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A Family of High Order One-Block Methods for the Solution of Stiff Initial Value Problems

Abstract.

In this paper, we construct a family of high order self-starting one-block numerical methods for
the solution of stiff initial value problems (IVP) in ordinary differential equations (ODE). The
Reversed Adams Moulton (RAM) methods, Generalized Backward Differentiation Formulas
(GBDF) and Backward Differentiation Formulas (BDF) are used in the constructions. The E-
transformation is applied to the triples and a family of self-starting methods are obtained. The
family is L —stable for k£ <7. The numerical implementation of the methods on some stiff
initial value problems are reported to show the effectiveness of the methods. The
computational rate of convergence tends to the theoretical order as h tends to zero.
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1.0 Introduction

The focus of many researchers is to construct methods that are stable and with improved level of
accuracy, for the solution of first and higher order ordinary differential equations. See [1, 2, 9,
10, 11, 12, 13]. In this paper, we focus on the construction of a family of block methods that
exhibits the above properties (stability and accuracy) for the numerical solution y(¢) of the initial
value problem
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The Reversed Adams Moulton (RAM) methods are generally written as
k
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(see [4]). They are therefore generally zero stable. The determination of the coefficients
k
{ﬁ},_o is done by imposing the maximum order k£ +1 on the method (2). This leads to the

matrix equations
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which is solved simultaneously for the coefficients (see [4], [1]).

1.1 The Backward Differentiation Formulas (BDF)

A k-step BDF introduced in [5] is a linear multistep formula that has order p = k and error

constant Cp+1 = ——when the coefficient of the derivative function is normalized to one.
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They are popular for the solution of stiff differential equations (1). They have the general

formula
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The coefficients {aj}jzl are uniquely determined by imposing the order k on (4) which leads

to the matrix equation
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which are solved simultaneously. The methods have been shown in ([1], [3], [8]) to be zero
stable for k <6, and zero unstable for £ > 7.

1.2 The Generalized Backward Differentiation Formulae (GBDF):

This class of methods introduced in [4] has the form

k
Z Y, =M, , (6)
i=0

forallk =21, where

k42—2, for even k,
j=
(7)
%, for odd k.

It implemented by coupling it with some set of initial and final additional methods. While BDF
are O-unstable, for k > 6, GBDF though cannot be used as single integrator, provide

Oj,k—j — Stable , A, —Stable methods forall k <32 .

2. Construction of the new self-starting block methods

The methodology for the construction is captured in the following theorem [2]:

Theorem

. . m,K
Let the multi-family of LMF {P;EJ] (R), o ;EJ] (R)} j=1,k=1 be given, that is,



plE,/] (E)y,, — hGIE./] (E)fn : ] = 1(1)m, k = 1(1)K (8)

with {,O,Ej] yO ,Ej] } for a fixed j forming a family of variable order P, j of variable step number

k. Then the resultant system of composite LMF

E'pV(E)y, =hE'cVIE)f, ; i=0Q)k-1; j=12,...m (9)

arising from the E-operator transformation of (8) can be composed as the block method

A1Yn+l + AOYn = h(Ban+1 + BOFn)/' det(Al) * 0 (10)
if k is chosen such that | is an integer given as
m+k(m-—2
| = ( );meZamk;IZO (11)
m-—1
where Yn+1 ) Yn , E,+1 and Fn n=0,1,2,... are vectors as defined below and
A11 Ao ) B]_! Bo are square matrices also defined below for a fixed m.
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n=0,12,...

Proof:

Notice that the E-operator is effectively applied k-/ times on the system of LMF {P;Ej], U;E'j] }k’j .
Thus there are 2k-/ unknown solution points captured in the block of solution

Y .= (y,ﬁl, Vosoreoa Voroka )T . By this the block definition in (11) is realized if the

coefficient matrices Al, Ao, Bl, Bo are square matrices of dimension (2k - l) X (Zk — l).

This simply imply that 7 + Wl(k — l) =2k —1 sothat /is as in (12) and for a fixed m the k is

then chosen such that K —/ >0 -

In particular:

1)ym=2;1=2 k=234,..
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When k£ —/ =0 , the method requires no shifting, this is so if m=k. However, the case of
interest in this paperis when m = 3.

Consider the triple of k-step LMF defined by [,01,0'1] , [,02 ) O'g] and [/Og,O'g] Shifting this (k-
k+3

/) times, where l:—, we have a set of 2k-/ equations in 2k-/ unknowns which can be

2
written in the block form (10).

3 Stability of the Implicit Block Methods

When (10) is applied to test equation

y'=1y,Re(1)<0 (14)



it yields the characteristics equation.

7(R,z)=det(4,R+ A, —z(B,R+ B,)) (15)
The region of absolute stability RA associated with (10) is the set

R, ={z:|R,(2)| <1, j =1(1)k} (16)

If we let z —> 0 in (15), the difference system becomes

7(R,0) =det(4,R+ 4,) (17)
All the proposed block methods can be cast in the form
AlYn+l +ayn :h(Ban+l +bfn) (18)
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Note that for all the block methods, Al_la = (1 1 1...1)T =e
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implying that

1

To see this, assume order p > Ltor all the LMF that constitute the block, then by consistency,
Ae+a=0 (20)
where € = (1 1 1---1)T . From (20) it follows that
A, "a=
1 a=-—¢€ (21)

The above ensures zero-stability of the implicit block methods (10). Method (10) applied to test
equation can also be written as

Y , =M(2)Y,, z=72h (22)
where
M(z)=(- ZAl_lBl)_l (ZAl_lBO - Al_lAO) (23)

is the amplification matrix. If as z tends to infinity (23) tends to zero (that isM () =0 ), it

means that an A-stable (10) is L-stable. If we take [,01,0'1] , [/02 ) 02] and [,03 . 0'3] to be RAM,
GBDF and BDF respectively, then the coefficients of order 3 method
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Coefficients of order 5 method
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2713 15487 586 6737 263 863 0 0
2520 20160 945 20160 2520 60480
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
19087 2713 15487 586 6737 263 863 0 0
— | 60480 2520 20160 945 20160 2520 60480
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 19087 2713 15487 586 6737 263 863 0
60480 2520 20160 945 20160 2520 60480
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

The stability function P(z) is
P(2) = Det[I, R~ M(2)] = R (R~ D(2)) 2

The stability domain S of this family is

S={zeC: ‘R(z)‘ <1} (25)

The D(Z) (the only non-zero value of R(z)) for this family of methods are given as a rational
P(z

function D(z) = % . where P{z) and Q(z) are polynomials.

Case of order p = 3

138 + 168z + 6122

D@ = 138 2467 + 17822 — 4825
Case of order p =5
D(z)
(645924960 + 1787505120z + 2201902944z% + 152787792623 + 577756622z* +

_ 20012481z°)
(645924960 — 2088044640z + 310352150422 — 276174613823 + 1574505578z* —
543891495z> + 87044400z°)

Case of orderp =7




D I hllliB5165161473748003840+ 4402051392159709142400 z + 9312055882371249355800 Z°
12274578010036761849000 Z3 + 11100796369466865874824 Z* + 7050165866520364682%
L; 2055348233158592799595 z° + 519376147126246691525 7' + 1449168336336045000 22
165161473748003840- 4464435061104022892160 z + 9592782392620661229720 Z° -
12948410667896644552560 K + 139385652807891884 z* - 8515729260833432221944 7°
+ 4431438472960053812 . Jl5273338089451901240 7’ + 415880799121310628000 Z° -
51054324417768672000 Z°

Definition1: A block method is said to be pre-stable if the roots of Q(Z) are contained in C .

For the cases of orders 3, 5 and 7 above D(Z) has no negative pole on C™ .Inall the cases,

the roots of Q(Z) are contained in C " as shown below:

roots for case: k=3 are {{z - 1.0187340384857744 — 0.8263451688443794i},{z —
1.0187340384857744 + 0.8263451688443794i},{z — 1.6708652563617843}}

roots for case: k=5 are {{z — 0.5496503163387506 — 1.3267991841349167i},{z -
0.5496503163387506 + 1.3267991841349167i},{z - 1.151541041151053 —
0.6310368906999217i},{z —» 1.151541041151053 + 0.6310368906999217i},{z —
1.4230274032805632 — 0.24822115565736874i},{z — 1.4230274032805632 +
0.24822115565736874i}}

roots for case: k=7 are {{z = 0.12805543041947612 — 1.6041775714692936i},{z =
0.12805543041947612 + 1.6041775714692936i},{z — 0.7828629304247531 —
0.9771613463405875i},{z — 0.7828629304247531 + 0.9771613463405875i},{z —
1.052641898979391 — 0.30282200428785017i},{z — 1.052641898979391 +
0.30282200428785017i},{z — 1.2966180420834268 — 0.8693941685370542i},{z —
1.2966180420834268 + 0.8693941685370542i},{z — 1.6254920361214837}}

The one step block method is A-stable if and only if it is stable on the imaginary axis (/-stable):
D(iy) <1 for ally € R, and D(z) is analytic for D(z) <0 (i.e., O(z) does not have roots

with negative or zero real parts), I-stability is equivalent to the fact that the Norsett polynomial
defined by



.2 . 7|2 ) . . )

E(y)=|0Gy)| —|P)| = Q(ir)O(=iv) - P(iv) P(~iy) (26)

satisfies E(y) >0 for all ye R, see [7]. In each of the cases of order p = 3, 5, 7, (26) is
satisfied and D(Z) —>0asz 5w implying that the methods are L-stable for k <7

4 Numerical implementation

Problem 1: (cf: [4])

21 19 -20
y =] 19 -21 20 |y: »(0)=]| 0
40 —40 - 40 ~1

The theoretical solution of the problem is:

e + e (cos(40¢) + sin(40¢))
e ? —e " (cos(40¢) + sin(40¢))
2¢ %" (sin(40¢) — cos( 40¢))

y(t) =

N |-

Problem 2: (cf: [6])

dy _ .
dt—f(y), t [0, T]

The function fis defined by

—kyy,+k,y,y; 1
f(y)= klyl_kzyzys_k3y22 ;v(0)=|0
k3y22 0

k, =0.04; k,=10"; k, =3.10 "

Problem 1 is solved using order p=3, 5, 7 and 9. The error and rate of computational
convergence are displayed in table 1. It can be seen that the rate of computational convergence
is tending towards the theoretical order as h tends to 0 except for the method of order 9 which
exhibit order reduction The error in order 3 when used to solve problem 1 is plotted against the
step size h and displayed in figure 1.



Table 1: Error and order of convergence of RAM/GBDF/BDF p=3, 5, 7,9

H Error rate | Error Rate | Error Rate Error rate
le-2 2.697e-02 6.136e-02 4.641e-02 7.166e-02
5e-3 4.879e-03 2.47 | 2.735e-03 | 4.49 | 3.231e-03 3.84 1.047e-03 6.10
2.5e-3 6.510e-04 2.91 | 7.608e-05 | 5.17 | 3.889e-05 6.38 6.234e-06 7.39
1.25e-3 | 8.363e-05 2.96 | 2.357e-06 | 5.01 | 3.909e-07 6.64 3.803e-08 7.36
6.25e-4 | 1.061e-05 2.98 | 7.192e-08 | 5.03 | 3.431e-09 6.83 2.753e-10 7.11
5
D | | |
8.01 0.609 0.608 0.607 0.606 0.(;05 0.(;04 0.(;03 70:)%(5;70.0‘01 (5

Figure 1: Error in the proposed method of order p=3 for problem 1 versus h.
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Figure 2: Slope for order 3 method.

Comparing figures 1 and 2, it is observed that the computational convergence rate and the
theoretical rate of convergence have the same slope for order 3 method.

Problem 2 is a Chemical Kinetics Problem. It is solved using order 5 of the proposed method and
constant step size h = 0.0001. The error tolerance for accuracy in the Newton-Raphson iteration
is set at 102 The errors in the table 2 are the maximum absolute values of the difference
between approximate solution of the proposed method and that of MATLAB ODE15s (which is
assumed to be the exact solution of the problem).

Table 2: Errors from proposed method, k=5; p=5 when applied to problem 2

T 2.00 5.00 7.5 10.00

Errors 2.30e-006 4.20e-006 4.41e-005 7.19e-005

5 Conclusion:

We have constructed a family of high order self-starting one-block methods using multistep
triple. This family is zero stable for all £ >3, /-stable for k& <7 and exhibit order reduction for

k =9 . The numerical examples considered showed that the methods are comparable to the
existing ones.
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