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Abstract

This paper is about studying a 3-component mixture of the Inverted
Exponential distributions under Bayesian view point. The type-I right
censored sampling scheme is considered because of its extensive use in
reliability theory and survival analysis. The expressions for the Bayes
estimators and their posterior risks are derived under different loss sce-
narios. In case, no or little prior information is available, elicitation of
hyper parameters is given. In order to study numerically, the execution
of the Bayes estimators under different loss functions, their statistical
properties have been simulated for different sample sizes and test ter-
mination times. A real life data example is given to illustrate the study.
Graphical representation of the simulation analysis results is also given
to study the properties of the Bayes estimators.

Keywords: Bayes Estimators, Censoring, Informative prior, Loss Functions,
Posterior Risks.

1. Introduction

The exponential distribution is most commonly used in reliability studies but
its suitability is restricted to its constant hazard rates. When the failure rate is
monotonically increasing or decreasing, the two parameter weibull and the Gamma
distributions are appropriate for analyzing the life time data. Recently two new
distributions have been introduced the Generalized exponential(two parameter)
and the Inverted exponential(one parameter) distributions. When skewed distri-
butions is needed, then the Generalized exponential distribution can be used more
effectively. Gupta(1999) described several properties of the two parameter Gener-
alized exponential distribution. Dey (2007) investigated the Inverted exponential
as a lifetime model from a Bayesian viewpoint. Prakash (2012) examined the prop-
erties of Bayes estimators of the parameters, reliability function and hazard rate
under the symmetric and asymmetric loss functions for the Inverted exponential
distribution.

Mixtures models play an important role in many applicable fields such as
medicine, psychology, cluster analysis, life testing and reliability analysis. A fi-
nite mixture of some suitable probability distribution is recommended to study
a population that is supposed to comprise a number of subpopulations mixing in
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an unknown proportion. However, several researchers are interested with differ-
ent parameters of mixture distributions. The analysis of mixture models under
Bayesian framework has developed a significant interest among statisticians. Ma-
jeed (2012) described the Bayesian anlysis of 2-component mixture of Inverted
exponential distribution under quadratic loss function. Ali (2015) described the
2-component mixture of the inverse Rayleigh distributions under Bayesian frame-
work. Sultana and [;p,Aslam (2016) presented 3-component mixture of Inverse
Rayleigh distributions, properties and estimation under the Bayesian framework.

Several types of data are encountered in everyday life, regarding simple data,
grouped data, truncated data, censored data and progressively censored data.
Censoring is an inevitable part of the lifetime data. A valuable account of censoring
is given in Gijbles (2010) and Kalbfleisch and Prentice (2011). There are different
sorts of censoring schemes, including right, left and interval censoring, single or
multiple censoring and type-1 and type-II censoring.

Inspired by above mentioned applications of mixture models, we intend to study
Bayesian analysis of a 3-component mixture of the Inverted Exponential distribu-
tions with unknown mixing proportions. The parameters of component distribu-
tions are assumed to be unknown. Three different priors and three different loss
functions are used for the Bayesian analysis. Moreover, an ordinary type-I right
censored sampling scheme is used.

The rest of the paper is organized as follows. In section 2, 3-Component mixture
of Inverted Exponential(IE) distribution is presented. The likelihood function of
the mixture model is defined in section 3. Posterior distributions using the uniform
prior (UP), the Jeffreys’ prior (JP) and the inverse Gamma prior (IGP) are derived
in section 4. The BEs and PRs are derived using the UP, the JP and the IGP
under squared error loss function (SELF), precautionary loss function (PLF) and
DeGroot loss function (DLF) are presented in section 5, 6 and 7, respectively.
The limiting expressions are discussed in section 8. The simulation study for the
mixture model is given in section 9. A real life data application is given in section
10. This article concludes with a brief discussion in section 11.

2. 3-Component mixture of the Inverted Exponential (IE) Dis-
tributions

The probability density function (p.d.f) and the cumulative distribution func-
tion (c.d.f) of the IE distribution for a random variable X are given by:

(2.1) fm (x; θm) =
1

x2θm
exp

[
−
(

1

xθm

)]
, x > 0, θm > 0,m = 1, 2, 3.

(2.2) Fm (x) = exp

[
−
(

1

xθm

)]
, m = 1, 2, 3.

A finite 3-component mixture model with the unknown mixing proportions
p1and p2 is :

(2.3) f(x) = p1f1(x) + p2f2(x) + (1− p1 − p2)f3(x), p1, p2 ≥ 0, p1 + p2 ≤ 1

(2.4)
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f (x, θ1, θ2, θ3, p1, p2) = p1

(
1

x2θ1

)
exp

[
−
(

1

xθ1

)]
+ p2

(
1

x2θ2

)
exp

[
−
(

1

xθ2

)]
+ (1− p1 − p2)

(
1

x2θ3

)
exp

[
−
(

1

xθ3

)]
; p1,p2 ≥ 0, p1 + p2 ≤ 1

While the c.d.f of 3-component mixture model is:

(2.5) F (x) = p1F1 (x) + p2F2 (x) + (1− p1 − p2)F3 (x)

(2.6)

F (x) = p1 exp

[
−
(

1

xθ1

)]
+p2 exp

[
−
(

1

xθ2

)]
+(1− p1 − p2) exp

[
−
(

1

xθ3

)]
3. The Likelihood Function

Suppose ‘n’ units from the 3-component mixture of Inverted Exponential dis-
tributions are used in a life testing experiment with fixed test termination time t.
Let ‘r’ units out of ‘n’ units failed until fixed test termination time‘t’ and the re-
maining (n-r) units are still working. According to Mendenhall and Hader (1958),
there are many practical situations in which the failed objects can be pointed out
easily as subset of subpopulation-I, subpopulation-II or subpopulation-III. Out
of ‘r’ units, supposer1, r2 and r3units belong to subpopulation-I, subpopulation-
II or subpopulation-III respectively and such thatr = r1 + r2 + r3. Now we
definexlk,0 < xlk < t be the failure time of kthunit belonging to the lth subpopu-
lation, where l = 1, 2, 3 and k = 1, 2, ..., rl. For a 3-component mixture model, the
likelihood function can be written as

(3.1)
L (φ | x) ∝

{
r1∏
k=1

p1f1 (x1k)

}{
r2∏
k=1

p2f2 (x2k)

}{
r3∏
k=1

(1− p1 − p2) f3 (x3k)

}
× [1− F (t)]

n−r

After simplification, the likelihood function of 3-component mixture of IE distri-
butions is given:

(3.2)

L (φ|x) ∝
n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
(

1

θ1
)r1(

1

θ2
)r2(

1

θ3
)r3

× exp

{
− 1

θ1

(
r1∑
k=1

x−11k +
i− j
t

)}
exp

{
− 1

θ2

(
r2∑
k=1

x−12k +
j − l
t

)}

× exp

{
− 1

θ3

(
r3∑
k=1

x−13k +
l

t

)}
pi−j+r11 pj−l+r22 (1− p1 − p2)

l+r3

4. The posterior distribution using the non-informative and the
informative priors

In this section, posterior distributions of parameters given data, say x, are
derived using the non-informative (Uniform and Jeffreys’) and the informative
(Inverse Gamma) priors.
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4.1. The Posterior Distribution using the Uniform Prior (UP). When
elicitation of hyper parameters is difficult or little prior information is given, then
usually the non-informative prior is assumed to be the UP. Ups over the intervals
(0,∞) and (0, 1) are taken for the parameters (θ1, θ2&θ3) of IE distribution and
for the mixing proportions (p1, p2), respectively. With these settings, joint prior
distribution of parameters(θ1, θ2, θ3, p1, p2), as defined by Saleem (2010), is given
by:

(4.1) π1 (φ) ∝ 1; θ1, θ2, θ3 > 0, p1, p2 ≥ 0, p1 + p2 ≤ 1

The joint posterior distribution of parameters θ1, θ2, θ3, p1 and p2 given data x
assuming the UP is:

(4.2)

g1 (φ|x) =Λ−11

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)

× θ−(A11+1)
1 θ

−(A21+1)
2 θ

−(A31+1)
3 exp

(
−B11

θ1

)
exp

(
−B21

θ2

)
× exp

(
−B31

θ3

)
pA01−1
1 pB01−1

2 (1− p1 − p2)
C01−1

where A11 = r1 − 1, A21 = r2 − 1, A31 = r3 − 1, B11 =
∑r1
k=1 x

−1
1k + i−j

t ,

B21 =
∑r2
k=1 x

−1
2k + j−l

t , B31 =
∑r3
k=1 x

−1
3k + l

t , A01 = i− j + r1 + 1,
B01 = j − l + r2 + 1, C01 = l + r3 + 1

(4.3)

Λ1 =

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
B (A01, C01)

×B (B01, A01 + C01)
Γ (A11)

BA11
11

Γ (A21)

BA21
21

Γ (A31)

BA31
31

4.2. The posterior distribution using the Jeffreys’ prior (JP). According

to Jeffreys’ (1946, 1998), the JP is defined as p (θm) ∝
√
|I (θm)|,m = 1, 2, 3, where

I (θm) = −E
[
∂2f〈x|θm〉

∂θ2m

]
is the Fisher’s information matrix. The prior distributions

of the mixing proportions p1 and p2 are again taken to be the uniform over the
interval(0, 1). Under the assumption of independence of all parameters, the joint
prior distribution of (θ1, θ2, θ3, p1, p2) is:

(4.4) π2 (φ) ∝ 1

θ1θ2θ3
, θ1, θ2, θ3 ≥ 0, p1, p2 ≥ 0, p1 + p2 ≤ 1
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The joint posterior distribution of parameters θ1, θ2, θ3, p1 and p2 given data x
assuming the JP is:

(4.5)

g2 (φ|x) =Λ−12

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)

× θ−(A12+1)
1 θ

−(A22+1)
2 θ

−(A32+1)
3 exp

(
−B12

θ1

)
exp

(
−B22

θ2

)
× exp

(
−B32

θ3

)
pA02−1
1 pB02−1

2 (1− p1 − p2)
C02−1

whereA12 = r1, A22 = r2, A32 = r3, B12 =
∑r1
k=1 x

−1
1k + i−j

t , B22 =
∑r2
k=1 x

−1
2k + j−l

t ,

B32 =
∑r3
k=1 x

−1
3k + l

t , A02 = i− j + r1 + 1, B02 = j − l + r2 + 1, C02 = l + r3 + 1, and

(4.6)

Λ2 =
n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
B (A02, C02)

×B (B02, A02 + C02)
Γ (A12)

BA12
12

Γ (A22)

BA22
22

Γ (A32)

BA32
32

4.3. The Posterior Distribution using Inverse Gamma Prior (IGP). Let
us assume that the prior distributions of θ1, θ2 and θ3 are IGP with hyperpa-
rameters (a1, b1), (a2, b2) and (a3, b3), respectively and Bivariate Beta prior for
proportion parameters p1, p2 with hyperparameters (a, b, c). Again assuming in-
dependence of all parameters, the joint prior distribution of (θ1, θ2, θ3, p1, p2) is
given by:

(4.7)
π3 (φ) ∝ θ−(a1+1)

1 exp

(
− b1
θ1

)
θ
−(a2+1)
2 exp

(
− b2
θ2

)
θ
−(a3+1)
3 exp

(
− b3
θ3

)
× pa−11 pb−12 (1− p1 − p2)

c−1

The joint posterior distribution of parameters θ1, θ2, θ3, p1 and p2 given data x is:

(4.8)

g3 (φ|x) =Λ−13

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)

× θ−(A13+1)
1 θ

−(A23+1)
2 θ

−(A33+1)
3 exp

(
−B13

θ1

)
exp

(
−B23

θ2

)
× exp

(
−B33

θ3

)
pA03−1
1 pB03−1

2 (1− p1 − p2)
C03−1

where A13 = r1 + a1, A23 = r2 + a2, A33 = r3 + a3,M13 =
∑r1
k=1 x

−
1k1 + i−j

t + b1,

B23 =
∑r2
k=1 x

−
2k1 + j−l

t + b2, B33 =
∑r3
k=1 x

−
3k1 + l

t + b3, A03 = i− j + r1 + a,
B03 = j − l + r2 + b, C03 = l + r3 + c,and

(4.9)

Λ3 =

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
B (A03, C03)

×B (B03, A03 + C03)
Γ (A13)

BA13
13

Γ (A23)

BA23
23

Γ (A33)

BA33
33
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5. The Bayes estimators and posterior risks using the UP, the JP
and IGP under SELF

If d̂ is a Bayes estimator then ρ
(
d̂
)

is called posterior risk. Our purpose, in this

study, is to look for efficient Bayes estimators of the different parameters. The
SELF, defined as L (θ, d) = (θ − d)

2
,was introduced by Legendre to develop the

least squares theory. For a given prior, the Bayes estimator and posterior risk

under SELF are calculated as: d̂ = Eθ|x (θ) and ρ
(
d̂
)

= Eθ|x
(
θ2
)
−
{
Eθ|x (θ)

}2
,

respectively. The Bayes estimators and posterior risks using the UP, the JP and
IGP for parameters θ1, θ2, θ3, p1 and p2under SELF are obtained with their respec-
tive marginal posterior distributions are given below:

(5.1)

θ̂1v =Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v − 1)

BA1v−1
1v

Γ (A2v)

BA2v
2v

× Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

(5.2)

θ̂2v =Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v − 1)

BA2v−1
2v

× Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

(5.3)

θ̂3v =Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

× Γ (A3v − 1)

BA3v−1
3v

B (A0v, C0v)B (B0v, A0v + C0v)

(5.4)
p̂1v =Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

×B (B0v, C0v)B (A0v + 1, B0v + C0v)

(5.5)
p̂2v =Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

×B (A0v, C0v)B (B0v + 1, A0v + C0v)

(5.6)

ρ
(
θ̂1v

)
=Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v − 2)

BA1v−2
1v

Γ (A2v)

BA2v
2v

× Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)−
(
θ̂1v

)2
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(5.7)

ρ
(
θ̂2v

)
=Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v − 2)

BA2v−2
2v

× Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)−
(
θ̂2v

)2

(5.8)

ρ
(
θ̂3v

)
=Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

× Γ (A3v − 2)

BA3v−2
3v

B (A0v, C0v)B (B0v, A0v + C0v)−
(
θ̂3v

)2

(5.9)

ρ (p̂1v) =Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

× Γ (A3v)

BA3v
3v

B (B0v, C0v)B (A0v + 2, B0v + C0v)− (p̂1v)
2

(5.10)

ρ (p̂2v) =Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

× Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v + 2, A0v + C0v)− (p̂2v)
2

where v = 1 for the UP, v = 2 for the JP and v = 3 for the IGP.

6. The Bayes estimators and posterior risks using the UP, the JP
and IGP under PLF

Norstrom discussed an asymmetric PLF and also introduced a special case of

general class of PLFs, which is defined asL (θ, d) = (θ−d)2
d . The Bayes estimator

and posterior risk are:

d̂ =
{
Eθ|x

(
θ2
)} 1

2 , ρ
(
d̂
)

= 2
{
Eθ|x

(
θ2
)} 1

2−2Eθ|x (θ), respectively. The respective

marginal posterior distribution yields the Bayes estimators and posterior risk using
the UP, the JP and the IGP for parameters θ1, θ2, θ3, p1 and p2under PLF as:

(6.1)

θ̂1v =

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v − 2)

BA1v−2
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

} 1
2

(6.2)

θ̂2v =

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v − 2)

BA2v−2
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

} 1
2
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(6.3)

θ̂3v =

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v − 2)

BA3v−2
3v

B (A0v, C0v)B (B0v, A0v + C0v)

} 1
2

(6.4)

p̂1v =

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (B0v, C0v)B (A0v + 2, B0v + C0v)

} 1
2

(6.5)

p̂2v =

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v + 2, A0v + C0v)

} 1
2

(6.6)

ρ
(
θ̂1v

)
= 2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v − 2)

BA1v−2
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

} 1
2

−2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v − 1)

BA1v−1
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}

(6.7)

ρ
(
θ̂2v

)
= 2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v − 2)

BA2v−2
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

} 1
2

−2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v − 1)

BA2v−1
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}
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(6.8)

ρ
(
θ̂3v

)
= 2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v − 2)

BA3v−2
3v

B (A0v, C0v)B (B0v, A0v + C0v)

} 1
2

−2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v − 1)

BA3v−1
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}

(6.9)

ρ (p̂1v) = 2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (B0v, C0v)B (A0v + 2, B0v + C0v)

} 1
2

−2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (B0v, C0v)B (A0v + 1, B0v + C0v)

}

(6.10)

ρ (p̂2v) = 2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v + 2, A0v + C0v)

} 1
2

−2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v + 1, A0v + C0v)

}

7. The Bayes estimators and posterior risks using the UP, the JP
and IGP under DLF

DeGroot (2005) introduced the asymmetric loss function, L (θ) =
(
θ−d
d

)2
known

as DLF. The Bayes estimator and its posterior risk under DLF are: d̂ =
Eθ|x(θ2)
Eθ|x(θ)

andρ
(
d̂
)

=

1 − {Eθ|x(θ)}
2

Eθ|x(θ2)
, respectively. The Bayes estimators and posterior risks using the
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UP, the JP and the IGP for parameters θ1, θ2, θ3, p1and p2under DLF are:

(7.1) θ̂1 =

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v − 2)

BA1v−2
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}
{

Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v − 1)

BA1v−1
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}

(7.2) θ̂2 =

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v − 2)

BA2v−2
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}
{

Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v − 1)

BA2v−1
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}

(7.3) θ̂3 =

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v − 2)

BA3v
3v − 2

B (A0v, C0v)B (B0v, A0v + C0v)

}
{

Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v − 1)

BA2v
2v

Γ (A3v − 1)

BA3v−1
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}

(7.4) p̂1 =

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (B0v, C0v)B (A0v + 2, B0v + C0v)

}
{

Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (B0v, C0v)B (A0v + 1, B0v + C0v)

}
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(7.5) p̂2 =

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v + 2, A0v + C0v)

}
{

Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v + 1, A0v + C0v)

}

(7.6) ρ
(
θ̂1

)
= 1−

{
λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v − 1)

BA1v−1
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v − 2)

BA1v−2
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}

(7.7) ρ
(
θ̂2

)
= 1−

{
λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v − 1)

BA2v−1
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v − 2)

BA2v−2
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}

(7.8) ρ
(
θ̂3

)
= 1−

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v − 1)

BA3v−1
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v − 2)

BA3v−2
3v

B (A0v, C0v)B (B0v, A0v + C0v)

}
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(7.9) ρ (p̂1) = 1−

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (B0v, C0v)B (A0v + 1, B0v + C0v)

}2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v + 2, A0v + C0v)

}

(7.10) ρ (p̂2) = 1−

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v + 1, A0v + C0v)

}2

{
Λ−1v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)
i

(
n− r
i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v + 2, A0v + C0v)

}

8. Limiting Expressions

Letting t → ∞, all the observations that are incorporated in our analysis are
uncensored and therefore r tends n, r1tends to the unknown n1, r2 tends to the un-
known n2 and r3 tends to the unknown n3. As a result, the amount of information
contained in the sample expands, which results in the depletion of the variance of
the estimates.

9. Simulation Study

Simulation study is conducted in order to investigate the role of our derived
Bayes estimators in terms of three different loss functions. Different set of the
parametric values (θ1, θ2, θ3, p1, p2) = (2, 3, 4, 0.30, 0.50), (4, 3, 2, 0.50, 0.30),
(3, 3, 3, 0.40, 0.40). For fixed sample size, test termination time and set of pa-
rameters, the simulation is repeated 1000 times and the results are then averaged.
Sample of sizes p1n, p2n and (1− p1 − p2)n are chosen randomly from first com-
ponent densityf1 (x; θ1), second component density f2 (x; θ2) and third component
densityf3 (x; θ3), respectively. The observations which are greater than a fixed t
are declared as censored observations. For each t only failures have been examined
either as a member of subpopulation-I or subpopulation-II or subpopulation-III.
On the basis of each sample size, the BEs and PRs are computed using the in-
formative and non-informative priors under SELF, PLF and DLF.To obtain BEs
under informative priors, hypeparameters are chosen in such a way that prior mean
become the expected value of the corresponding parameter.
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Figure 1. Graphs of BEs and BPRs θ1 under SELF
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Figure 2. Graphs of BEs and BPRs of θ2 under PLF
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Figure 3. Graphs of BEs and BPRs of θ3 under DLF

In order to evaluate the impact of test termination time on Bayes estimators,
the Type-I right censoring scheme is used for fixed test termination time t=15
and 20. For each of the 1000 samples, the Bayes estimators and Posterior risks
were calculated using a routine in Mathematica 10.0. The simulation study gives
us some interesting characteristics of the BEs. The properties have been fore-
grounded in terms of sample sizes, size of mixing proportion parameters, different
loss functions and censoring rates. It is noticed that because of censoring, the
posterior risks of all the parameters are reduced with an increase in sample size.
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Figure 4. Graphs of BEs and BPRs of p1 under SELF
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Figure 5. Graphs of BEs and BPRs of p2 under DLF
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Figure 6. Graphs of BEs and BPRs of θ1 using UP

The graphs are based on simulation analysis results corresponding to the different
prior distributions and various loss functions. In Fig.1-5, the UP, the JP and the
IGP are represented by (red, yellow and blue) colors while in Fig.6-10, SELF, PLF
and DLF are represented by (red, yellow and blue) colors respectively. It is noticed
from these results that Bayes estimates perform well under all priors with slight
variation. When using IGP, underestimation is observed in BEs for all parametric

Ph.D Scholar
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Figure 7. Graphs of BEs and BPRs of θ2 using JP
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Figure 8. Graphs of BEs and BPRs of θ3 using IGP
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Figure 9. Graphs of BEs and BPRs of p1 using UP

values considered. Underestimation increases for SELF, but underestimation for
the gained BEs improves with increasing the sample size.

10. A Real Life Data Application

Davis (1952) reported the real mixture data on lifetimes of many components
used in aircraft sets.To illustrate the proposed methodology, we take the data
on three components namely, transmitter tube, combination of transformers and
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Figure 10. Graphs of BEs and BPRs of p2 using IGP

combination of relays. Tahir (2015) used this data for 3-Component mixture of
the exponential distributions. We used this data for 3-Component mixture of the
inverted exponential distributions by using the inverse transformation. To have
a type-I right censored data, we fix t=0.029. The sample statistics required to
evaluate the proposed estimates are as follows:
n = 702, r1 = 310, r2 = 148, r3 = 181, r = 639, n− r = 63,∑r1
k=1 x

−1
1k = 5.6958,

∑r2
k=1 x

−1
2k = 2.1722,

∑r3
k=1 x

−1
3k = 3.5284

The BEs and PRs using the UP, the JP and the IGP under SELF, PLF and DLF
are presented in the table 1 .

From the above table, it is noticed that results obtained through real data are
compatible with simulation results.

11. Conclusion

In this paper, we have considered the Bayesian estimation of 3-component mix-
ture of Inverted Exponential distributions using the non-informative (Uniform and
Jeffreys’) and the informative (Inverse Gamma) priors under SELF, PLF and DLF.
The purpose of this paper is to disclose the appropriate combinations of prior distri-
butions and loss functions to estimate the parameters of the 3-component mixture
of the Inverted Exponential distributions. We conducted a extensive simulation
study to regulate the relative performance of the Bayes estimators. From simu-
lated results, we observed that an increase in the sample size and test termination
time provides better Bayes estimators. Furthermore, as sample size increases (de-
creases) the posterior risks of Bayes estimators decreases (increases) for a fixed
test termination time. Also, the DLF is observed as a suitable choice for estimat-
ing component parameters and SELF is preferable for estimating the proportion
parameters. Finally, we conclude that the IGP is suitable prior in order to esti-
mate the component parameters. When SELF is used, the IGP is an appropriate
prior for proportion parameters. The same pattern is observed for the JP when
non-informativse priors are considered.

In case of non-informative priors,overestimation is found when uniform prior is
used. But the problem of overestimation exists only for small samples. PRs using
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Table 1. Bayes estimates (BEs) and posterior risks (PRs) of 3-
component mixture of inverted exponential distributions using the UP,
the JP, and the IGP under SELF, PLF and DLF with Davis(1952)
mixture data

Prior Loss Functions θ̂1 θ̂2 θ̂3 p̂1 p̂2

UP SELF BE 0.01849 0.01488 0.01971 0.48442 0.23209
PR 0.000001 0.000002 0.000002 0.000388 0.000277

PLF BE 0.01852 0.01493 0.01977 0.48482 0.23268
PR 0.000060 0.000102 0.000111 0.000801 0.001193

DLF BE 0.01855 0.01498 0.01982 0.48523 0.23328
PR 0.003247 0.006849 0.005587 0.001652 0.005119

JP SELF BE 0.01843 0.01478 0.01960 0.48442 0.23209
PR 0.000001 0.000001 0.000002 0.000388 0.000277

PLF BE 0.01846 0.01483 0.01966 0.48482 0.23268
PR 0.000060 0.000101 0.000109 0.000801 0.001193

DLF BE 0.01849 0.01488 0.01971 0.48522 0.23328
PR 0.003236 0.006803 0.005556 0.001652 0.005119

IGP SELF BE 0.000005 0.000009 0.000007 0.00011 0.00005
PR 0.000001 0.0000004 0.000002 0.000052 0.000012

PLF BE 0.02487 0.04156 0.03063 0.48468 0.23303
PR 0.000080 0.000279 0.000169 0.000799 0.001188

DLF BE 0.02490 0.04170 0.03071 0.48508 0.23363
PR 0.003226 0.006711 0.005525 0.001648 0.005092

Jeffreys prior are smaller than PRs obtained under uniform prior. So, the perfor-
mance of Jeffreys prior can be concluded to be better as it produces elegant BEs
and the differences among PRs is negligible. It is also examined that PRs is higher
for higher parametric values and smaller for smaller values of parameters. In gen-
eral,Posterior risk(DLF)<Posterior risk(PLF)<Posterior risk(SELF) for the com-
ponent parameters.For the proportional weights,Posterior risk(SELF)<Posterior
risk(PLF)<Posterior risk(DLF). The same interpretation is obtained in the graphs
(Fig.1-10) of the simulation results.
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