C. J., Njau, E.-F. A., Quinlan, M. B., Quinlan, R. J., & Call, D. R. (2018). Medicinal foods and beverages among Maasai agro-pastoralists in northern Tanzania. *Journal of ethnopharmacology, 216*, 191-202.

274 13. Dewanjee, S., Gangopadhyay, M., Bhattacharya, N., Khanra, R., & Dua, T. K. (2015).
275 Bioautography and its scope in the field of natural product chemistry. *Journal of Pharmaceutical*276 *Analysis, 5*(2), 75-84.

- 14. Koc, S., Isgor, B. S., Isgor, Y. G., Shomali Moghaddam, N., & Yildirim, O. (2015). The potential
 medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological
 targets. *Pharmaceutical biology*, *53*(5), 746-751.
- Anandhi, D., Kanimozhi, S., & Anbarsan, M. (2016). Bioautography assay of Caesalpinia coriaria
 (Jacq) wild, as antifungal agent. *Int. J. Curr. Res. Biol. Med*, 1(6), 1-6.
- 16. Mbaabu, M., & Matu, E. (2012). Medicinal plants utilization in the treatment of human and
 livestock diseases in Meru District, Kenya. *Pharmaceutical Journal of Kenya, 21*(1), 18-24.
- 17. Mariita, R., Ogol, C., Oguge, N., & Okemo, P. (2011). Methanol extract of Three medicinal plants
 from samburu in northern kenya show significant antimycobacterial, antibacterial and antifungal
 properties. *Research Journal of Medicinal Plant, 5*(1), 54-64.
- 18. Munyendo, W., Orwa, J., Rukunga, G., & Bii, C. (2011). Bacteriostatic and bactericidal activities
 of Aspilia mossambicensis, Ocimum gratissimum and Toddalia asiatica extracts on selected
 pathogenic bacteria. *J. Med. Plant, 5*, 717-727.
- 19. Thoithi, G., Ndwigah, S. N., & Maima, A. O. (2014). Antimicrobial properties of some medicinal
 plants of the Luo community of Kenya.