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ABSTRACT

In this article, the research proposed by the author, the approach to the construction of
methods and algorithms of bilateral approximations to the eigenvalues of nonlinear spectral
problems, is continued. On the basis of Newton's method, some new algorithms of the
bilateral approximations to their eigenvalues are constructed and substantiated.
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1. INTRODUCTION

Nonlinear eigenvalue problems arise in many fields of natural sciences and engineering
sciences. Quite a complete literature on this problem can be found in the works [27] – [30].
However, eigenvalue problems that are important to practice can very rarely be solved in a
closed form and, as a rule, numerical methods need to be used to solve them. A good
overview of numerical methods for nonlinear spectral problems, see, for example, [28], [31].
Most numerical methods simply provide approximation to their eigenvalues, but they do not
allow to determine how far the calculated actual value from the exact. The class of self-
adjoine eigenvalue problems is perhaps the most important class of the problems, because
the numerous problems that arise in practice belong to this class. Since self-adjoint
eigenvalue problems can have only real eigenvalues, the problem of obtaining
approximation and the corresponding estimates of the accuracy of the approximation is
equivalent to the definition (calculation) of the upper and lower bounds of eigenvalues.

As a rule, it is impossible to apply (generalize) those methods that exist for linear problems
to find the upper and lower bounds of eigenvalues of nonlinear spectral problems. Namely:
various variants of the method of intermediate problems (Weinstein's method) (see, for
example [26], [2] – [4], [8], as well as a bibliography in [8], [11])), the Fichera method [7], as
well as methods and algorithms based on inclusion theorems (see, for example, G. Temple
[24], L. Collatz [6], and N. J. Lehmann [9], [10], H. Behnke [5], M. G. Marmorino [11]).
Therefore, the concept and apparatus of interval analysis are used to construct methods of
bilateral approximations (see, for example, [1], [12]).

This article is a continuation of the study proposed by the author of the approach to the
construction of methods and algorithms of bilateral approximations to the eigenvalues of
nonlinear with respect of spectral parameters the eigenvalue problems [17] – [20]. This
approach does not use the concepts and apparatus of interval analysis.

The idea of the proposed approach is that for a continuous monotone in the neighborhood of
a simple zero [ , ]a b*l Î  of some function : [ , ]f a b R®  that describes the nonlinear



equation, is constructed and explored some auxiliary function : [ , ]g a b R®  that has the
same zero as the function f  and the necessary properties that allows to constract the
iterative processes, which give monotone bilateral (alternate or inclused) approximations to
the root of nonlinear equation [13] – [16].

In the framework of this approach, algorithms of the bilateral analogues of the Newton
method for finding eigenvalues of nonlinear spectral problems are constructed and
grounded. The conditions for the initial approximation are obtained, which ensure the
alternate of approximations to the eigenvalue from both sides and guarantee the
convergence of the iterative process.

2. STATEMENT OF THE PROBLEM AND SOME PRELIMINARY RESULTS

We consider the nonlinear eigenvalue problem

( ) 0yl =D , (2.1)

where ( )lD  is a square matrix of order n , all elements of which are sufficiently smooth (at
least twice continuously differentiable) functions of the parameter Rl Î , ny RÎ . The
eigenvalues is sought as solutions of determinant equation

( ) det ( ) 0f l º l =D . (2.2)

To determine the isolated eigenvalue of matrix ( )lD  we proposed and justify the Newton-
type iterative processes that give the alternate approximations to the root *l of the equation
(2.2), ie

0 2 2 2 1 3 1... ... ... ...m m
*

-l < l < < l < < l < < l < < l < l
or             (2.3)

1 3 2 1 2 2 0... ... ... ...m m
*

-l < l < < l < < l < < l < < l < l

and the included monotonous bilateral approximations to the root, i.e.

0 1 2 2 1 0... ... ... ...m m
*m < m < < m < < l < < n < < n < n  (2.4)

without revealing in so doing the determinant det ( )lD . This means that the left hand side of
equation (2.2) in explicit form is not set, but the algorithm of finding the functions ( )f l  and
thein derivatives ( )f ¢ l  and ( )f ¢¢ l  at a fixed value of the parameter l , using the LU-
decomposition of the matrix ( )lD  is proposed. This algorithm is based on the fact that the
matrix ( )lD  of the order n , in which at any given value ml = l  the principal minors of all
orders from 1 to ( 1)n -  differ from zero, by LU - decomposition can be written as

( ) ( ) ( )l = l lD L U , (2.5)

where ( )lL  is the lower triangular matrix with single diagonal elements, and ( )lU  is the
upper triangular matrix. Then
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Since the elements of a square matrix ( )lD  (and, therefore, the matrix ( )lU ) are
differentiable function, with respect to l , then for any l  we obtain that



1 1,

( ) ( ) ( )
nn

k k i i
k i i k

f v u
= = ¹

¢ l = l lå Õ ,

1 1,

( ) ( ) ( )
nn

k k i i
k i i k

f w u
= = ¹

¢¢ l = l l +å Õ
1 1, 1, ,

( ) ( ) ( )
nn n

k k j j i i
k j j k i i k i j

v v u
= = ¹ = ¹ ¹

æ ö
l l lç ÷

è ø
å å Õ (2.6)

where ( ) ( )i i i iv u¢l = l  and ( ) ( )i i i iw v¢l = l  are the elements of matrices ( )lV  and ( )lW  in
such decompositions

( ) ( ) ( ) ( ) ( ) ( )¢ l º l = l l + l lD B M U L V ,

( )¢¢ l º (l) (l) (l) 2 (l) (l) (l) (l)D C = N U + M V + L W .

In practice, the use of formulas (2.6) allows us to numerically calculate derivatives only for a
given fixed parameter l . Therefore, for calculation ( )mf l , ( )mf ¢ l  and ( )mf ¢¢ l  it is
necessary compute, for a fixed ml = l , decompositions

,

D = LU,
B = MU + LV ,
C = NU + 2MV + LW

(2.7)

whence we obtain
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The matrix elements in the decompositions (2.7) can be calculated using the the
corresponding recurrence relations written in [21] (see also [17], [22], [23]).
Consequently, in order to calculate the derivatives in N  points ml = l , 1, 2,..,m N=  it is
necessary to calculate N  times the decomposition (2.7) and derivatives for each fixed

ml = l , 1, 2,..,m N=  using formulas (2.8).

So, not knowing the explicit dependence ( )f l on l , for any fixed l we can find the value
of ( )f l and its derivatives. Therefore, for solving (2.2) we can use the methods that apply
the derivatives, in particular, to construct the Newton-type methods, which give the bilateral
approximation to the solution. This requires further study of the function ( )f l , which are
realized later in the work.

3. AUXILIARY FUNCTION AND ITS PROPERTIES

Further, we demand ( )f l to be a three times continuously differentiable function of real
variable. By *l  we denote an accurate simple root of equation (2.2) ( ( ) 0f *l = ), in some
neighborhood of which such behaviour of function ( )f l is possible.

(A). Function ( )f l  is convex ( ( ) 0f ¢¢ l > ) and its derivative is ( ) 0f ¢ l < .
(B). Function ( )f l  is concave ( ( ) 0f ¢¢ l < ) and its derivative is ( ) 0f ¢ l < .



(C). Function ( )f l  is convex ( ( ) 0f ¢¢ l > ) and its derivative is ( ) 0f ¢ l > .
(D). Function ( )f l  is concave ( ( ) 0f ¢¢ l < ) and its derivative is ( ) 0f ¢ l > .

Along with ( )f l  we consider also a function

2( ) ( ) /[ ( )]q f f ¢l = l l , (3.1)

which obviously has the same zeros as the function ( )f l . It is easy to verify that ( )z l  is
twice continuously differentiable at the point of *l  for which the relation
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fq
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*
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¢ l

(3.2)

is satisfied and which has the following properties.

Theorem 3.1. Let *l  be a simple real root of equation (2.2) in some neighborhood U  of
which for the function ( )f l  one of the conditions (A) - (D) is satisfied. Then there is a
neighborhood of the root U Ue Ì , in which:

1) when the condition (A) is satisfied, the function 2( ) ( ) /[ ( )]q f f ¢l = l l  is a concave and
monotonically decreasing function, its derivative ( ) 0q¢ l <  and it decreases monotonically;

2) when the condition (B) is satisfied, the function 2( ) ( ) /[ ( )]q f f ¢l = l l  is a convex and
monotonically decreasing function, its derivative ( ) 0q¢ l <  and it increases monotonically.

3) when the condition (C) is satisfied, the function 2( ) ( ) /[ ( )]q f f ¢l = l l  is a concave and
monotonically increasing function, its derivative ( ) 0q¢ l >  and it decreases monotonically;

4) when the condition (D) is satisfied, the function 2( ) ( ) /[ ( )]q f f ¢l = l l  is a convex and
monotonically increasing function, its derivative ( ) 0q¢ l >  and it increases monotonically.

Proof. Let ( )f l  be a decreasing and convex with respect to l  on U function, that is,
( ) 0f ¢ l <  and ( ) 0f ¢¢ l >  (the case (A)).

Since the function

2

2 ( ) ( )( )
( ( ))
f fs

f
¢¢l l

l =
¢ l

at the point *l = l  is equal to zero, then because of continuity of ( )s l  there is such
neighborhood of the root

{ }( ) :U * *
e l = l l - l < e ,

in which

2

2 ( ) ( )( ) 1
( ( ))
f fs t

f
¢¢l l

l = £ <
¢ l

.

It follows that in the neighborhood ( )U *
e l  the function is ( ) 0q¢ l > , since
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Now from the mean value theorem, applied to differentiable functions ( )q l  on the interval
[ ], ( )U *

em l Î l  we obtain

( ) ( ) ( )( )q q q¢l - m = x l - m , [ , ]xÎ m l ,

whence it follows that the function ( )z l  is a decreasing one.

Consider now the behavior of function ( )q¢ l  in the neighborhood ( )U *
e l , taking into account

its image (3.3). For any *l < l  and *l > l  we obtain, respectively, the ratios
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Since the first and second terms in (3.4) are positive, then from (3.4) it follows that in the
neighborhood ( )U U *

e eº l the derivative ( )q¢ l  is decreasing, and therefore, the function
( )q l  is concave in this neighborhood of the root.

Similar statements about the function ( )q l  and its derivatives we obtain also for the cases
(B), (C) and (D). But unlike the cases (A) and (C), in the cases (B) and (D) the function ( )q l
is convex. The theorem is proved.

Thus, Theorem 3.1 determines the properties of the function ( )z l , and Fig.1 illustrates its
behavior depends on the properties of function ( )q l  in some neighborhood of the root *l .

Fig.1. Behavior of the functions ( )f l  and ( )q l

in the neighborhood of a simple real root *l  of functions ( )f l



Such character of the behavior of a function ( )q l  allows for us from the iterative formula

1
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m
m m
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q
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, 0, 1, ... ,m = (3.5)

to get a monotone sequence of approximations to the root, moreover the iterative processes
(3.5) and
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( )
sgn [ ( )]

m
m m

m

f
f f+

l
l = l -

¢ ¢× l
, 0, 1, ... ,m = (3.6)

have such monotonic properties.

Theorem 3.2. If conditions (A) or (D) are satisfied in the neighborhood of the root *l , then,
starting with 1m = , the sequence { }ml , defined by (3.5), monotonically decreases, and the
sequence { }ml , defined by (3.6), monotonically increases.

Theorem 3.3. If conditions (B) or (C) are satisfied in the neighborhood of the root *l , then,
starting with 1m = , the sequence { }ml , defined by (3.5), monotonically increases, and the
sequence { }ml , defined by (3.6), monotonically decreases.

The proofs of Theorems 3.2 and 3.3 are based on Theorem 3.1 and carried out by the
method of mathematical induction according to a known scheme (see, for example, [6]).

4. BILATERAL ANALOGUES OF NEWTON METHOD

Using the properties of the function ( )q l , we construct a sequence of { }ml , which has the
property (2.3).

For cases (A) and (D) we write the iterative process in the form
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and for the cases (B) and (C) - in the form
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* *
00,1,2, ... , ( , )m = l Î l - e l .

Remarks 4.1. If the initial approximation is 0 ( , )* *l Î l l + e , then for the cases (A) and (D)
iteration process (4.2) is required, and for cases (B) and (C) iteration process (4.1).

The following two theorems justify the bilateral convergence of iterative processes



Theorem 4.1. Let *l  is a simple real root of the equation (2.2) and let in some neighborhood
of the root

( ) { : | | }U * *
e l = l l - l < e ,

in which
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f f
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for the three times continuously differentiable function ( )f l  that describes equation (2.2),
the condition (A) or (D) is fulfilled, and for the function 2( ) ( ) / sgn [ ( )]q f f f¢ ¢l = l × l  the
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is holds.
In addition, let the conditions to be met
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where
1 1
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min | ( ) | , max | ( ) |
U U

m f M f
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e elÎ l lÎ l
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Then the iterative process (4.1), starting with 0 ( , )* *l Î l - e l , coincides to the *l  on both
sides

0 2 2 2 2 2 1 2 1 3 1... ... ... ...m m m m
*

+ + -l < l < < l < l < < l < < l < l < < l < l ,

moreover, for the errors on the left hand and on the right hand from the root *l  the
estimations
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m

m t* - *l - l < l - l  , (4.8)
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4 1
2 1 1 1| | | |

m

m t* - *
-l - l < l - l  . (4.9)

are satisfied, respectively.

Proof. The application of Theorem 3.2 to the iterative process (4.1) guarantees placement of
even approximations on the left of the root, and odd ones on the right of it. It is necessary to
prove that the even approximations are monotonically increasing, while the odd ones are
monotonically decreasing.. To do this, we first consider 2 2 2m m+l - l . From (4.1) we obtain
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or
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2 2 2 1m m m+l < x < l  .
We will prove that
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0 0 1l < x < l  .

By the condition of the theorem 0 ( , )* *l Î l - e l , therefore
for case (A) we have
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Now, taking into account that 0 2| ( ) |q M¢¢ x < , as well as the condition (4.3), we obtain
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Hence, from (4.13) it follows that 2 0 0l - l > .

In the case of (D) we have
0

0
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q
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, sgn 1f ¢ = +  and 0( ) 0q¢¢ x >  for any 0 Uex Î  (Theorem 3.1).

and, taking into account that 0 2( )q M¢¢ x < , as well as the condition (4.3), we obtain similarly
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Hence, from (4.13) it follows that 2 0 0l - l > .

Assume now that (4.11) is performed for 1 0m l= - > , that is, inequalities

0 2 2... ll < l < < l (4.14)
are satisfied, and we will prove that they are executed for m l= , i.e.

2 2 2 0l l+l - l > . (4.15)

For m l= , the expression (4.11) takes the form
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From the fact that 2 ( , )l
* *l Î l - e l , the inequalities (4.14)  is true , and also  Theorem 3.1 is

satisfied, we obtain that
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The case (A).
Taking into account that 0f ¢ < , and from the fact that 2( ) 0lq¢¢ x <  for any 2l Uex Î  (Theorem
3.1) and 2 2| ( ) |lq M¢¢ x < , as well as conditions (4.3) and (4.17), we obtain
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Consequently, from (4.16) we obtain the inequality (4.15), which was necessary to prove for
case (A).

The case (D).
In this case, 0f ¢ >  and 2( ) 0lq¢¢ x >  for any 2l Uex Î  (Theorem 3.1) therefore (4.16) can be
written as

2 2 2 2 2 0
2 2 2

2 2 2 0

( ) ( ) ( ) ( ) ( ) ( )
1 1 .

( ) 2 ( ) ( ) 2 ( )
l l l l l

l l
l l l

q q q q q q
q q q q+

é ù é ù¢¢ ¢¢l x l l x l
l - l = - × - > - × -ê ú ê ú¢ ¢ ¢ ¢l l l lê ú ê úë û ë û

Now, taking into account that 2 2( )lq M¢¢ l < , as well as the condition (4.3), we obtain the
inequality (4.15), which was necessary to prove for the case (D). Consequently, the even
approximations for cases (A) and (D) increases monotonically.

Similarly, we prove that odd approximations are monotonically decreasing. To do this we
consider 2 1 2 1m m- +l - l . From (4.1) we obtain
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and by induction we will prove that
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The case (A).
In this case, 0f ¢ < . Since 1 ( , )* *l Î l l + e  (Theorem 3.2), taking into account the properties
of ( )q l  and its derivatives (Theorem 3.1), we have

1( ) 0, ( ) 0, ( ) 0, ( )q q q U *
e¢ ¢¢l < l < l < "l Î l ,

Then from (4.20) it follows that
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for any 1x  of the interval 1 1
*l < x < l . It follows from this that 1 3 0l - l >  for any 1x  from the

interval 1 1
*l < x < l .

If 1x  belongs to interval 1
* *l - e < x < l , then 1( ) 0q x £ . Now, taking into account the

condition (4.4), the relation (4.20) can be given in the form
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from which it follows that 1 3 0l - l >  for 1x  from the interval 1
* *l - e < x < l . Consequently,

1 3 0l - l >  on the entire interval 0 1 1l < x < l .

The case (D).
In this case, 0f ¢ > . Since 1 ( , )* *l Î l l + e  (Theorem 3.2), that taking into account the
properties of ( )q l  and its derivatives (Theorem 3.1), we have
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e¢ ¢¢l < l > l > "l Î l ,

Then from (4.20) it follows that
1 1 1

1 2
1 1

( ) ( ) ( )
( ) 0

( ) ( )
q q q

q
q q

¢¢l x x
+ l ³

¢ ¢l x
(4.23)

for any 1x  from the interval 1 1
*l < x < l  on  which 1( ) 0q x ³ . From this it follows that

1 3 0l - l >  for any 1x  from the interval 1 1
*l < x < l .

If 1x  belongs to the interval 1
* *l - e < x < l , on which 1( ) 0q x £ , then, taking into account

condition (4.4), the relation (4.20) can be given as (4.22), from which it follows that
1 3 0l - l >  and on the interval 1

* *l - e < x < l . So, 1 3 0l - l >  over the entire interval

0 1 1l < x < l .

If 1x  belongs to the interval 1
* *l - e < x < l , on which 1( ) 0q x £ , then, taking into account

condition (4.4), the relation (4.20) can be given as (4.22), from which it follows that
1 3 0l - l >  and on the interval 1

* *l - e < x < l . So, 1 3 0l - l >  over the entire interval

0 1 1l < x < l .

Suppose now that (4.18) is fulfilled for 1 0m l= - > , that is, inequalities are satisfied

2 1 2 1 1...m m+ -l < l < < l (4.24)



and we prove that it is satisfied for m l= , that is,

2 1 2 1 0l l- +l - l > . (4.25)

For m l= , the expression (4.18) takes the form

2 1 2 1 2 1
2 1 2 1 2 1 2

2 1 2 1

( ) ( ) ( )
sgn ( )

( ) ( )
l l l

l l l
l l

q q q
f q

q q
- - -

- + -
- -

¢¢l x x
¢l - l = + × l

¢ ¢l x
.

2 2 1 2 1l l l- -l < x < l

Since 2 1 ( , )l
* *

+l Î l l + e  (Theorem 3.2), and also the expression (4.24) and Theorem 3.1 are
satisfied, we obtain that

2 1 2 1 1

1 1 1...
( ) ( ) ( )l lq q q+ -

³ > >
¢ ¢ ¢l l l

Again, since 2 1 ( , )l
* *

-l Î l l + e  (Theorem 3.2), then, taking into account the properties of the
function ( )q l  and its derivatives (Theorem 3.1), as well as the fulfilment of condition (4.4),
the inequality (4.25) is satisfied for any 2 1 2 2 1( , )l l l- -x Î l l . Consequently, odd approximations
are monotonically decreasing.

Thus, we proved that the even approximations are monotonically increasing, while the odd
ones are monotonically decreasing. It remains to prove that these approximations coincide
to the root of both sides.

To do this, we again consider the relation (4.10). Note that (4.10) can be regarded as a
partial case of a simple iteration method

2 2 2( ), 0,1,...,m m m+l = j l =
where

( ) ( )( )
( ) ( )

q qq
q q

æ öl l
j l = l - - l -ç ÷¢ ¢l lè ø

.

As you know, the iterative process is a process of n n-th order, if
( 1) ( )( ) 0 , ( ) 0, ... , ( ) 0, ( ) 0k k* * - * *¢ ¢¢j l = j l = j l = j l ¹ .

Since ( )* *j l = l , then (4.10) we write in the form

2 2 2( ) ( )m m
* *

+l - l = j l - j l

and, using the Taylor formula, we obtain

2

2
2 2 2

3 3
2 2

1( ) ( ) ( )( ) ( )( )
2!

1 1( )( ) ( )( ) .
3! 3!

m

m m m

IV
m m dx

*

* * * * *

l
* * *

l

¢ ¢¢j l - j l = j l l - l + j l l - l +

¢¢¢+ j l l - l + j l l - lò
(4.26)

It's easy to make sure that in our case



( )( ) 0, ( ) 0, ( ) 0, ( ) 0IV* * * *¢ ¢¢ ¢¢¢j l = j l = j l = j l ¹  .

Since the function ( )*l - l  does not change the sign on the segment of integrating, you can
use the formula of the mean value and (4.26) write in the form

4

2 2 2
1( ) ( ) ( )
4!

IV
m m m

* *j l - j l = j x × l - l . (4.27)

On the other hand, the function ( )j l  can be regarded as the iterated function [25], i.e.

1 2( ) ( ( )),j l = j j l

where 2
1 2( ) ( ) /[ ( )] , ( ) ( ) / ( )x f f q q¢ ¢j l = - l l j l = l - l l .

Since for Newton's method, taking into account (4.7) and (4.5) the inequalities
21

1
1

( ) ( )
2m m
M
m

* *j l - j l £ l - l ,

22
2

2

( ) ( )
2m m
M
m

* *j l - j l £ l - l ,

are valid, then for the iterated function ( )j l  we get that
2

41 2
2

1 2

( ) ( )
2 4m m
M M
m m

* *j l - j l £ l - l .

Consequently, (4.27) will be written in the form
2

41 2
2 2 2 22

1 2

( ) ( )
8m m m
M M
m m

* * *
+l - l = j l - j l £ × l - l .

Now, when the first of the conditions (4.6) of Theorem is satisfied, we obtain the estimate
(4.8), from which it follows the convergence from the left hand of the root. The estimate (4.8)
is proved by the method of induction according to the known scheme [see, for example, [6]].

Similarly, an estimate (4.9) is established, from which it follows the convergence of the right
hand of the root. Consequently, the Theorem is proved.

The Theorem on the convergence of the iterative process (4.2) for cases (B) and (C) is
formulated as follows.

Theorem 4.2. Let *l  is a simple real root of the equation (2.2) and let in some neighborhood
of the root

( ) { : | | }U * *
e l = l l - l < e ,

in which

2

2 ( ) ( ) 1
[ ( )]
f f

f
¢¢l l

<
¢ l

for the three times continuously differentiable function ( )f l  that describes equation (2.2),
the condition (A) or (D) is fulfilled, and for the function 2( ) ( ) / sgn [ ( )]q f f f¢ ¢l = l × l  the
conditions

1
0

1
( )

N
q

>
¢ l

       for 0 ( , )* *l Î l - e l ,



1

1 2

( ) 2
( )

q
q M

l
<

¢ l
      for 1 ( , )* *l Î l l + e ,)

where
2 2

( ) ( )
min | ( ) | , max | ( ) |
U U

m q M q
* *

e elÎ l lÎ l
¢ ¢¢= l = l ,

1 2( , )

( ) ( )max
( )

q qN
q* *lÎ l -e l

¢¢l l
=

¢ l
.

is holds.
In addition, let the conditions to be met

1 1
3 32 2

1 2 2 1
0 0 1 12 2

1 2 2 1

1 1| | 1 , | | 1
2 2

M M M Mt t
m m m m

* *æ ö æ ö
= l - l < = l - l <ç ÷ ç ÷

è ø è ø
,

where
1 1

( ) ( )
min | ( ) | , max | ( ) |
U U

m f M f
* *

e elÎ l lÎ l
¢ ¢¢= l = l .

Then the iterative process (4.2), starting with 0 ( , )* *l Î l - e l , coincides to the *l  on both
sides

0 2 2 2 2 2 1 2 1 3 1... ... ... ...m m m m
*

+ + -l < l < < l < l < < l < < l < l < < l < l ,

moreover, for the errors on the left hand and on the right hand from the root *l  the
estimations

4 1
2 0 0| | | |

m

m t* - *l - l < l - l  ,
and

4 1
2 1 1 1| | | |

m

m t* - *
-l - l < l - l  .

are satisfied, respectively.

The scheme of proof of Theorem 4.2 is similar to the scheme of proof of Theorem 4.1.

Remark 4.2. Two different iterative processes (4.1) and (4.2) have been used above to
justify alternate approximations, starting with 0n = , ideally, when the behaviour of a function

( )f l  is known or easily investigated.

In practice, one of them can be used for all cases (A) - (D) and regardless of which side (left
or right of the root *l ) is the initial approximation 0l , but then the alternate approximations
comes at least from 1n = .

For example, if, to the ( )f l  that satisfying the condition (A) or (D), apply the iterative
process (4.2), we obtain an alternate approximations to the root *l  in the form

0 1 3 2 1 2 1 2 2 2 4 2... ... ... ...m m m m
*

- + +l < l <l < < l < l < < l < < l < l < < l < l

provided that 0
*l < l  and

1 3 2 1 2 1 2 2 2 4 2 0... ... ... ...m m m m
*

- + +l <l < < l < l < < l < < l < l < < l < l < l ,

If 0
*l > l .



5. ALGORITHMS AND DISCUSSION

Note that the iterative process, for example (4.1), which provides a bilateral
approximation to its own value, taking into account the relations (2.8), will take the form

2

2 1 2
1 1 1,

/ 2 2
n n n

kk kk kk kk ii
m m

k k i i kkk kk kk kk ii

v v w v v
u u u u u+

= = = ¹

æ öæ öæ ö æ ö
ç ÷l = l - - + ç ÷ç ÷ ç ÷ç ÷è ø è ø è øè ø

å å å ,

2
0 0

2 2 2 1
1 11, 1

sgn / ,
n nn n

kk
m m kk ii ii

k ki i k i kk

v
v u u

u+ +
= == ¹ =

æ ö æ ö
l = l - ç ÷ ç ÷

è øè ø
å åÕ Õ (5.1)

0, 1, 2, ...m = ,

where , ,kk kk kku v w  are elements of the matrices U, V  and W  in the decompositions (2.7) for
fixed 2ml = l , and ,kk kku v  and 0 0,kk kku v  are elements of the matrices of U, V  in  the
decompositions (2.7) for fixed 2 1m+l = l  and 0l = l , respectively.

So, the algorithm can be written as follows:

Algorithm 1. Iterative process of alternating approximations

1. We set the initial approximation 0l  to the s -th eigenvalue of the problem (2.2)

2. for 0,1,2,m = K  until the accuracy is achieved do
3. if m  is even
4. than calculate the values , ,kk kk kku v w from the decomposition (2.7) for 2ml = l

5.            calculate approximation to the eigenvalue 2 1m+l  by the formula (5.1)

6. else  calculate the values ,kk kku v  from the decomposition (2.7) for 2 1m+l = l

7.           calculate approximation to the eigenvalue 2 2m+l  by the formula (5.1)

8. end for m .

From the algorithm it is seen that in order to obtain alternate approximations in each step of
the algorithm it is necessary to refer to the algorithm of calculating the expansion (9).

In some cases, the algorithm constructed on the basis of iteration process of enclosing
approximations is more optimum as to the number of accesses to the calculation of
decomposition (9) [5]:

1 2

( ) ( )
,

( ) ( ) ( )
m m

m m
m m m

f f
f f f+

¢m m
m = m -

¢ ¢¢m - m m

1
( )

, 0, 1, 2, ...
( )

m
m m

m

f
m

f+

m
n = m - =

¢ m
, (5.2)

with the help of which we obtain the approximation of the enclosing approximations in the
form

0 0 1 2 2 1m m*l = m < m < m < < m < < l < < n < < n < nK K K K (5.3)

or in the form

0 0 1 2 2 1m m*l = m < n < n < < n < < l < < m < < m < mK K K K{ } ,

using one initial approximation 0 0l = m  (in this case to the left hand of of the root *l ).



If now again replace the values of the function and its derivatives at the desired points by the
relations (2.8), then the iterative process (5.2) will look like

2

1
1 1 1,
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m m
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æ ö æ ö
n = m - ç ÷ ç ÷

è øè ø
å åÕ Õ (5.4)

0, 1, 2, ...m = ,

where , ,kk kk kku v w  is the elements of the matrices U, V  and W  in the decompositions (2.7)
at the fixed 2ml = l  and 0 0,kk kku v  are elements of the matrices of U, V  in the decompositions
(2.7) for fixed 0l = l .

So, it is proposed the following algorithm for finding the eigenvalues of a nonlinear spectral
problem:

Algorithm 2. An iterative process of enclosed approximations

 1. We set the initial approximation 0 0l = m  to the s-th eigenvalue of the problem (2.2)

 2. for 0,1,2,m = K  until the accuracy is achieved do
 3. calculate the values , ,kk kk kku v w from the decomposition (2.7) at the ml = m

 4.  calculate approximation to the eigenvalue 1m+m and 1m+n  by the formula (5.4)

 5. end for m .

Consequently, we see that by algorithm 2, unlike algorithm 1, two approximations (from left
hand of the root and from righ thand of the root) are calculated, for one access to the
calculation of decomposition (2.8).

Now, we consider the application of the proposed algorithms to finding the generalized
eigenvalues of a linear homogeneous integral equation, whose kernel analytically (nonlinear)
depends on the spectral parameter [21]:

1

01

( )( , ) ( ) ( , ) ( , , ) ( , )
( , )

Fv T v K v d
f-

¢x ¢ ¢ ¢x l = l x l º x x l x l x
¢x lò ,

where ( )F x  is a continuous on the interval 1, 1- +[ ]  a real nonnegative function,

sin ( )( , , )
( )

K
¢l x - x¢x x l =

¢p x - x
,

1

0
1

( , ) ( ) ( , , )f F K d
-

¢ ¢ ¢x l = x x x l xò .

The equation arises in finding the points of a possible branching of the connections of a
nonlinear integral equation

1

1

( , ) ( ) ( , , ) exp arg ( , )f F K i f d
-

¢ ¢ ¢ ¢x l = x x x l × x l xò { } ,

which is obtained as a result of variational formulation of the synthesis problems  , in
particular, of linear antennas for a given amplitude directivity pattern.



Having made not complicated transformations and applying the Quadrature Gaussian
formula to integral operator ( )T l , we obtain a matrix self-adjoined eigenvalue problem [21]

( ) ( )n n nD u T u I ul º l - ,

where nI is a unit matrix in n -dimensional space.

Eigenvalues are sought as solutions to a determinant equation

( ) det ( ) 0nf Dl º l = .        (5.5)

To illustrate the operation of the algorithms 1 and 2 for a given function ( ) 1F x = , in Table. 1
shows the value of successive approximations of the parameter to the first root of the
equation (5.5). For the function ( ) 1F x = , the first root of equation (5.5) can be calculated
precisely and it is equal p , which allows us to compare the approximate solution with the
exact one.

Table 1. Successive approximations to the first eigenvalue ( 3.141593l = p » )

Algorithm 1 Algorithm 2
(m) ( )ml ( )mm ( )mn ( )ml

0 2.0 2.0
1 3.087993 3.087993 3.186991 3,137492
2 3.178098 3.137563 3.168124 3,152844
3 3.139249 3.141567 3.141618 3.141593
4 3.141601 3.141593 3.141593 3.141593
5 3.141593 - - -
6 3.141593

From Tabl. 1, we see that algorithms 1 and 2 are effective both in the rate of convergence
and in the generation of successive bilateral approximations to the eigenvalue.

6. CONCLUSION

Approbation of the constructed algorithms on model and physical problems, in particular on
the one presented in the article, shows their reliability and efficiency, as well as the
advantages compared with the usual method of Newton in the sense that at each step of the
iterative process, we obtain two-sided estimates of the required solution, and therefore, at
each step we get comfortable a posteriori estimates of errors.

The proposed approach can be applied also to the linear eigenvalue problems with respect
to the spectral parameter, and if its is compared with existing approaches mentioned in the
introduction for obtaining lower bounds of eigenvalues of self-adjoint spectral problems, then
this approach has significant advantages which are mentioned in [19], namely: does not
require construction an auxiliary operator with a known spectrum as in the method of
intermediate operators, and also does not require knowledge of the lower bound of the next
eigenvalue (assuming that the eigenvalues  are arranged in ascending order) as in the
algorithms, based on inclusion theorems.

It should be noted that for solving nonlinear equations, in particular algebraic ones, similar
algorithms are constructed in [32].
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