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TITLE: Detection of adulteration in edible oil using FT-IR spectroscopy and machine learning 1 
 2 
 3 
ABSTRACT  4 
Aims: To detect the adulterant in edible oil rapidly  5 
Study Design: Authenticity and adulteration detection in edible oils are the increasing 6 
challenges for researchers, consumers, industries and regulatory agencies. Traditional 7 
approaches may not be the most effective option to combat against adulteration in edible oils as 8 
that’s are complex, laborious, expensive, require a high degree of technical knowledge when 9 
interpreting data and produce hazardous chemical. Consequently, a cost effective, rapid and 10 
reliable method is required.  11 
Place and Duration of the Study: The experiment was conducted jointly in the laboratory of 12 
the Department of Food Technology and Rural Industries, Bangladesh Agricultural University, 13 
Mymensingh and the Institute of Food Science and Technology, BCSIR, Dhaka.  14 
Method: In this study, Fourier Transform Infrared spectroscopy coupled with multivariate 15 
analysis was used for adulteration detection in sunflower and rice bran oil. Sunflower oil was 16 
adulterated with soybean oil in the range of 10-50% (v/v) and rice bran oil was adulterated with 17 
palm oil in the range of 4-40% (v/v) at approximately 10% and 5% increments respectively. 18 
FTIR spectra were recorded in the wavenumber range of 4000-650cm-1.  19 
Results: FTIR spectra data in the whole spectral range and reduced spectral range were used 20 
to develop a partial least square regression (PLSR) model to predict the level of adulteration in 21 
sunflower and palm oils. Good prediction model was obtained for all PLSR models with a 22 
coefficient of determination (R2) of >= 0.985 and root mean square errors of calibration 23 
(RMSEC) in the range of 0-1.7325%.  24 
Conclusion: The result suggested that FTIR spectroscopy associated with multivariate analysis 25 
has the great potential for a rapid and non-destructive detection of adulteration in edible oils 26 
laborious conventional analytical techniques. 27 
 28 
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 30 
1. INTRODUCTION  31 

History across the world reminds that our food is under continuous threat from adulteration.  32 
It has existed if food has been made and sold. Since prehistoric times humans have altered the state of 33 
food to extend its longevity or improve its taste. However, the eighteenth and nineteenth centuries saw an 34 
explosion of food adulteration when foodstuffs were often adulterated with inedible and even 35 
poisonous/toxic substances, as all stakeholders’ (i.e. farmers, suppliers, and grocers) tried to maximize 36 
their profits [1] and now a global issue addressed by several researchers, involving economic, quality, 37 
safety, ethical and socio-religious issues [2]. Major food adulteration events appear to regularly occur, for 38 
instance adulteration of spices with Sudan Red dye in 2003, milk powder with melamine in 2008, dioxins 39 
in pork in 2008, milk with detergent, fat, and even urea in 2012 and processed beef products with 40 
horsemeat in 2013 [3-5]. In some cases, there might be no issue related to safety (i.e. horsemeat 41 
scandal), however, such adulteration is always a concern with individuals allergic to species, or those with 42 
religious taboos or ethical aversions [5, 6]. Adulteration varies widely among the thousands of food 43 
products, range from tragic, as in the toxic oil syndrome or simply toxic syndrome disaster in Spain in 44 
1981 where thousands were hospitalized and an approximately 600 people died due to rapeseed oil 45 
intended for industrial use being sold as olive oil [7, 8] to authentication of the species [9, 10], variety [11, 46 
12], purity [13-15] and geographical origin of a product [6, 16-18]. Although the extent and dangers of 47 
food adulteration have received huge public attention, the prevalence of fraud is not easy to assess [19]. 48 
Basically, detecting adulteration is difficult without resorting to highly sophisticated analytical techniques 49 
because the adulterant components are usually very similar to the authentic product [2, 20]. On the other 50 
side, fraudsters are always one step ahead of the regulatory agencies and their techniques are 51 
increasingly becoming more and more sophisticated with time. Once a specific test has been developed 52 
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by the scientists to identify an adulterant, fraudsters can become aware of this and then add or remove 53 
that component from the adulterated foodstuff [3]. Many methods are available for the detection of 54 
qualitative and/ or quantitative adulteration in food. Currently the methods often used for food 55 
authentication and detection of fraud include polymerase chain reaction (PCR), chromatography, 56 
electrophoretic separation of proteins, immunological procedure and DNA based techniques, and 57 
enzymatic assays [19], all of which are well documented. However, these techniques are invasive, time 58 
consuming, laborious, demand highly skilled personnel, and thus they are not suitable for online 59 
application and routine analysis. Consequently, a cost effective, efficient, rapid, and reliable method is 60 
required. There is a great interest in developing non-destructive optical technologies that have the 61 
capability of monitoring in real-time assessment.  62 
Among optical sensing technologies, FT-IR spectroscopy is more sensitive and perhaps more suited to 63 
detect and quantify the presence of adulterants within complex food matrices. The high spectral signal-to-64 
noise ratio obtained from FT-IR analysis allows the detection of constituents present in very low 65 
concentrations as well as subtle compositional differences between and among multi constituent 66 
specimens. Basically, the IR spectrum is formed because of the absorption of electromagnetic radiation at 67 
characteristics bands/wavenumbers that correlate to the vibration of specific sets of chemical 68 
bonds/functional groups from within a molecule. Different functional groups absorb characteristic 69 
frequencies of IR radiation. Analysis of these absorption characteristics reveals details about the 70 
molecular structure of the sample. However, this is complex task due to the overlap of frequencies 71 
characteristic and also because of overtone and combinations bands [8]. There are several alternatives 72 
for quantifying a compound/functional group in a multicomponent mixture based on IR spectra, ranging 73 
from the univariate calibration method, which correlates the intensity (i.e. absorbance) of an isolated, 74 
intense band in the spectrum to the concentration of the compound/functional group, through the peak 75 
fitting, which enables quantification of the compound/functional group from the absorption by scaling fixed 76 
peak shapes to the spectrum, or fitting parameterized line shapes (such as Gaussian) to particular 77 
regions of the spectrum, up to the more sophisticated multivariate approach in which nearly entire spectra 78 
are utilized by carrying out correlation between spectral data and the concentrations or other measurable 79 
properties obtained from the ordinary laboratory measurements. Univariate analysis or peak fittings can 80 
become complex when absorbance peaks overlap [21, 22] or if there are multiple absorption peaks for 81 
the same functional group. On the other side, multivariate calibration approach is especially useful when 82 
data are highly collinear [23] as in the case for FT-IR spectra. Several chemometric 83 
algorithms/multivariate analyses are available to appropriately extract meaningful information in an 84 
efficient way from the spectra. By applying chemometric tools, one can perform reliable quantitative 85 
analysis of a multicomponent system even in the case of very complex spectra. In its ample applications, 86 
FT-IR spectroscopic technique in tandem with multivariate analysis has proved its potential for detecting 87 
adulteration and authenticity in edible oils.  88 
Edible oils are routinely used as cooking oils, salad oils, shortenings, spreads and ingredients in several 89 
food products formulation and a large variety of edible oils treated and marketed in Bangladesh. Some 90 
edible oils are expensive compared to others as tempting to adulterate with the lower price edible oils. 91 
Adulteration of high value edible oils can occur either by mislabeling of less expensive oil or by adding 92 
less expensive oils to increase the volume and therefore profits. Different physical parameters such as 93 
refractive index, viscosity, melting point, saponification and iodine value can be measured to detect 94 
adulteration in edible oils. However, these parameters are not anymore practical to detect adulteration as 95 
these properties are easy to manage in adulterated oils to mask the adulteration. On the other side, it is 96 
also possible to use both major (triacylglycerols) and minor components (sterols, carotenoids, 97 
tocopherols, chlorophylls etc.) as detection tool. Among different edible oils, some have particular 98 
component at a known level which is absent in other one. Therefore, the presence and amounts of this 99 
particular component can be considered as a detection tool [9]. Many analytical techniques can be used 100 
to detect adulteration in edible oils. Most of these techniques are based upon the chromatographic 101 
methods, which rely on the determination of fatty acids [24].  However, these methods are time 102 
consuming, complex, laborious, expensive and destructive, require a skilled operator and produce 103 
hazardous chemical waste. In this study, an attempt has been made to develop a rapid and accurate 104 
analytical protocol based on FT-IR spectroscopy for the determination of adulteration (palm oil in rice bran 105 
oil and soybean oil in sunflower oil) in edible oils and apply machine learning technique such as PLSR to 106 
develop calibration model for detecting adulteration in edible oils. 107 
  108 
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2. MATERIALS AND METHODS 109 
 110 
2.1 MATERIALS  111 
Four different edible oils such as sunflower oil, soybean oil, rice bran oil and palm oil were purchased 112 
from the local super market.  113 
 114 
2.2 PREPARATION OF ADULTERATED SAMPLES 115 
The first study was carried out for detection of palm oil in rice bran oil (palm oil is cheaper than rice bran 116 
oil) and the second study was carried out for detection of soybean oil in sunflower oil (sunflower oil is 117 
expensive compared to soybean oil). For the first study, rice bran oil was adulterated with palm oil in the 118 
range of 5-40% (v/v) at approximately 5% increments. For the second study, sunflower oil was 119 
adulterated with soybean oil in the range of 10-50% (v/v) at approximately 10% increments. A total of 8 120 
samples were prepared for palm oil adulteration in rice bran oil and only 5 samples were prepared for 121 
soybean oil adulteration in sunflower oil. Additionally, a spectrum of each pure oil was also extracted to 122 
compare the IR spectra of different oils.  123 
 124 
2.3 FTIR SPECTRA ACQUISITION 125 
Fourier transform infrared spectroscopy (FT-IR) was performed using a Perkin Elmer Universal ATR 126 
spectrophotometer (UATR-FT-IR, USA) equipped with a Zn Se crystal for the FT-IR spectroscopy. 127 
Transmittance was measured as the function of the wave number between 4000 and 650 cm−1 with their 128 
solution of 4 cm−1 and the number of scans equal to 12. 129 
 130 
2.4 SPECTRA PRE-PROCESSING 131 
In spectral instruments, sample physical properties and discrepancies in instrument response can cause 132 
undesired effects such as light scattering and random noise. These effects can induce spectral variations 133 
that are not associated with the studied responses and affect the reliability of multivariate calibration 134 
models. These effects can be eliminated from the spectral data by applying some mathematical 135 
treatments. However, there is still no single recipe available to select the best pre-treatment technique 136 
that needs to be applied. In this study, various pre-processing techniques such as first derivative, second 137 
derivative, multiplicative scatter correction (MSC), and standard normal variate (SNV) were separately 138 
applied to the spectral data prior to the development of multivariate model.  139 
 140 
2.5 ANALYSIS OF SPECTRAL DATA  141 
Partial least squares regression (PLSR) was developed to correlate the FT-IR spectra of different oil 142 
samples and their corresponding level of adulteration. It was developed to calibrate the FT-IR spectra of 143 
laboratory standards to their corresponding moles of functional group. A detailed description of the PLS 144 
can be found in our previous studies [25-27]. In recent years, PLSR has become the de facto standard in 145 
multivariate spectral analysis in different fields [28-31]. PLSR is emerging as the most robust and reliable 146 
chemometric method for constructing multivariate models when the measured variables are many and 147 
highly collinear (correlated) as in the case of FTIR spectra [32]. PLS regression is used to find the 148 
fundamental relations between the predictors (X) and the responses (y), thus reducing the original 149 
predictors to a new variable set called latent variables (LVs), which have the best predictive power. These 150 
LVs are statistically independent i.e. uncorrelated and ideally carry all relevant information to be 151 
correlated with reference values (i.e., true measured values) leading to more stable predictions [23, 33]. 152 
Generally, the PLS regression builds a linear model by decomposing both X (n, m) and y (n, 1) and 153 
constructs the following relations [34]:  154 
X = TPT + E          (1) 155 
y = TqT + f            (2) 156 
where, P (m, k) is the matrix of X-loadings, T(n, k) is the matrix of X-scores, q (k, 1) is the loading vector 157 
of y, E (n, m) and f (n, 1) are error terms which are not explained by the model, and k is the number of 158 
LVs used in the PLS model. 159 
The X-scores are predictors of y and model X, i.e., both y and X are assumed to be, at least partly, 160 
modeled by the same LVs. The scores can be computed by a linear combination of the variables in X with 161 
the weights W* (m, k) as T=XW*. These weights are computed so that each of them maximizes the 162 
covariance between responses and the corresponding scores. 163 
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The regression coefficients b (m, 1) of y on X can then be calculated through the weights W* as b=W*qT, 164 
where W* =W(PTW)-1.  165 
Finally, the PLS latent variable model can be re-organized as a simple prediction equation similarly as for 166 
multiple linear regression:  167 
ŷ =Xb+f (3) 168 

To avoid either over- or under-fit problem of the model, cross validation using leave-one-out method was 169 
used during the calibration step to select the optimum number of LVs for PLSR model. It was determined 170 
at the minimum value of the root mean square error of cross-validation (RMSECV). To estimate the actual 171 
predictive capability of the calibration model, the performance of the developed model was validated 172 
using an independent test set with samples not included in the original calibration samples.  173 
 174 
2.5 EVALUATION OF THE CALIBRATION MODELS  175 
The predictive capabilities of the calibration model were evaluated by examining the coefficient of 176 
determination (R2), and the root mean square errors (RMSE). The R2 and RMSE are defined as follows:  177 
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where  = predicted value of the ith sample, yi= measured value of the ith sample, N = number of 180 

samples, Nc = number of samples in the calibration set and Np = number of samples in the validation 181 
(testing) set.  182 
Generally, the accuracy of multivariate calibration model is considered as excellent when the R2 is 0.90 or 183 
higher [35, 36]. However, it is always expected to obtain R2 as close as 1 with errors as close as 0. 184 
 185 
2.6 SOFTWARE  186 
All spectral transformations were carried out in Unscrambler (CAMO AS, Trondheim, Norway). The PLSR 187 
analysis was carried out in MATLAB. 188 
 189 
 190 
3. RESULTS AND DISCUSSION  191 
3.1 FT-IR SPECTRA OF THE DIFFERENT PURE AND ADULTERATED EDIBLE OILS  192 

FT-IR spectra of four different pure oils (rice bran, palm, sunflower and soybean) in the spectral range of 193 
4000-650 cm-1 are shown in Fig 1 and individual spectra shown in Fig 2. The spectra of the tested 194 
samples of different oils showed similar trends throughout the whole spectral range. Despite the similarity, 195 
the studied original spectra were different in absorbance values. Although, the difference in the spectral 196 
profile is not clear by naked eye in the whole spectral range, it is clearly seen if the spectra are zoomed at 197 
some selected spectral range Fig 3. In general, objects present similar spectral patterns indicate their 198 
similarity in chemical composition. However, different concentrations of the major chemical compositions 199 
in the tested object make the difference in absorbance values. It is seen that the differences between 200 
different oils is small and the spectra in the FTIR region have well-resolved bands that can be assigned to 201 
different functional groups present in the oils. Basically, the IR spectrum is formed as a consequence of 202 
the absorption of electromagnetic radiation at characteristics bands/wavenumbers that correlate to the 203 
vibration of specific sets of chemical bonds/functional groups from within a molecule. Different functional 204 
groups absorb characteristic frequencies of IR radiation. Analysis of these absorption characteristics 205 
reveals details about the molecular structure of the sample [37]. Chemically, fats and oils are glycerol 206 
esterified with fatty acids. Some of the fats and oils might have quite similar composition; consequently, it 207 
is often difficult to detect adulteration of fats and oils physically [13, 38]. However, because of its 208 
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capability as a fingerprint technique, IR spectroscopy allows one to differentiate authentic oils and those 209 
adulterated with others by observing the spectra changes due to the adulteration [7, 39].  210 
The assignment of functional groups, shown in Fig 1, are dominated by some peaks at 3013, 2924, 2855, 211 
1745, 1650, 1462, 1416, 1376, 1242, 1160, 1114, 1099, 1033, 968 and 723 cm−1. The observed 212 
absorption bands were consistent with reported peak assignments based on published literature [40]. 213 
Absorbance between 3008 and 2852 cm−1 are due to bands arising from CH2 stretching vibrations, 214 
asymmetric and symmetric, respectively. The major peak at 1745 cm−1 arises from C=O stretching 215 
vibrations of aldehydes and ketons. The stretching C=C was observed at 1650 cm−1. The bands at 1462, 216 
1416 and 1376 cm-1 arise from CH2 and CH3 scissoring vibration of ethers, while those at 1242, 1160, 217 
1114 1099 and 1033 cm-1 are associated with the C=O stretching vibration. The C=C component in oil 218 
samples was observed at 968 cm−1. A small peak at 723 cm−1 corresponds to CH2 rocking mode. These 219 
observations are in agreement with the results of other studies performed with oils [41, 42], which have a 220 
composition and spectra very similar to the ones obtained in this work. 221 
 222 

 223 
Fig1. FTIR spectra of rice bran, palm, sunflower, and soybean oils in the spectral range of 4000-650 cm-1. 224 

 225 
Fig 2: Spectra of rice bran, palm, soybean and sunflower oil in the spectral range     of 4000-650 cm-1. 226 
 227 
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 228 
Fig 3: FTIR spectra (zoomed) of pure sunflower oil, soybean oil and 1:1 mixed of sunflower and soybean 229 
in the spectral range of 990-954 cm-1. 230 

 231 

 232 

 233 
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 234 
Figure 4: Spectral features with various pre-treatment procedures in the spectral range of 4000-650 cm-1: 235 
(a) first derivative, (b) second derivative, (c) MSC and (d) SNV 236 
To correct the scatter effect, different spectral pre-treatment techniques such as derivatives (both first and 237 
second derivative) MSC and SNV were applied and the resulting spectra are shown in Fig 4. It is 238 
apparent that all the pre-treatments effectively suppressed the scatter effect. SNV and MSC worked 239 
similarly in data preprocessing and provided equivalent results as shown in Fig 4 (c, d) and this agreed 240 
well with some previous investigations [43, 44]. As expected, several new absorption spectral bands are 241 
apparent in the derivative spectra as illustrated in Fig 4 (a,b); those were difficult to understand in the 242 
original reflectance spectra as shown in Fig 1.   243 
 244 
3.2 SELECTION OF SPECTRAL RANGE  245 
It is not always possible to distinguish infrared spectra of adulterated samples from pure samples with 246 
visual inspection. Therefore, it is necessary to analyze the data by multivariate methods to develop 247 
predictive models and to achieve an accurate study due to the fact that some regions could be statistically 248 
different. Similar changes in the absorbance on some regions are proportional to the degree of 249 
adulteration.  In this study, the most sensitive region from whole spectra was selected for multivariate 250 
analysis based on visual inspection [40]. The region 3040-2995 cm-1 and 1000-960 cm-1 were selected for 251 
detecting palm oil adulteration in rice bran oil, while the regions 3040-2995 cm-1 and 990-954 cm-1 were 252 
selected for detecting soybean oil adulteration in sunflower oil. The FTIR spectra depicted Fig 5 and 6   253 
revealed the differences in absorbance in these range due to the change in concentration of functional 254 
groups for the addition of adulterants (i.e. palm oil in rice bran and soybean oil in sunflower) in different 255 
level.  These spectral ranges, in addition of whole spectral range, were used to develop multivariate 256 
calibration for detecting adulteration in edible oil. Therefore, a total of six calibration models was 257 
developed for adulteration detection in rice bran oil and sunflower oil.  258 

 259 
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Fig 5: FTIR spectra in the spectral range of 3040-2995 cm-1 (top) and 990-954 cm-1 (bottom) for soybean 260 
oil (10-50%) adulteration in pure sunflower oil.  261 

 262 
Fig 6: FT-IR spectra in the spectral range of 3040-2995 cm-1 (top) and 1000-960 cm-1 (bottom) for palm oil 263 
adulteration (5-40%) in pure rice bran oil.  264 
 265 
3.3 DEVELOPMENT OF CALIBRATION MODEL BASED ON FT-IR SPECTRA   266 
Application of IR spectroscopy combined with chemometric methods is a relatively new approach to 267 
determine authenticity and adulteration detection in edible oil industry. Use of chemometric technique as 268 
an analytical procedure is fast and very cheap, not very accurate but enough accurate for many actual 269 
problems. In this study, a chemometric algorithm called partial least squares regression (PLSR) was 270 
used. Three different PLSR models were developed using full spectra of 4000-650 cm-1 and reduced 271 
spectra of 3040-2995 cm-1 and 1000-960 cm-1 for palm oil adulteration in rice bran oil. On the other hand, 272 
another three models were developed in the spectral range of 4000-650 cm-1, 3040-2995 cm-1 and 990-273 
954 cm-1 for soybean oil adulteration detection in sunflower oil. The selection of the optimum number of 274 
LVs is the key step in building a robust PLSR model to obtain efficient and reliable prediction [30]. 275 
Selecting many or few LVs may lead to over- or under-fitting of the model. There are numerous ways to 276 
select optimum number of LVs. In this study, the optimum number of LVs was selected at the minimum 277 
value of RMSECV (Fig 7a and Fig 8a). The calibration statistics of different PLSR models are 278 
summarized in Table 1. To visualize the PLSR calibration models, the actual percent level of adulteration 279 
and its predicted percent level of adulteration obtained from the PLSR models are plotted and displayed 280 
in Fig 7 (b, c, d) and Fig 8 (b, c, d). The PLSR models developed using the raw spectra were very 281 
accurate with Rc

2 >0.985 for all three spectral ranges for both adulterants.  The results found in this study 282 
were similar to those mentioned by [40, 45] for predicting adulteration in edible oils using FT-IR 283 
spectroscopy. Quiñones-Islas et al. [40] reported R2 of >0.99 using PLSR for predicting sunflower, canola 284 
and soybean adulteration in avocado oil [15, 45], whereas [45] obtained R2 of 0.999 for predicting 285 
sunflower and corn oil in extra virgin coconut oil.  286 
 287 
Table1: Performance of PLS model for detecting soybean oil and palm adulteration in sunflower oil and 288 
rice bran oil, respectively.  289 
 290 
Adulterants  Spectral range (cm-1) LVs RMSEC R2 
Soybean  4000-650 4 0.000 1.000 

3040-2995  4 0.000 1.000 
990-954 2 1.732 0.985 

Palm oil 4000-650 5 0.031 1.000 
3040-2995  2 0.728 0.996 
1000-960 2 0.801 0.995 
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 291 

 292 
Fig. 7: Prediction of soybean oil adulteration in sunflower oil using PLSR models. a. An example of 293 
determination of LVs at the minimum value of RMSECV. a. Measured vs. PLSR prediction of % level of 294 
adulteration in the range of b. 4000-650 cm-1, c. 3040-2995 cm-1 and d. 990-954 cm-1.  295 

 296 
Fig. 8: Prediction of palm oil adulteration in rice bran oil using PLSR models. a. An example of 297 
determination of LVs at the minimum value of RMSECV. Measured vs. PLSR prediction of % level of 298 
adulteration in the range of b. 4000-650 cm-1, c. 3040-2995 cm-1 and d. 1000-960 cm-1.                   299 
 300 
 301 
 302 
 303 
 304 
 305 
 306 
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Table 2. Measured and PLSR predicted values of palm oil adulteration in rice bran oil.  307 
 308 

% 
Measured  

% Predicted  
(4000-650 cm-1) 

% Predicted  
(3040-2995 cm-1)  

% Predicted  
(1000-960 cm-1) 

5.00 4.98 4.99 5.53 

10.00 10.00 10.67 9.45 

15.00 15.00 15.01 14.09 

20.00 20.06 19.16 21.01 

25.00 24.97 24.12 24.75 

30.00 30.00 30.64 31.36 

35.00 34.95 36.12 34.17 

40.00 40.02 39.20 39.63 

Table 3. Measured and PLSR predicted values of soybean oil adulteration in sunflower oil. 309 
% Measured % Predicted (4000-650 

cm-1) 
% Predicted (3040-2995 
cm-1) 

% Predicted (990-954 cm-

1) 

10.00 10.00 10.00 9.02 
20.00 20.00 20.00 22.36 
30.00 30.00 30.00 28.25 
40.00 40.00 40.00 41.81 
50.00 50.00 50.00 48.55 

 310 
 311 
4. CONCLUSION 312 
The samples were collected from the local market and the preparation was done in the laboratory. This 313 
study mainly concerned with the development of optical sensing technique based on FTIR spectroscopy 314 
for adulteration detection in edible oils. Two types of oils such as palm oil and soybean oil were selected 315 
as adulterants. Rice bran oil was adulterated with palm oil at 5% increments upto 40% (v/v), while 316 
sunflower oil was adulterated with soybean oil at 10% increments upto 50% (v/v). FTIR spectra in the 317 
wave number interval of 4000–650 cm−1 were then collected at room temperature using a Perkin Elmer 318 
Universal ATR spectrophotometer (UATR-FT-IR, USA). Various pre-processing techniques such as first 319 
derivation, second derivative, multiplicative scatter correction (MSC), and standard normal variate (SNV) 320 
were separately applied to the spectral data prior to the development of multivariate model. Partial least 321 
squares regression (PLSR) was developed to correlate the FT-IR spectra of different oil samples and their 322 
corresponding level of adulteration. Cross validation using leave-one-out method was used during the 323 
calibration step to select the optimum number of LVs for PLSR model. It was determined at the minimum 324 
value of the root mean square error of cross-validation (RMSECV). Six different PLSR models were 325 
developed based on whole spectral range as well as selected spectral range. For all models, the level of 326 
adulteration in pure oil was predicted with determination coefficients (R2) of > 0.985. This study revealed 327 
that FT-IR spectroscopy coupled with PLSR can be successfully utilized as a rapid screening technique to 328 
detect and quantify the level of adulteration in edible oil.  329 
Adulteration of food products involves the replacement of high cost ingredients with inferior quality 330 
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substitutes. Expensive edible oil is sometimes adulterated with cheaper oil as a means of illegally 331 
increasing profit. Therefore, the challenge is to develop a cost effective and efficient analytical method to 332 
detect adulteration and confirm authenticity. Using FTIR spectroscopy coupled with multivariate analysis 333 
could be used as an alternative analytical tool to detect adulteration in sunflower oil and rice bran oil. 334 
Therefore, the laborious and time-consuming conventional analytical techniques could be replaced by 335 
spectral data to provide a rapid and nondestructive testing technique. More results compare with other 336 
analytical techniques need to be addressing to validate the models. 337 
 338 
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