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Abstract. We will show how the structure of the Kreiger graph and the

Fischer cover of an irreducible subshift is related to the dynamical properties
of that system. Also an extension of a half synchronized system called weak

synchronized has been considered.

1. Introduction

One of the most studied dynamical systems is a subshift of finite type (SFT).
An SFT is a system whose set of forbidden blocks is finite [8]; or equivalently,
X is SFT iff there is M ∈ N such that any block of length greater than M is
synchronizing. Recall that a block m is synchronizing if whenever v1m and mv2 are
both blocks of X, then v1mv2 is a block of X as well. If an irreducible system has at
least one synchronizing block, then it is called a synchronized system and examples
are sofics where they are factors of SFT’s. Synchronized systems, has attracted
much attention and extension of them has been of interest since that notion was
introduced [5]. One was via half synchronized systems; that is, systems having half
synchronizing blocks. In fact, if for a left transitive point such as rm and mv any
block in X one has again rmv ∈ X− = {x− := · · ·x−1x0 : x = · · ·x−1x0x1 · · · ∈
X}, then m is called half synchronizing [5]. Clearly any synchronized system is half
synchronized. Dyke (or Dyck!) subshifts and certain β-shifts are non-synchronized
but half synchronized systems [9].

In 1992, Fiebigs in [5], as an extension to the Fischer cover of a synchronized
system, introduced a unique component of the Kreiger graph as the Fischer cover
of a half synchronized subshift. Here in Section 3, we will introduce the notion of
a regular weak synchronized subshift and then in Section 5, we will show which of
the components of the Kreiger graph of such a subshift could be a candidate to be
suitable for a Fischer cover. Meanwhile in Section 4, we will show how the structure
of the Kreiger graph of a subshift X and its dynamical properties are related. In
Section 5, we collect results showing how the Fischer cover and dynamical properties
of X are interrelated.

2. Background and definitions

This section is devoted to the very basic definitions in symbolic dynamics. The
notations has been taken from [8] and [5] for the relevant concepts.

First we present some elementary concept from [8]. Let A be an alphabet, that
is a non-empty finite set. The full shift A-shift denoted by AZ, is the collection of
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all bi-infinite sequences of symbols in A. Equip A with discrete topology and AZ

with product topology. A block or word over A is a finite sequence of symbols from
A. It is convenient to include the sequence of no symbols, called the empty block
which is denoted by ε. If x is a point in AZ and i ≤ j, then we will denote a block of
length j−i+1 by x[i, j] = xixi+1 . . . xj . If n ≥ 1, then un denotes the concatenation

of n copies of u, and put u0 = ε. The shift map σ on the full shift AZ maps a point
x to the point y = σ(x) whose i-th coordinate is yi = xi+1. By our topology, σ
is a homeomorphism. Let F be the collection of all forbidden blocks over A. For
a full shift AZ, define XF to be the subset of sequences in AZ not containing any
block from F . A shift space or a subshift is a subset X of a full shift AZ such that
X = XF for some collection F of forbidden blocks.

Let Bn(X) denote the set of all admissible n-blocks. The language of X is the
collection B(X) = ∪nBn(X). A shift space X is irreducible if for every ordered
pair of blocks u, v ∈ B(X) there is a block w ∈ B(X) so that uwv ∈ B(X). It is
mixing if for every ordered pair u, v ∈ B(X), there is an N ∈ N such that for each
n ≥ N there is a block w ∈ Bn(X) such that uwv ∈ B(X). A shift space X is called
a shift of finite type (SFT) if there is a finite set F of forbidden blocks such that
X = XF . A shift of sofic is the image of an SFT by a factor code (an onto sliding
block code). Every SFT is sofic [8, Theorem 3.1.5], but the converse is not true [8,
Page 67].

Let G be a graph with edge set E = E(G) and the set of vertices V = V(G). The
edge shift XG is the shift space over the alphabet A = E defined by

XG =
{
ξ = (ξi)i∈Z ∈ EZ : t(ξi) = i(ξi+1)

}
.

Each edge e initiates at a vertex denoted by i(e) and terminates at a vertex t(e).
A labeled graph is a pair G = (G, L), where G is a graph with edge set E , and

the labeling L : E(G) → A assigns to each edge e of G a label L(e) from the finite
alphabet A. For a path π = π0 . . . πk, L(π) = L(π0) . . .L(πk) is the label of π. By
πu we mean a path labeled u.

Let L∞(ξ) be the sequence of bi-infinite labels of a bi-infinite path ξ in G and
set

XG := {L∞(ξ) : ξ ∈ XG} = L∞(XG).

We say G is a presentation or cover of X = XG . In particular, X is sofic if and
only if X = XG for a finite graph G [8, Proposition 3.2.10].

In this part we collect some information from [5]. Let X be a subshift and x ∈ X.
Then, x+ = (xi)i∈Z+ (resp. x− = (xi)i≤0) is called right (resp. left) infinite X-ray.
Let X+ = {x+ : x ∈ X} and X− = {x− : x ∈ X}. For a left infinite X-ray, say x−,
its follower set is w+(x−) = {x+ ∈ X+ : x−x+ ∈ X} and for m ∈ B(X) its follower
set is w+(m) = {x+ ∈ X+ : mx+ ∈ X+}. Analogously, we define predecessor sets
ω−(x+) = {x− ∈ X− : x−x+ ∈ X} and ω−(m) = {x− ∈ X− : x−m ∈ X−}.

Consider the collection of all follower sets ω+(x−) as the set of vertices of a
graph. There is an edge from I1 to I2 labeled a if and only if there is an X-ray x−
such that x−a is an X-ray and I1 = ω+(x−), I2 = ω+(x−a). This labeled graph is
called the Krieger graph for X. A block m ∈ B(X) is synchronizing if whenever
um and mv are in B(X), we have umv ∈ B(X). An irreducible shift space X
is synchronized system if it has a synchronizing block. A block m ∈ B(X) is half
synchronizing if there is a left transitive point x ∈ X such that x[−|m|+1, 0] = m and
ω+(x(−∞, 0]) = ω+(m) which is called the magic vertex in the Krieger graph. If X
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is a half synchronized system with half synchronizing m, the irreducible component
of the Krieger graph containing the vertex ω+(m) is denoted by X+

0 and is called
the right Fischer cover of X.

3. Weak synchronized systems

Definition 3.1. Assume X is an irreducible subshift. Then, X is called right
(resp. left) weak synchronized system if there is a block m of X and a point
x ∈ X such that x[−|m|+1, 0] = m (resp. x[0, |m|−1] = m) and ω+(x(−∞, 0]) = ω+(m)
(resp. ω−(x[0,∞)) = ω−(m)) that we call m a right weak synchronizing (resp. left)
block of X. Then, ω+(m) is called a weak synchronized vertex.

Note that if x was left (resp. right) transitive, then by definition, X would be
right (resp. left) half synchronized system and so any half synchronized system is
a weak synchronized system.

Here, whenever we say “weak synchronizing”, we mean the right weak synchro-
nizing. A similar observation as in half synchronizing appears here:

Proposition 3.2. Suppose m is weak synchronizing with x ∈ X, x[−|m|+1, 0] = m
and ω+(x(−∞, 0]) = ω+(m) as in the definition 3.1. Then

(1) xk · · ·x−|m|x−|m|+1 · · ·x0 is a weak synchronizing block for k ≤ −|m| + 1.
That is, any left prolongation of m across x is also weak synchronizing.

(2) Any right prolongation of m is weak synchronizing.

Proof. (1) is trivial and for (2) let m′ = mu be any right prolongation of m. Let
v ∈ ω+(m

′) and x′
− = x−u. Then, uv ∈ ω+(m) which implies that v ∈ ω+(x

′
−). So

w+(x
′
(−∞, 0]) = w+(m

′). □

Half synchronized systems are necessarily coded; this is not the case for weak
synchronized systems. Our next result is concerned about non-coded systems.

Recall that a subshift X is minimal if for every x ∈ X the orbit {σnx : n ∈ Z}
is dense in X. A trivial minimal system is just the cycle of a point.

Also, an spacing shift XS is a subshift on {0, 1} such that if x ∈ XS , then
the distance between any two 1’s appearing in x is in S ⊆ N [2]. There are rigid
conditions for an spacing shift to be coded [2, Theorem 2.7].

Proposition 3.3. (1) Any spacing shift is weak synchronized.
(2) Non trivial minimal systems are not weak synchronized.

Proof. (1). Let XS be a spacing subshift. Then, ω+(0
∞1) = ω+(1) and so 1 is a

weak synchronizing block for XS .
(2). Let X be a non-trivial minimal subshift. If X is a weak synchronized,

then there is a block m of X and a point x ∈ X such that x[−|m|+1, 0] = m and
w+(x−) = w+(m). By the fact that any point in X is right and left transitive, so
m is a half synchronizing block. This means X must be a non-trivial coded system
that is absurd and so X is not weak synchronized. □

One of the below examples uses a non-synchronized beta shift and hence we
recall some basic facts about these shifts.

Let β be a real number greater than 1. Set

1β := a1a2a3 . . . ∈ {0, 1, 2, . . . , ⌊β⌋}N,
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Figure 1. Cover for the β-shift with 1β = 2121010 . . ..
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Figure 2. The subgraph H of Gβ with 1β = a1a2a3 . . ., where
l := jm + |m|.

where a1 = ⌊β⌋ and

ai = ⌊βi(1− a1β
−1 − a2β

−2 − · · · − ai−1β
−i+1)⌋

where i ≥ 2. The sequence 1β is the expansion of 1 in the base β, that is, 1 =∑∞
i=1 aiβ

−i. Let ≤ be the lexicographic ordering of {N ∪ {0}}N. The sequence 1β
has the property that

(1) σk1β = ak+1ak+2 · · · ≤ 1β , k ∈ N.

Furthermore, it follows from (1) that

Xβ = {x ∈ {0, 1, . . . , ⌊β⌋}Z : x[i,∞) < 1β , i ∈ Z}
is a shift space with alphabet {0, 1, . . . , ⌊β⌋}, called the β-shift. Note that if any
right infinite block a1a2 · · · with ai ∈ {0, 1, . . . , ℓ− 1} satisfies (1), then there is a
unique β where a1 = ⌊β⌋ and 1β = a1a2 . . . [6, Theorem 2.3.2]. These shifts are
symbolic spaces with rich structure whose all blocks are half synchronizing. For a
more detailed treatment, see [6].

One may construct an infinite labeled graph Gβ as a Fischer cover for a β-shift
as follows. Take a countable infinite set of vertices I0, I1, . . .. Let I0 be the base
point. Edges an defined as follows. First, for all i ≥ 0 there is an edge labeled
ai with initial vertex Ii and terminal vertex Ii+1. Also, for every i and for every
0 ≤ c < ai there is an edge labeled c with initial vertex Ii and terminal vertex I0.

For instance, let a1a2a3 · · · = 2121010 · · · be a sequence satisfying (1) and let
β > 1 be the unique associated real number; thus 1β = 2121010 · · · . Figure 1
presents a part of the cover for this β-shift.

Example 3.4. Now we present two sets of examples of coded weak synchronized
systems which are not half synchronized and whose any of their blocks are weak
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· · · · · ·y−2 y−1 y0 y1 y2
aaaaa

Figure 3. Cover for a weak synchronized system.

synchronizing. The former is a pretty known system and the latter an easy to
construct example.

(1)- Our first example is X−1
β , where 1 < β ∈ R is chosen so that Xβ is not

synchronized. Let m−1 be an arbitrary block in W (X−1
β ). First we show that

0∞m−1 ∈ (X−1
β )− and m−10∞ ∈ (X−1

β )+.

Since Xβ is not synchronized and m ∈ B(Xβ), m is not a synchronizing block
for Xβ where then by [9, Proposition 2.23], m ⊆ 1β = a1a2a3 · · · . Assume m =
ajmajm+1 . . . ajm+|m|−1 (Figure 2) and set k := min{i > jm + |m| − 1 : ai > 0}.
Then, there is a finite path labeled m0km−jm−|m|+1 with initial vertex Ijm−1 and
terminal vertex I0. Hence m0∞ is a right infinite Xβ-ray and so 0∞m−1 is a left

infinite (Xβ)
−1-ray. Similar reasoning works for m−10∞ ∈ (X−1

β )+ and so we have

w+(0
∞m−1) = w+(m

−1) and ω−(m
−10∞) = ω−(m

−1) which that in turn shows
that m−1 is a right and left weak synchronizing block for X−1

β . But m was arbitrary
and so we are done.

(2)- Let Y be a subshift on a finite alphabet A and y = · · · y−1y0y1y2 · · · a point
in Y . Let a ̸∈ A and X a subshift on A ∪ {a} presented by the cover in the Figure
3. For any m ∈ B(X), a∞m is a left infinite X-ray and any πm (path labeled m
in the cover) terminates at a vertex if and only if an infinite path πa∞m terminates
at. So ω+(a

∞m) = ω+(m) and as a result, any block m is weak synchronizing.
Furthurmore, if Y is taken to be a non-trivial minimal system, then the cover

is right-resolving and follower separated and the resulting space X is not half syn-
chronized, but weak synchronized as stated above.

Next example shows that there are coded systems which are not weak synchro-
nized.

Example 3.5. Let A = {a, b} and let

W =
{
v0 := a, v1 := b1ab1, . . . , vn := bnlnb

n
}

be a generator for a subshift X where ln will be defined inductively. To do so, first
for any n ∈ N and 0 ≤ ij < n set vi0i1···in−1

:= vi0vi1 · · · vin−1
and define l1 and l2

as

l1 = v0 = a, l2 = v20v0v1v1v0v
2
1 = v00v01v10v11 = v02v01v10v12 .

So for defining l2, we have considered all possible vi0i1 , 0 ≤ i0, i1 < 2 and then have
concatenated the result according to lexicographic order of i0i1 in vi0i1 . Similarly
when vn−1 and so ln−1 and all vi0i1···in−1

’s are defined, define

ln = v0nv0n−11 · · · v0n−1(n−1) · · · v(n−1)n .

We claim that no blocks of X can be weak synchronizing. Fix v ⊆ vn and write
vn = u′

nvun for some un and u′
n. Then by the fact that both vn and a = v0 are

elements of our generator, una
∞ ∈ ω+(u

′
nv). But vn ⊂ lp for any p > n and by the
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definition of lp, vn appears also in vp and we may write vp = u′
pvnup = u′

pu
′
nvunup

for some non-empty blocks u′
p and up. This means una

∞ ̸∈ ω+(u
′
pu

′
nv).

Now assume v is a weak synchronizing block and assume that x−, provided by the
definition of weak synchronizing, terminates at v = x[−|v|+1, 0]. Since by Proposition
3.2 any right prolongation of x− is again weak synchronizing block, we prolong x−
further to a v ⊂ vn. Then by the above discussion una

∞ ̸∈ ω+(x−). However,
una

∞ ∈ ω+(u
′
nv) ⊆ ω+(v).

4. Structure of the Kreiger graph with respect to the dynamical
properties

Recall that a graph G is irreducible if for every ordered pair of vertices I and
J there is a path in G starting at I and terminating at J . Also a labeled graph is
irreducible if its underlying graph is irreducible. Let GK = GK(X) be the Kreiger
graph for a subshift X. The subgraph H of GK is called an irreducible component
of GK whenever H is irreducible and if H ′ is any irreducible subgraph GK such
that H is a subgraph of H ′, then H = H ′ [5]. An irreducible component of GK is
called a component cover if it is a cover for X.

A directed graph such as GK is weakly connected if there is a path between
every two vertices in the underlying undirected graph. Similar to an irreducible
component a weakly connected component is also defined.

We intend to study the connectedness issue of GK for a coded system X. We
already know that a shift is sofic X if and only if its Kreiger graph finite graph.

In the category of coded systems, a close concept to sofics is the class of shifts
with variable gap length or SVGL. A subshift is SVGL if there is M ∈ N such that
for all u, v ∈ B(X), there exists w ∈ B(X) with uwv ∈ B(X) and |w| ≤ M [7]. This
is a non-mixing version of a specified system where for systems with specification
property, |w| ≤ M is replaced with |w| = M . Any irreducible sofic is SVGL and all
SVGL’s are synchronized [7, Lemma 3.1]. Note that an SVGL was called almost
specified in [7].

Lemma 4.1. Assume X is an SVGL. Let x− and y+ be arbitrary left and right
X-rays respectively. Then, there is s0 ∈ B(X) such that x−s0y+ ∈ X.

Proof. Let M be the constant provided by the definition of SVGL. Then, for any
n ∈ N, there is sn ∈ B(X) such that x[−n, 0]sny[1, n] ∈ B(X) and |sn| ≤ M . Now let
S be the set of all s′ns and note that S is finite by the fact that blocks of length ≤ M
are finite. Hence, there is s0 ∈ S such that x[−nk, 0]s0y[1, nk] ∈ B(X) for infinitely
many nk and so x−s0y+ ∈ X as required. □

Let X be a half synchronized system with G = (G, L) its Fischer cover. Then
X is synchronized (resp. half synchronized) iff L∞(G) (resp. L+

∞(G)) is residual in
X (resp. X+) [5].

Corollary 4.2. Assume X is an SVGL and G = (G, L) its Fischer cover. Then,
L+
∞(G) = X+.

Proof. Let m be a synchronizing block and x−m a left ray for X. Let y+ ∈ X+

and by Lemma 4.1 choose s0 so that x−ms0y+ ∈ X. In particular, there will be a
right infinite path in G labeled y+ and so L+

∞ is onto. □
The converse of the above corollary is not correct. For instance if X is an S-gap,

then L+
∞(G) = X+. However, not all the S-gaps are SVGL. In fact, if S = {sk}
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is an increasing sequence of natural numbers such that {sk+1 − sk : k ∈ N} is not
bounded, then X = X(S) is not SVGL [1].

In the next proposition, we will see that how dynamical properties of subshifts
and the connectedness of the Kreiger graph are related.

Proposition 4.3. Let X be an irreducible subshift and GK its Kreiger graph.

(1) If X is an SFT, then G = GK where G = (G, L) is the Fischer cover of X.
(2) If X is SVGL, then GK is weakly connected. In particular, X is irreducible

sofic iff GK is finite and weakly connected.
(3) There is an example of a synchronized system with a non weakly connected

GK .
(4) If X is half synchronized, then all weak synchronized vertices are in a unique

weakly connected component of GK .
(5) There is an example of a weak synchronized subshift with uncountably many

weakly connected components having weak synchronized vertices.

Proof. (1) Let x be an arbitrary point in X and recall that ω+(x−) ∈ V(GK) and
V(G) ⊆ V(GK). By [8, Theorem 2.1.8], there is M ≥ 0 such that m := x[−M+1, 0]

is a synchronizing block and so ω+(x−) = ω+(m). But any synchronizing block
such as ω+(m) is in a unique irreducible component of GK [5, page 146] and so
ω+(x−) ∈ V(G). Hence V(G) = V(GK) or equivalently G = GK .

(2) Let x− and x′
− be two different left X-rays. We will show that there is a

vertex α in GK such that ω+(x−u) = ω+(x
′
−u

′) = α for some u, u′ ∈ B(X). By
[7, Lemma 3.1], X is a synchronized system and let m ∈ B(X) be a synchronizing
block of X. Pick z+ ∈ X+ with initial segment m. By Lemma 4.1, there are
s, s′ ∈ B(X) such that x−sz+, x

′
−s

′z+ ∈ X. Thus ω+(x−sm) = ω+(x
′
−s

′m) and
so GK is weakly connected.

Now recall thatX is sofic iff it has finite follower sets or equivalently iff |V(GK)| <
∞. Thus the end result of this part follows from the fact that any irreducible sofic
is SVGL.

(3) Let X be a subshift on {a, b} generated by {anbnan : n ∈ N}. Then,
for any n, anbnan is a synchronizing block and so X is synchronized. (In fact,
since no subblock of abna is synchronizing, X has infinitely many synchronizing
blocks whose any subblock, except itself, is not synchronizing.) Note that if ever
b∞x(i,+∞) ∈ X (resp. x(−∞, i)b

∞ ∈ X), then

(2) x(i,+∞) ∈ {a∞, b∞} (resp. x(−∞, i) ∈ {a∞, b∞}).
Also note that if abn ⊂ x−, then there is at least one x+ containing aba such
that x−x+ ∈ X. On the other hand, if for k ≥ 0, x− ̸= b∞ak, then this x−
must contain some abn and if ω+(x−) = ω+(b

∞ak), then akx+ ∈ ω+(b
∞) violating

2. This implies that ω+(b
∞) and ω+((aba)

∞) are in different weakly connected
components as required. For this example, GK consists of two weakly connected
components depicted in Figure 4.

(4) The main ingredient of the proof of this part is from [5, page 146] where
there it is used to prove that half synchronizing vertices are in a unique irreducible
component of GK . So let m and m′ be weak and half synchronizing blocks of a
half synchronized system X respectively. There are x−, x

′
− ∈ X− with terminal

segments m and m′ respectively such that ω+(x−) = ω+(m) and ω+(x
′
−) = ω+(m

′)
and x′ is a left transitive point in X. Pick u such that mum′ is the terminal
segment of x′. We need to show that ω+(x−um

′) = ω+(x
′
−) which this in turn
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ω+(b∞) ω+(b∞a)

b a

a

ω+(a∞) · · ·

α · · ·

· · ·

b b b

a a

aa
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a a a

b b2 b3

a
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Figure 4. Krieger graph GK consisting of two separate weakly
connected components (Proposition 4.3 (2)). The irreducible com-
ponent containing the vertex α := ω+((aba)

∞) is the Fischer cover.

implies that there is a finite path in GK with initial vertex ω+(x−) and terminal
vertex ω+(x

′
−). We have ω+(x−um

′) ⊆ ω+(m
′) = ω+(x

′
−) and the other because

for any x+ ∈ ω+(x
′
−) we have x+ ∈ ω+(mum′). Thus um′x+ ∈ ω+(m) and so

x+ ∈ ω+(mum′).
(5) For this part we exploit the second example in Example 3.4 and we let Y

be a non-trivial minimal substitution system. Since the asymptotic orbits for such
systems are finite [4], there are uncountably many y ∈ Y such that if y−z

+ ∈ Y
(resp. z−y

+ ∈ Y ) then z+ = y+ (resp. z− = y−). In particular, if y(−∞, 0]yi =
y(−∞, 0]yj , then yi = yj .

Now consider the graph depicted in Figure 3 constructed by such a y. We claim
that graph is actually an irreducible maximal component of GK . For let ω+(y−) be
the vertex in GK . Thus if πu is any path in the figure starting at t(πy0), then πu is
a path in GK starting at ω+(y−) as well. Now if there is a non-empty v = v0 · · · vk
such that i(πv) = ω+(y−) but i(πv) ≠ t(πy0

), then without loss of generality we
may assume that there is not a πv0 starting at t(πy0

) in our figure. Then by the
fact that GK is right resolving v0 ̸= a and if v0 = yi for some yi ̸= y1, then there
must be a point y′ ∈ Y with y′(−∞, 1] = y(−∞, 0]yi which is impossible. □

For the part (3) of the above proposition, one may choose a synchronized system
on alphabet {a, b1, . . . , bk} and generator ∪k

i=1{anbni an : n ∈ N} to give an example
of a Kreiger graph with exactly k + 1 weakly connected components.

5. Fischer covers vs dynamical properties

Let X be a weak synchronized system and let WH(X) denote the set of weak
synchronizing blocks for X. For m ∈ WH(X), denote by (Xm)+0 the maximal
irreducible component of the Krieger graph X containing the vertex ω+(m). Note

that irreducible components are countable labeled graphs and so L((Xm)+0 ) is a
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coded system which is a subsystem of X. Examples for such covers are Fischer

covers for half synchronized systems where for them X = L((Xm)+0 ) [5].

Definition 5.1. If there is m ∈ WH(X) such that L((Xm)+0 ) = X, then X is
called regular weak synchronized system and (Xm)+0 the weak Fischer cover of X.

Next proposition gives sufficient condition for a weak synchronizing block being
half synchronizing and in particular it shows that any half synchronized system is
a regular weak synchronized system.

Proposition 5.2. Let m ∈ WH(X). Then, m is a half synchronizing block if and

only if L((Xm)+0 ) = X and there is a finite path πm in (Xm)+0 labeled m such that
ω+(m) = t(πm).

Proof. Let m be a half synchronizing block for X and let x ∈ X be left transitive
withm = x[−|m|+1, 0] and ω+(x−) = ω+(m). Since x is left transitive, we can choose
u ∈ B(X) such that mum is a terminal segment of x− and so ω+(x−) = ω+(x−um).
Thus there is a cycle in the Fischer cover X+

0 = (Xm)+0 meeting ω+(x−) and labeled
um which this in turn shows that ω+(m) = t(πm).

Conversely, let πm be a finite path in (Xm)+0 such that ω+(m) = t(πm) := α.
Take E = {π1, π2, . . .} to be the set of all finite paths in (Xm)+0 . By irreducibility of
(Xm)+0 , there are finite paths π

′
1, π

′
2, . . . in (Xm)+0 such that π− := · · ·π2π

′
2π1π

′
1πm

is an infinite path and t(π−) = α = ω+(m). Set x′
− := L−(π−). Then, x′ is a left

transitive point for L((Xm)+0 ) = X and m = x′
[−|m|+1, 0]. Also ω+(m) = ω+(α) [5,

Page 146] and so ω+(x
′
−) = ω+(m). Thus m is a half synchronizing block. □

The next corollary shows that there are regular weak synchronized systems which
are not half synchronized. We can obtain it by omitting condition πm in (Xm)+0 .

Corollary 5.3. Let G be a weak Fischer cover of X. Then, there is a finite path
πm in G labeled m such that ω+(m) = t(πm) if and only if L+

∞(G) is residual in
X+.

The Following example shows that we may have m ∈ WH(X) and a finite path

πm in (Xm)+0 labeled m such that ω+(m) = t(πm). But L((Xm)+0 ) ̸= X.

Example 5.4. Consider Example 3.4(2) and choose Y to be a non-trivial subshift
having at least one non-fixed point a∞. Also, let y = · · · y−1y0y1 · · · ∈ Y defining
the cover in that example being different from a∞ and let X be the associated space.

Let x = a∞ and m = a and recall that any block of X is in WH(X). We will
show that (Xm)+0 is an irreducible component of the Kreiger graph consisting of
a vertex α = ω+(x−) and an edge labeled a initiating and terminating at α, or
equivalently a loop whose edge is labeled a.

To see this, suppose there is u ∈ B(X) such that u = u1u2 · · ·un ̸⊆ a∞ and
ω+(a

∞u) = ω+(a
∞). Set i0 := max{1 ≤ i ≤ n : ui ̸= a} and so

u = u1 · · ·ui0−1ui0a
n−i0 .

Now pick v = v1 · · · vn−i0vn−i0+1 ⊆ y such that vn−i0+1 ̸= ui0 . Then, ui0a
n−i0av ̸∈

B(X) and so av ̸∈ ω+(a
∞u); however, av ∈ ω+(a

∞). This shows that the hypothesis
of Proposition 5.2 can not be weakened to weak synchronizing block.

Proposition 5.5. Let m ∈ WH(X) and L((Xm)+0 ) = X. Assume there is m′ ∈
WH(X) so that x′

− defining m′ terminates at mum′. Then m′ is half synchronizing.
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Proof. Let x− be the left ray terminating at m and ω+(x−) = ω+(m). First note
that if in the proof of part 4 of Proposition 4.3, we let m′ being weak synchronizing
instead of half synchronizing and having u such that x′

− terminates at mum′, again
that conclusion holds. That is, ω+(x−um

′) = ω+(x
′
−). Now using the fact that

L((Xm)+0 ) = X and similar to the proof of Proposition 5.2, pick a left transitive
path π− terminating at ω+(m) = ω+(α). Thus π−πum′ is a left transitive path
terminating at πum′ whose follower set is the same as the follower set of πm′ . This
means m′ is half synchronizing as required. □
Corollary 5.6. Let X, m be as in the hypotheis of Proposition 5.5 and so that
there is v ∈ B(X) such that x− terminates at mvm. Then, X is a half synchronized
system. In particular, if x− is periodic, then X is a half synchronized.

Proof. By Proposition 3.2 (1), m′ := vm is weak synchronizing defined by x′
− :=

x−vm. Now apply Proposition 5.5. □
The converse to the last part of the above corollary is true as well. That is

Corollary 5.7. Let m be half synchronizing. Then, there is a periodic left ray x′
−

terminating at m and so that ω+(x
′
−) = ω+(m).

Proof. Let x− be the left transitive ray terminating at m with α := ω+(x−) =
ω+(m). Choose u so that x− terminates at mum. Then, α = ω+(x−um) =
ω+(x−) = ω+(m) which this in turn means that πum is a cycle starting and
terminating at α in our Kreiger graph. Now set x′

− to be the periodic left ray
(um)∞ = · · ·umum. □
Remark 5.8. Let X be an irreducible subshift and GK its Kreiger graph and X+

the associated one sided shift. Then,

(1) X is sofic iff X+
0 is a finite graph. In this case for any point x ∈ X, there

is a unique bi-infinite path πx in X+
0 such that L(πx) = x [5].

(2) X is synchronized iff GK has an irreducible component cover H so that
L : H → X is residual on the set of bi-infinite paths [5, Remark 2.13].
Moreover, such H is unique and is isomorphic to the Fischer cover and
contains all synchronizing blocks.

(3) X is right half synchronized iff GK has an irreducible component cover
H such that L : H → X+ is residual on the set of right infinite paths [5,
Theorem 1.4]. Moreover, such H is unique and is isomorphic to the Fischer
cover and contains all right half synchronizing blocks [5, Theorem 2.12].

Note that uniqueness in (2) arises from the fact that a cover must have at least
a path πm labeled m for any synchronizing block m. But then all πm’s for a
synchronizing m must be just in one component. This is not the case for a half
synchronizing m. For instance it is not hard to show that for the Dyke system
which is half synchronized, but not synchronized, there are infinitely many such
irreducible component covers in Krieger graph.

From (3) in the above remark we have that ifm andm′ are two half synchronizing
blocks, then (Xm)+0 = (Xm′)+0 [5]; however, this is not true when m and m′ are
two weak synchronizing blocks:

Example 5.9. Pick 1β = a1a2 . . . such that Xβ is not synchronized and ai ∈
{0, 1} for i ∈ N. The first part of Example 3.4 shows that 0 and 1 are two weak
synchronizing blocks. We claim that (X0)

+
0 ̸= (X1)

+
0 .
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Let GK(X−1
β ) be the Kreiger graph for X−1

β and a1a2 . . . an = 1n such that

an+1 = 0. Now suppose there is a path in GK(X−1
β ) labeled u−1 := bk . . . b2b1 from

ω+(0
∞1) to ω+(0

∞). Then,

(3) ω+(0
∞1u−1) = ω+(0

∞).

Let b1 = 1. Since 0∞1n is a left infinite X−1
β -ray, so 1n ∈ ω+(0

∞) and so by (3),

1n ∈ ω+(0
∞1u−1). Thus 0∞1u−11n is a left infinite X−1

β -ray and so 1n1b2 . . . bk1 =

1nu1 ∈ B(Xβ). Thus 1n+1 ∈ B(Xβ) that is absurd and so there is n1 ∈ N such that
u−1 = bkbk−1 . . . bn1+210

n1 and so by (3),

(4) ω+(0
∞1bkbk−1 . . . bn1+210

n1) = ω+(0
∞).

But 01 ∈ ω+(0
∞) and by (4), 01 ∈ ω+(0

∞1bkbk−1 . . . bn1+210
n1). Thus 101+n11 ∈

B(Xβ). Since Xβ is not synchronized, so 101+n11 ⊆ 1β [6, Proposition 2.4.4]. Set

k′ := min{i ∈ N : a[i, n1+i+2] = 101+n11}.
Then, a[1, k′+n1+2] = a1a2 . . . ak′−110

n1+11 and so

(5) a1a2 . . . ak′−110
n11 ̸∈ B(Xβ).

But 1ak′−1 . . . a2a1 ∈ ω+(0
∞) and so by (4),

(6) 1ak′−1 . . . a2a1 ∈ ω+(0
∞1bkbk−1 . . . bn1+210

n1)

Hence 0∞1bkbk−1 . . . bn1+210
n11ak′−1 . . . a2a1 is a left infinite X−1

β -ray. Thus

a1a2 . . . ak′−110
n11 ∈ B(Xβ)

that is absurd by (5). Thus there is no path in X−1
β from ω+(0

∞1) to ω+(0
∞) and

so (X0)
+
0 ̸= (X1)

+
0 .
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