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Abstract

Typhoid fever is an endemic infectious disease that can be classified as enteritis
disease, Salmonella Typhiis causative agent of typhoid fever in humans and it’s
transmitted through food and water contaminated with faeces and urine of an
infected person [3].The disease is endemic in developing countries where there is
unsafe water supply, poor food hygiene and also wanting environmental
sanitation .Incubation period is 7 to 14 days. General symptoms and effects of
typhoid are the following headache, stomachache, Joint ache, backache, and
muscle pain, loss of appetite, vomiting, diarrhea, rashes and fever. According to
World Health Organization an estimated 17 million illness cases of typhoid fever
were reported per year worldwide resulting to 0.6 million deaths annually[4,5].

In this study we have develop a deterministic mathematical model for spread
dynamics of typhoid fever disease incorporating unprotected humans. The model
result into a system of ordinary differential equations which are used for
interpretations and comparison to the qualitative solutions in study the spread
dynamics of typhoid fever. The model incorporating Susceptible, unprotected,



Infectious and Recovered humans which are analyzed mathematically. The
existence of steady states of the mathematical model is determined. More so we
have determined positivity of a solution and finally computed the basic
reproductive number using next generation matrix.
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Introduction

Typhoid fever is an endemic infectious disease that can be classified as enteritis
diseases, and itis caused by presence of bacterium called Salmenella Typhi in the
human body. The disease is a common infectious disease in human beings and
it’s transmitted through food and water contaminated with faeces and urine of an
infected person [3].The disease is endemic in developing countries where it
continuously causes illness and death. This is brought about by unsafe water
supply, poor food hygiene and also wanting environmental sanitation.

Incubation period is 7 to 14 days. General symptoms and effects of typhoid are
the following; headache, stomachache, Joint ache, backache, muscle pain, loss
of appetite, vomiting, diarrhea, rashes and fever. According to World Health
Organization an estimated 17 million illness cases of typhoid fever were reported
per year worldwide resulting to 0.6 million deaths annually[4,5]. Typhoid fever is
an endemic disease that is classified as an enteritis disease. The disease is
caused by a bacterium called Salmonella Typhi. Itis a common infectious disease
in human beings and is transmitted through food and water contaminated with
faeces and urine of an infected person [3].The disease is endemic in developing
countries where it continuously causes illness and death. This is contributed by
unsafe water supply, poor food hygiene and wanting environmental sanitation.
According to World Health Organization an estimated 17 million illness cases of
typhoid fever were reported per year worldwide resulting to 0.6 million deaths
annually[4,5].

1. Description and model formulation

We formulated a deterministic model for spread dynamics of typhoid fever that
considers human population at time t. The model is divided into four
compartments as follows. Susceptible(S), Unprotected (E), Infective (I) and
Recovered(R).The model has the following flow. S > E—I —>R—S .We use the
following parameters in our model.(i) # is the natural death rate (ii) & is the
disease induced death rate.(iii) A human recruitment rate (birth). (iv) fdisease
interaction rate .(v) Q unprotected symptoms showing rate(vi) ¥ Infective recovery
rate and finally(vii) o this is the rate at which recovered humans loses temporary
immunity obtained through treatment and get the disease back again. All the

compartments are positive in the feasible region ¢ where{S, E, I, R}le pc R} . All

the solutions are also bounded in¢@ such thatOSNSA . Thus the model is
Y7,



epidemiologically well posed in the region .

The following flow chart shows various compartments in the model.

The model dynamics results to four differential equations as shown equationl.
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2. Disease free equilibrium point and endemic equilibrium point

The disease free equilibrium of the model is obtained by setting



s _dE_dl_dR_
dt dt dt dt

In absence of disease
E=0,I1=0,R=0
Setting the right hand side of equations of system 1 to zero we have

A+OR—-BSI—uS =0.
BSI-QF —uE =0

QE -yl —ol —ul =0

yI —0R—uR=0 (2)

Using equation 1 and 2 then equating E,I and R to zero.

Making S the subject

A+SR—BSI-uS =0.

A-uS=0
s =2
u

Hence model has a disease free equilibrium given by

(S'E'I'R") = (A,O, 0, Oj (3)
u

The basic reproductive number (R,)which is average number of secondary

infections caused by one infectious individual introduced in a completely
susceptible population is obtained using next generation matrix as

BAQ
w(Q+p)(at+p+y)

SQ
) = P where at disease free equilibrium R, =
(Q+p)(a+p+7)




Theorml

1 (a+p+7)
PA-u(o+p+7y)
not have a hand in the population.

If Q< , there disease free equilibrium will be stable and typhoid disease will

Proof

When R <1 ; this means that B .
pQ+w(atpty)
M (at+p+7)

Making Q the subject, Q<
BA-u(a+p+y)

Disease free equilibrium point therefore is locally asymptotically stable if the
basic reproduction number (R,) less than one (R, <1) and unstable if the basic

reproduction number is greater than (R, >1).

3. Endemic equilibrium point

Endemic equilibrium E, ; disease exists. Evaluating the state variables of
equations of the system 2, the endemic equilibrium points are in this form

Where
S**:(Q+,u)(}/+0(+,u)
Qp
v (rra+p)(S+u){AQS — u{(Q+u)(y+a+u)}
pR{(S+u)(Q+u)(y+a+u)}- K6
o (Oru)  AQB - u{(Q+p)(r+a+u)}
B A{(6+u)(Q+u)(yra+u)}- K5
oo A8 - pu{(@+u)(r+ati)
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4, Stability of endemic equilibrium

4)

Proof: By the use of lyapunov function defined by LaSalle [1976]
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computing the derivative of L along the solutions of the system is directly:
dL _(s-s"\dS (E-E"\dE (I-1")dl (R-R" \dR

—= —+ —+ —+ — (5)
dt s dt E dt I dt R dt

Substituting the equations of system 1 in equation 5, the equation becomes
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Expanding equation 6, it produces

(6)
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Further simplification result to
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From equation it’s clear that ; C;— = A—B.Where A are the positive terms and B are the
t

negative ones, such that;

A=A+SR+(BI+u)S™ +BSI+(Q+u)E" +QE+(y+a+u)l +yl+(5+u)R”™
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IfA<B then%SO
dt

‘;—L:O Onlyif S=S",E=E",I=1",R=R"
t



The largest invariant set in {(S, E, I, R)e (/):%:O} is a singleton E; Where E; is the

endemic equilibrium. Therefore, the endemic equilibrium is globally asymptotically stable
in the invariant region¢ ifA<B [1,2]

Conclusion.

@ (a+p+y)
PA-u(o+p+7y)

From our finding if Q< , there disease equilibrium will be stable and typhoid

w1 (a+p+7y)
BA-p(a+p+y)’
then disease will be dependent on prevailing circumstances. We also performed
numerical simulations to determine the changes in various compartments with
time using MATLAB ode solve software. There is direct variation relationship
between the unprotected and infectious compartments, therefore the unprotected
humans contribute significantly to the spread dynamics of typhoid fever disease.

disease will not have a hand in the population. However if Q>
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