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Abstract:	In	this	article,	A	Variation	of	ሺࡳ′ ⁄ࡳ ሻ‐Expansion	Method	and	൫ࡳ′ ⁄ࡳ ൯‐Expansion	Method	

have	been	applied	to	find	the	traveling	wave	solutions	of	the	(3+1)‐dimensional	Zakhrov‐Kuznetsov	
(ZK)	equation,	the	(3+1)‐dimensional	Potential‐YTSF	Equation	and	the	(3+1)‐dimensional	
generalized	Shallow	water	equation.	The	efficiency	of	these	methods	for	finding	the	exact	solutions	
have	been	demonstrated.	As	a	result,	some	new	exact	traveling	wave	solutions	are	obtained	which	
include	solitary	wave	solutions.	It	is	shown	that	the	methods	are	effective	and	can	be	used	for	many	
other	Nonlinear	Evolution	Equations	(NLEEs)	in	mathematical	physics.	

Keywords:	Travelling	wave	solutions;	Variation	ሺܩ′ ⁄ܩ ሻ‐Expansion	method;	ሺܩ′ ⁄ଶܩ ሻ‐Expansion	
method;	Nonlinear	Evolution	Equations.	

1.Introduction:  
		Nowadays	NLEEs	have	been	the	subject	of	all‐embracing	studies	in	various	branches	of	nonlinear	
sciences.	A	special	class	of	analytical	solutions	named	traveling	wave	solutions	for	NLEEs	have	a	lot	
of	importance,	because	most	of	the	phenomena	that	arise	in	mathematical	physics	and	engineering	
fields	can	be	described	by	NLEEs.	NLEEs	are	frequently	used	to	describe	many	problems	of	
chemically	reactive	materials,	in	physics	the	heat	flow	and	the	wave	propagation	phenomena,	
quantum	mechanics,	fluid	mechanics,	plasma	physics,	propagation	of	shallow	water	waves,	optical	
fibers,	biology,	solid	state	physics,	chemical	kinematics,	geochemistry,	meteorology,	electricity	etc.	
Therefore	investigation	traveling	wave	solutions	are	becoming	more	and	more	attractive	in	
nonlinear	sciences	day	by	day	.There	are	different	methods	for	solving	these	equations	such	as		the	
inverse	scattering	transform	method	[1],	the	exp‐function	method	[2‐4],	the	Hirota’s	bilinear	
operators	[5],	the	Weierstrass	elliptic	function	method	[6],	the	Jacobi	elliptic	function	method	[7,	8],	
	the	homogeneous	balance	method	[9],		the	variation	of	(G'/G)‐Expansion	Method	[10,33].  
								Zayed	[11,12]	proposed	an	alternative	approach	of	the	ሺܩ′ ⁄ܩ ሻ‐expansion	method,	A.	R.	
Shehata[13]used	the	modified	ሺG′ G⁄ ሻ‐expansion	method.		
	Guo	and	Zhou	[14]	presented	the	extended	the	ሺܩ′ ⁄ܩ ሻ‐expansion	method	.	Liu	and	Niuj	[15]		A	
generalized	ሺܩ′ ⁄ܩ ሻ‐expansion	method	.Zhang	[16]	proposed	the	modified	ሺܩ′ ⁄ܩ ሻ‐expansion	
method	.	Recently	we	have	considered	the	(2+1)‐Dimensional	Broer‐Kaup‐Kuperschmidt	Equation	
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and	have	obtained	several	new	exact	solutions	using	an	extension	of	ሺܩ′ ⁄ܩ ሻ‐expansion	method[17].						
There	is	ሺܩ′ ⁄ଶܩ ሻ‐expansion	method	[18]	that	has	been	recently	proposed,	this	can	be	applied	to	
various	nonlinear	equations	and	this	also	gives	a	few	new	kinds	of	solutions. 
						In	 this	 paper,	 by	 using	 a	 variation	 of	 theሺܩ′ ⁄ܩ ሻ‐expansion	 method	 and			ሺܩ′ ⁄ଶܩ ሻ‐expansion	
method,	 we	 applied	 them	 on	 some	 nonlinear	 partial	 differential	 equations,	 namely	 the	 (3+1)‐
dimensional	 Zakhrov‐Kuznetsov	 equation	 ,	 the	 (3+1)‐dimensional	 Potential‐Yu‐Toda‐Sasa‐
Fukuyama	Equation	 and	 the	 (3+1)‐dimensional	 generalized	 Shallow	water	 equation	 and	 find	out	
the	exact		travelling	wave	solutions	then	we	study	its	geometrical	properties. 

2.	Analysis	for	the	variation	of	ሺࡳ′ ⁄ࡳ ሻ‐expansion	method: 
Suppose	we	have	the	following		nonlinear	partial	differential	equation:	

,	ݑ൫ܨ							 ,	௧ݑ ,	௫ݑ ,	௧௧ݑ ,	௫௧ݑ ,	௫௫ݑ ,	௫௬ݑ ,	௬௬ݑ ,	௬௧ݑ ,	௭௭ݑ ,	௭௧ݑ ,	௭௫ݑ ,	௭௬ݑ … ൯ ൌ 0,																																											(2.1) 

where	 ݑ	 ൌ ,ݔሺݑ ,ݕ ,ݖ 	ሻݐ is	an	unknown	function,	ܨ	is	polynomial	 in	ݑ ൌ ,ݔሺݑ ,ݕ ,ݖ 	various	its	and	ሻݐ
partial	derivatives,	 in	which	 the	highest	order	derivatives	 and	nonlinear	 terms	are	 involved.	The	
method	is	given	in	the	following	steps.	

Step	1.	The	travelling	wave	variable	:	

,ݔሺݑ																		 ,ݕ ,ݖ ሻݐ ൌ ߦ				,ሻߦሺݑ ൌ ݔ  ݕ  ݖ െ 	(2.2)																																																																																							,ݐܸ

where	ܸ	is	a	constant	represents	the	speed	of	the	traveling	wave	transformation	to	be	determined	
later,	the	traveling	wave	transformation	permits	us	reducing		Eq.	(2.1)	into	an	ordinary	differential	
equation	in	the	form:	

																				ܲሺݑ	, ,ᇱݑ ,ᇱᇱݑ ,ᇱᇱᇱݑ … ሻ ൌ 0,																																																																																																																					(2.3)	

where	prime	stands	for	ordinary	derivative	with	respect	to	ߦ	and	ܲ	is	a	polynomial	in		ݑ ൌ 	and	ሻߦሺݑ
its	derivatives. 

Step	2.	For	simplicity	,	if	it	is	possible	we	integrate	Eq.(2.3)	term	by	term	one	or	more	times	yields	
constant(s)	of	integration.	

Step	3.	Assume		that	the	solution	of		Eq.(2.3)	can	be	expressed	in	the	following	form: 

ሻߦሺݑ ൌ ∑ ܽሺܩᇱ/ܩሻ  ∑ ܾሺܩᇱ/ܩሻିଵሺܨᇱ/ܨሻ

ୀଵ


ୀ ,																																																																																								(2.4) 

where	ܩ ൌ ܨ	and	ሻߦሺܩ ൌ  		,equation	Riccati	coupled	the	of	solution	the	expresses		ሻߦሺܨ

ሻߦᇱሺܩ																																	 ൌ െܩሺߦሻ.  (2.5)																																																																																																													ሻ,ߦሺܨ

ሻߦᇱሺܨ																																	 ൌ 1 െ  (2.6)																																																																																																																		ሻଶ,ߦሺܨ

where	 prime	 denotes	 derivative	 with	 respect	 to	 	ߦ ,	 ܽሺ݅ ൌ 0, 1, … ,݉ሻ, ܾሺ݅ ൌ 1, 2, … ,݉ሻ	 are	
constants	to	be	determined	later.	
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These	governing	equations	lead	us	two	types	of	general	solutions:	

ሻߦሺܩ																																							 ൌ േ sechሺߦሻ, ሻߦሺܨ ൌ tanhሺߦሻ,																																																																												(2.7)	

ሻߦሺܩ																																								 ൌ േcschሺߦሻ , ሻߦሺܨ ൌ cothሺߦሻ.																																																																											(2.8)	

Step	4.	 	By	considering	the	homogeneous	balance	between	the	highest	order	derivatives	and	the	
nonlinear	terms	appearing	in	Eq.(2.3)	we	can	find	the	positive	integer	݉		as	follows:	

If	ܦሾݑሺߦሻሿ ൌ ݉,	then	ܦ ݑ ቀ
ௗ௨

ௗక
ቁ
௦
൨ ൌ ݎ݉  ݍሺݏ  ݉ሻ,	where	ܦ	denotes	the	degree	of	the	expression.	

Step	5.	Substituting	Eq.(2.4)	into	Eq.(2.3)	and	using	Eq.(2.5)	and	Eq.(2.6),	collecting	all	terms	with	
the	 same	 order	 of	 ሺܩᇱ ⁄	ሻܩ or	 ሺܨሻ	 together,	 left‐hand	 side	 of	 Eq.(2.3)	 is	 converted	 into	 another	
polynomial	 in	 ሺܩᇱ ⁄ܩ ሻ	or	 ሺܨሻ.	 Equating	 each	 coefficient	 of	 this	 polynomial	 to	 zero,	 yields	 a	 set	 of	
algebraic	equations	for	ܽሺ݅ ൌ 0, 1, … ,݉ሻ, ܾሺ݅ ൌ 1, 2, … ,݉ሻ,	and		V	.	

Step	6.	Determining	the	constants	ܽሺ݅ ൌ 0, 1, … ,݉ሻ, ܾሺ݅ ൌ 1, 2, … ,݉ሻ	and	ܸ	by	solving	the	
algebraic	equations	in	step	5.	As	the	general	solutions	of	Eq.(2.5)	and	Eq.(2.6)	are	already	known	to	
us	,then	substituting	ܽሺ݅ ൌ 0, 1, … ,݉ሻ, ܾሺ݅ ൌ 1, 2, … ,݉ሻ,	V	and	the	general	solutions	of	Eq.(2.5)	and	
Eq.(2.6),	we	obtain	the	travelling	wave	solutions	of	Eq.(2.1).	

3.	Analysis	for	the	ቀ۵
ᇲ

۵
ቁ‐expansion	method:	

Suppose	we	have	the	following		nonlinear	partial	differential	equation:	

,	ݑ൫ܨ							 ,	௧ݑ ,	௫ݑ ,	௧௧ݑ ,	௫௧ݑ ,	௫௫ݑ ,	௫௬ݑ ,	௬௬ݑ ,	௬௧ݑ ,	௭௭ݑ ,	௭௧ݑ ,	௭௫ݑ ,	௭௬ݑ … ൯ ൌ 0,																																												(3.1) 

where	 ݑ	 ൌ ,ݔሺݑ ,ݕ ,ݖ 	ሻݐ is	an	unknown	function,	ܨ	is	polynomial	 in	ݑ ൌ ,ݔሺݑ ,ݕ ,ݖ 	various	its	and	ሻݐ
partial	derivatives,	 in	which	 the	highest	order	derivatives	 and	nonlinear	 terms	are	 involved.	The	
method	is	given	in	the	following	steps.	

Step	1.	The	travelling	wave	variable	:	

,ݔሺݑ																		 ,ݕ ,ݖ ሻݐ ൌ ߦ				,ሻߦሺݑ ൌ ݔ  ݕ  ݖ െ 	(3.2)																																																																																							,ݐܸ

where	ܸ	is	a	constant	represents	the	speed	of	the	traveling	wave	transformation	to	be	determined	
later,	permits	us	reducing		Eq.	(2.1)	into	an	ordinary	differential	equation	in	the	form:	

																				ܲሺݑ	, ,ᇱݑ ,ᇱᇱݑ ,ᇱᇱᇱݑ … ሻ ൌ 0,																																																																																																																					(3.3)	

where	prime	stands	for	ordinary	derivative	with	respect	to	ߦ	and	ܲ	is	a	polynomial	in		ݑ ൌ 	and	ሻߦሺݑ
its	derivatives. 

Step	2.	For	simplicity	,	if	it	is	possible	we	integrate	Eq.(3.3)	term	by	term	one	or	more	times	yields	
constants	of	integration. 

Step	3.	The	formal	solution	of	ODE	can	be	written	as	follows:	

ሻߦሺݑ																	 ൌ ܽ  ∑ ܽ ቀ
ீᇲ

ீమ
ቁ

 ܾ ቀ

ீᇲ

ீమ
ቁ
ି

ே
ୀଵ ,																																																																																									(3.4)	
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																ቀ
ீᇲ

ீమ
ቁ
ᇱ
ൌ ߤ  ߣ ቀ

ீᇲ

ீమ
ቁ
ଶ
	.										                        																																																																																							(3.5) 

In	Eq. ሺ3.4ሻ, ܽ, ܽ, ܾ, ሺ݊ ൌ 1,2, … , ܰሻ	are	constants	to	be	determined.	In	Eq.	(3.5),	ߣ ് ߤ	,0 ് 1	are	
integers	.	

The	 value	 of	 positive	 integer	 N	 is	 easy	 to	 find	 by	 balancing	 the	 highest	 order	 derivative	 and	
nonlinear	terms	appearing	in	Eq.(3.3).	

step	4.	substituting	Eq.	(3.4)	and	use	Eq.	(3.5)	into	Eq.(3.3),collect	the	coefficients	with	the	same	

order	of	ቀ
ீᇲ

ீమ
ቁ

, ሺ݅ ൌ 0,േ1,േ2,… ሻ	and	set	the	coefficients	to	zero,	nonlinear		all	powers	algebraic	

equations	are	acquired.	Solutions	to	the	resulting	algebraic	system	are	derived	by	using	the	ቀ
۵ᇲ

۵
ቁ‐

expansion	method		with	the	aid	of	Maple.	

step	5.	On	the	basis	of	the	general	solutions	to	Eq.(3.5),	the	ratio	ቀ۵
ᇲ

۵
ቁ	can	be	divided	into	three	

cases,	i.e.	

						
۵ᇲ

۵
ൌ ට

ఓ

ఒ
൬
	 ୡ୭ୱඥఓఒకା ୱ୧୬ඥఓఒక

	 ୡ୭ୱඥఓఒకି ୱ୧୬ඥఓఒక
൰ , ߣߤ  0,																																																																																																							(3.6)	

					
۵ᇲ

۵
ൌ െ

ඥ|ఓఒ|

ఒ
ቆ
	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁା

	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁି
ቇ , ߣߤ ൏ 0,																																																																								(3.7)	

					
۵ᇲ

۵
ൌ െ



ఒሺకାሻ
	 , ߤ ൌ 0, ߣ ് 0.																																																																																																																										(3.8)		

In	the	above	expressions	ܥ	and	ܦ	are	nonzero	constants.	Three	types	of	solution	for	Eq.	(3.1)	can	be	
obtained	by	putting	the	values	of		ܽ, ܽ, ܾ, ሺ݊ ൌ 1,2, … , ܰሻ			and	the	ratios	(3.6)‐(3.8)	into	Eq.(3.4).	

4.	Applications	of	the	methods:	

		Here	we	use	the	above	two	methods	respectively		

4.1		Example	1:	The	(3+1)‐dimensional	Zakhrov‐Kuznetsov	equation:	

Here,	we	study	the	(3+1)‐dimensional	Zakhrov‐Kuznetsov	equation	in	the	form:	

௧ݑ																					  ௫ݑݑܽ  ௫௫ݑ  ௬௬ݑ  ௭௭ݑ ൌ 0	,																																																																																										(4.1.1)	

where	ܽ	is	a	positive	constant.	

The	ZK	equation	governs	the	behavior	of	weakly	nonlinear	ion‐acoustic	waves	in	plasma	
comprising	cold	ions	and	hot	isothermal	electrons	in	the	presence	of	a	uniform	magnetic	field.	

The	traveling	wave	transformation	equation	ݑሺߦሻ ൌ ,ݔሺݑ ,ݕ ,ݖ ߦ	,ሻݐ ൌ ݔ  ݕ  ݖ െ 	transform	ݐܸ
Eq.(4.1.1)	to	the	following	ordinary	differential	equation:	

																					െܸݑᇱ  ᇱݑݑܽ  ᇱᇱݑ3 ൌ 0.																																																																																																													(4.1.2)	
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Now	integrating	Eq.(4.1.2)	with	respect	to	ߦ		once,	we	have									

																			ܿ െ ݑܸ 
ଵ

ଶ
ଶݑܽ  ᇱݑ3 ൌ 0,																																																																																																													(4.1.3)	

where	ܿ	is	a	constant	of	integration.	Balancing	the	highest‐order	derivative		ݑᇱ	and	the	nonlinear	
term	ݑଶ,	from	Eq.(4.1.3),	yields	2݉ ൌ ݉  1	which	gives	݉ ൌ 1.	

Hence	for	݉ ൌ 1,	Eq.(2.4)	reduces	to		

ሻߦሺݑ																					 ൌ ܽ  ܽଵ ቀ
ீᇱ

ீ
ቁ  ܾଵ ቀ

ிᇱ

ி
ቁ			ൌ ܽ െ ܽଵܨ  ܾଵሺିܨଵ െ 																		(4.1.4)																																											.	ሻܨ

Substituting	Eq.	(4.1.4)	into	Eq.	(4.1.3)	,	collecting	the	coefficients	of	ሺܨሻሺ݅ ൌ 0,േ1,േ2ሻ,and	letting	
it	be	zero,		yields	a	set	of	simultaneous	algebraic	equations	for	ܽ, ܽଵ, ܾଵ, ܸ	and		ܿ		

To	solve	this	set	of	algebraic	equations	for		ܽ, ܽଵ, ܾଵ, ܸ		and		ܿ	by	using	of	Maple,	we	get,	

Case	1:	

							ܿ ൌ
ଵ

ଶ

మబ
మିଷ


	, ܽଵ ൌ െ




	, ܾଵ ൌ 0, ܸ	 ൌ ܽܽ	,																																																																																				(4.1.5)	

where	ܽ	is	arbitrary.	

Case	2:	

													ܿ ൌ
ଵ

ଶ

మబ
మିଵସସ


	 , ܽଵ ൌ െ

ଵଶ


	, ܾଵ ൌ




, ܸ	 ൌ ܽܽ	,																																																																										(4.1.6)	

where	ܽ	is	arbitrary.	

Substituting	Eqs.(4.1.5),(4.1.6)	into	Eq.(4.1.4)	we		get	two	types	of	the	travelling	wave	solutions	of	
Eqs.(4.1.1)	as	follows:	

According	to	case	1.	

Type	1:	

Class	I:                                ݑଵଵሺݔ, ሻݐ ൌ ܽ 



tanhሺݔ  ݕ  ݖ െ ܽܽݐሻ,                                              (4.1.7)                               

Class	II:																															ݑଵଶሺݔ, ሻݐ ൌ ܽ 



cothሺݔ  ݕ  ݖ െ ܽܽݐሻ.																																																(4.1.8)	

According	to	case	2.	

Type	2:	

Class	I:			ݑଶଵሺݔ, ሻݐ ൌ ܽ 



tanhሺݔ  ݕ  ݖ െ ܽܽݐሻ 




cothሺݔ  ݕ  ݖ െ ܽܽݐሻ,																						(4.1.9)	

	Class	II:	ݑଶଶሺݔ, ሻݐ ൌ ܽ 



cothሺݔ  ݕ  ݖ െ ܽܽݐሻ 




tanhሺݔ  ݕ  ݖ െ ܽܽݐሻ.																				(4.1.10)	

The	solutions	for		
ீᇲ

ீమ
െ	expansion	method	can	be	expressed	as	follows:	
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ሻࣈሺݑ													 ൌ ࢇ  ࢇ ቀ
ᇲࡳ

ࡳ
ቁ  ࢈ ቀ

ᇲࡳ

ࡳ
ቁ
ି
,																																																																																																		(4.1.11)	

where	ܽ, ܽଵ, ܾଵ	are	unknown	constants.	We	substitute	Eq.(4.1.11)	into	(4.1.3)	along	with	Eq.(3.5)	

to	collect	all	the	coefficients	with	the	same	power	of		ቀ
ீᇲ

ீమ
ቁ

, ሺ݅ ൌ 0,േ1,േ2,… ሻ.	From	Eq.(4.1.11)	

each	coefficient	of		ቀ
ீᇲ

ீమ
ቁ

	is	set	to	zero,	and	system	of	algebraic	equations	about	ܽ, ܽଵ, ܾଵ	is	attained	

as	follows:	

The	following	results	are	obtained	upon	solving	the	above	system	of	algebraic	equations	using	
Maple	

Case	1:		

ࢉ	 ൌ 



ࣅࣆାࢇࢇ

ࢇ
	 , ࢂ ൌ ,	ࢇࢇ ࢇ ൌ ,		ࢇ ࢇ ൌ 	, ࢈ ൌ

ࣆ

ࢇ
	.	

Case	2:		

ࢉ	 ൌ 



ࣅࣆାࢇࢇ

ࢇ
	 , ࢂ ൌ ,	ࢇࢇ ࢇ ൌ ,		ࢇ ࢇ ൌ െ

ࣅ

ࢇ
	 , ࢈ ൌ 	.	

Case	3:		

ࢉ	 ൌ 



ࣅࣆାࢇࢇ

ࢇ
	 , ࢂ ൌ ,	ࢇࢇ ࢇ ൌ ,		ࢇ ࢇ ൌ െ

ࣅ

ࢇ
	, ࢈ ൌ

ࣆ

ࢇ
	.	

In	Eq.(4.1.11)	we	substitute	the	above	cases	along	with	ratios	(3.6)‐(3.8),	and	three	groups	of	
solutions	for	Eq.(3.1)	exist.	

Solution	1:  When	ࣅࣆ  0,	the	trigonometric	solution	corresponding	to	case	1	can	be	expressed	
as	

ଵଵݑ									 ൌ ܽ 
ࣆ

ࢇ
൭ට

ఓ

ఒ
൬
	 ୡ୭ୱඥఓఒకା ୱ୧୬ඥఓఒక

	 ୡ୭ୱඥఓఒకି ୱ୧୬ඥఓఒక
൰൱

ିଵ

,																																																																																		(4.1.12)	

when	ࣅࣆ ൏ 0	the	hyperbolic	solution	corresponding	to	case	1	can	be	expressed	as	

ଵଶݑ									 ൌ ܽ 
ࣆ

ࢇ
൭െ

ඥ|ఓఒ|

ఒ
ቆ
	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁା

	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁି
ቇ൱

ିଵ

,																																																			(4.1.13)	

when	ߤ ൌ 0	, ߣ ് 0,	the	rational	solution	corresponding	to	case	1	can	be	expressed	as	
														
ଵଷݑ													 ൌ ܽ,																																																																																																																																																	(4.1.14)	
where	ߦ ൌ ݔ  ݕ  ݖ െ ܽܽݐ.	
Solution	2:	
When	ࣅࣆ  0,	the	trigonometric	solution	corresponding	to	case	2	can	be	expressed	as	
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ଶଵݑ							 ൌ ܽ െ
ࣅ

ࢇ
൭ට

ఓ

ఒ
൬
	 ୡ୭ୱඥఓఒకା ୱ୧୬ඥఓఒక

	 ୡ୭ୱඥఓఒకି ୱ୧୬ඥఓఒక
൰൱	,																																																																																							(4.1.15)	

when	ࣅࣆ ൏ 0	the	hyperbolic	solution	corresponding	to	case	2	can	be	expressed	as	

ଶଶݑ						 ൌ ܽ െ
ࣅ

ࢇ
൭െ

ඥ|ఓఒ|

ఒ
ቆ
	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁା

	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁି
ቇ൱,																																																									(4.1.16)	

when	ߤ ൌ 0	, ߣ ് 0,	the	rational	solution	corresponding	to	case	2	can	be	expressed	as	
														

ଶଷݑ										 ൌ ܽ െ
ࣅ

ࢇ
ቀെ



ఒሺకାሻ
ቁ,																																																																																																																				(4.1.17)	

where	ߦ ൌ ݔ  ݕ  ݖ െ ܽܽݐ.	
	
Solution	3:	
When	ࣅࣆ  0,	the	trigonometric	solution	corresponding	to	case	3	can	be	expressed	as	

ଷଵݑ ൌ ܽ െ
ࣅ

ࢇ
൭ට

ఓ

ఒ
൬
	 ୡ୭ୱඥఓఒకା ୱ୧୬ඥఓఒక

	 ୡ୭ୱඥఓఒకି ୱ୧୬ඥఓఒక
൰൱ 

ࣆ

ࢇ
൭ට

ఓ

ఒ
൬
	 ୡ୭ୱඥఓఒకା ୱ୧୬ඥఓఒక

	 ୡ୭ୱඥఓఒకି ୱ୧୬ඥఓఒక
൰൱

ିଵ

,																											(4.1.18)	

when	ࣅࣆ ൏ 0	the	hyperbolic	solution	corresponding	to	case	3	can	be	expressed	as	
				
ଶଶݑ ൌ

ܽ െ
ࣅ

ࢇ
൭െ

ඥ|ఓఒ|

ఒ
ቆ
	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁା

	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁି
ቇ൱ 

	
ࣆ

ࢇ
൭െ

ඥ|ఓఒ|

ఒ
ቆ
	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁା

	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁି
ቇ൱

ିଵ

,																																																																															(4.1.19)	

when	ߤ ൌ 0	, ߣ ് 0,	the	rational	solution	corresponding	to	case	3	can	be	expressed	as	
														

ଶଷݑ							 ൌ ܽ െ
ࣅ

ࢇ
ቀെ



ఒሺకାሻ
ቁ		,																																																																																																																					(4.1.20)	

where	ߦ ൌ ݔ  ݕ  ݖ െ ܽܽݐ.	
	
4.2				Example	2: The	(3+1)‐dimensional	Potential‐YTSF	Equation	

We	start	the	(3+1)‐dimensional	Potential‐YTSF	Equation	in	the	following	form:	
													െ4࢚࢛࢞ 	ࢠ࢛࢞࢞࢞  ࢠ࢛࢛࢞࢞  ࢠ࢛࢛࢞࢞  ࢛࢟࢟ ൌ ,																																																																								(4.2.1)	

this	equation	was	called	the	Potential‐YTSF	Equation	which	is	a	widely	used	model	for	investigating	
the	dynamics	of	solitons	and	nonlinear	waves	in	areas	such	as	fluid	dynamics,	plasma	physics,	and	
weakly	dispersive	media	and	it	was	developed	by	using	the	strong	symmetry.		
The	traveling	wave	variable	(2.2)	permits	us	converting	Eq.(4.2.1)	into	the	following	ODE.		
	After	integrating	once,	we	have	the	following	form:	
ࢉ																									  ࢛ࢂᇱ  ᇱᇱᇱ࢛  ࢛′  ࢛ᇱ ൌ ,																																																																																							(4.2.2)	

where	ࢉ	 is	a	constant	of	 integration	 .	Now	by	considering	the	homogeneous	balance	between	the	
order	of	࢛′′ᇱ	and	࢛′	in	Eq.(4.2.2),	we	obtain		 ൌ .		



8 
 

By	using	step	3	the	solution	of	Eq.	(4.2.2),	can	be	written	as,	

ሻࣈሺࢁ																																													 ൌ ࢇ  ′ࡳሺࢇ ⁄ࡳ ሻ  ′ࡲሺ࢈ ⁄ࡲ ሻ,	

																																																							ൌ ࢇ െ ࡲࢇ  ିࡲ൫࢈ െ 	(4.2.3)																																																																							൯.ࡲ

Substituting	Eq.	(4.2.3)	into	Eq.	(4.2.2)	,	collecting	the	coefficients	of	ሺࡲሻሺ ൌ ,േ,േሻ,and	letting	
it	be	zero,		yields	a	set	of	simultaneous	algebraic	equations	for	ࢇ, ,ࢇ ,	࢈ 				ࢉ	and	ࢂ

After	solving	these	algebraic	equations	for		ࢇ, ,ࢇ ,࢈ 	,Maple	software	of	help	the	with	ࢉ		and	ࢂ
yields	the	following	results.	

Case	1:			
								cൌ 	,			ࢂ ൌ

ିૠ


	 , ࢇ ൌ െ	, ࢈ ൌ 	,																																																																																																						(4.2.4)	

where		ࢇ			is	arbitrary.	

Case	2:		

ࢉ											 ൌ 	,			ࢂ ൌ
ିૢ


	, ࢇ ൌ െ	, ࢈ ൌ 		,																																																																																														(4.2.5)				

where		ࢇ		is	arbitrary.	
Substituting	Eqs.(4.2.4),(4.2.5)	into	Eq.(4.2.3)	we	get	two	types	of	the	exact	solutions	of	Eq.(4.2.1)	
as	follows:	

According	to	case	1.	

Type	1:	 	
Class	I:									࢛ሺ࢞, ሻ࢚ ൌ ࢇ  	 ሺࢎ࢚ࢉ ࢞  ࢟  ࢠ 

ૠ


	(4.2.6)																																																																						.	ሻ࢚

Class	II:							࢛ሺ࢞, ሻ࢚ ൌ ࢇ   ࢞ሺࢎࢇ࢚  ࢟  ࢠ 
ૠ


	(4.2.7)																																																																							.	ሻ࢚

According	to	case	2.	

Type	2:	
Class	I:			࢛ሺ࢞, ሻ࢚ ൌ ࢇ   ࢞ሺࢎࢇ࢚  ࢟  ࢠ 

ૢ


ሻ࢚   ሺࢎ࢚ࢉ ࢞  ࢟  ࢠ 

ૢ


	(4.2.8)																				ሻ.࢚ 																																

Class	II:			࢛ሺ࢞, ሻ࢚ ൌ ࢇ  ࢎ࢚ࢉሺ࢞  ࢟  ࢠ 
ૢ


ሻ࢚   ሺࢎࢇ࢚ ࢞  ࢟  ࢠ 

ૢ


	(4.2.9)																		ሻ.࢚

The	solutions	can	be	expressed	as	follows:	

ሻࣈሺݑ													 ൌ ࢇ  ࢇ ቀ
ᇲࡳ

ࡳ
ቁ  ࢈ ቀ

ᇲࡳ

ࡳ
ቁ
ି
,																																																																																																				(4.2.10)	

where	ܽ, ܽଵ, ܾଵ	are	unknown	constants.	We	substitute	Eq.(4.2.10)	into	(4.2.2)	along	with	Eq.(3.5)	

to	collect	all	the	coefficients	with	the	same	power	of		ቀ
ீᇲ

ீమ
ቁ

, ሺ݅ ൌ 0,േ1,േ2,… ሻ.	From	Eq.(4.2.10)	

each	coefficient	of		ቀ
ீᇲ

ீమ
ቁ

	is	set	to	zero,	and	system	of	algebraic	equations	about	ܽ, ܽଵ, ܾଵ	is	attained	

as	follows: 
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The	following	results	are	obtained	upon	solving	the	above	system	of	algebraic	equations	using	
Maple.	

Case	1:		

ࢉ	 ൌ 	, ࢂ ൌ ࣆࣅ െ



		 , ࢇ ൌ ,		ࢇ ࢇ ൌ 	, ࢈ ൌ ࣆ.	

Case	2: 
ࢉ	 ൌ 	, ࢂ ൌ ࣆࣅ െ




	 , ࢇ ൌ ,		ࢇ ࢇ ൌ െࣅ		, ࢈ ൌ .	

Case	3: 
ࢉ	 ൌ 	, ࢂ ൌ ࣆࣅ െ




	 , ࢇ ൌ ,		ࢇ ࢇ ൌ െࣅ	, ࢈ ൌ ࣆ.	

In	Eq.(4.2.10)	we	substitute	the	above	cases	along	with	ratios	(3.6)‐(3.8),	and	three	groups	of	
solutions	for	Eq.(4.2.1)	exist.	

Solution	1:  When	ࣅࣆ  0,	the	trigonometric	solution	corresponding	to	case	1	can	be	expressed	
as	

ଵଵݑ						 ൌ ܽ  ߤ2 ൭ට
ఓ

ఒ
൬
	 ୡ୭ୱඥఓఒకା ୱ୧୬ඥఓఒక

	 ୡ୭ୱඥఓఒకି ୱ୧୬ඥఓఒక
൰൱

ିଵ

,																																																																																		(4.2.11)	

when	ࣅࣆ ൏ 0	the	hyperbolic	solution	corresponding	to	case	1	can	be	expressed	as	

ଵଶݑ						 ൌ ܽ  ߤ2 ൭െ
ඥ|ఓఒ|

ఒ
ቆ
	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁା

	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁି
ቇ൱

ିଵ

,																																																			(4.2.12)	

when	ߤ ൌ 0	, ߣ ് 0,	the	rational	solution	corresponding	to	case	1	can	be	expressed	as	
														
ଵଷݑ											 ൌ ܽ,																																																																																																																																																		(4.2.13)	

where	ߦ ൌ ݔ  ݕ  ݖ െ ቀߤߣ െ



ቁ 	.ݐ

	
Solution	2:	
When	ࣅࣆ  0,	the	trigonometric	solution	corresponding	to	case	2	can	be	expressed	as	

ଶଵݑ							 ൌ ܽ െ ߣ2 ൭ට
ఓ

ఒ
൬
	 ୡ୭ୱඥఓఒకା ୱ୧୬ඥఓఒక

	 ୡ୭ୱඥఓఒకି ୱ୧୬ඥఓఒక
൰൱	,																																																																																				(4.2.14)	

when	ࣅࣆ ൏ 0	the	hyperbolic	solution	corresponding	to	case	2	can	be	expressed	as	

ଶଶݑ						 ൌ ܽ െ ߣ2 ൭െ
ඥ|ఓఒ|

ఒ
ቆ
	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁା

	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁି
ቇ൱,																																																							(4.2.15)	

when	ߤ ൌ 0	, ߣ ് 0,	the	rational	solution	corresponding	to	case	2	can	be	expressed	as	
														

ଶଷݑ									 ൌ ܽ െ ߣ2 ቀെ


ఒሺకାሻ
ቁ	,																																																																																																																(4.2.16)	
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where		ߦ ൌ ݔ  ݕ  ݖ െ ቀߤߣ െ
ଷ

ସ
ቁ 	.ݐ

	
Solution	3:	
When	ࣅࣆ  0,	the	trigonometric	solution	corresponding	to	case	3	can	be	expressed	as	

ଷଵݑ ൌ ܽ െ ߣ2 ൭ට
ఓ

ఒ
൬
	 ୡ୭ୱඥఓఒకା ୱ୧୬ඥఓఒక

	 ୡ୭ୱඥఓఒకି ୱ୧୬ඥఓఒక
൰൱  ߤ2 ൭ට

ఓ

ఒ
൬
	 ୡ୭ୱඥఓఒకା ୱ୧୬ඥఓఒక

	 ୡ୭ୱඥఓఒకି ୱ୧୬ඥఓఒక
൰൱

ିଵ

,																									(4.2.17)	

when	ࣅࣆ ൏ 0	the	hyperbolic	solution	corresponding	to	case	3	can	be	expressed	as	
ଶଶݑ ൌ

ܽ െ ߣ2 ൭െ
ඥ|ఓఒ|

ఒ
ቆ
	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁା

	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁି
ቇ൱ 

ߤ2 ൭െ
ඥ|ఓఒ|

ఒ
ቆ
	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁା

	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁି
ቇ൱

ିଵ

,																																																																															(4.2.18)	

when	ߤ ൌ 0	, ߣ ് 0,	the	rational	solution	corresponding	to	case	3	can	be	expressed	as	
														

ଶଷݑ				 ൌ ܽ െ ߣ2 ቀെ


ఒሺకାሻ
ቁ,																																																																																																																									(4.2.19)	

	where		ߦ ൌ ݔ  ݕ  ݖ െ ቀ4ߤߣ െ



ቁ 	.ݐ

	
4.3				Example	3:	The	(3+1)‐dimensional	generalized	Shallow	water	equation	

We	consider	the	following	(3+1)‐dimensional	generalized	Shallow	water	equation:	

࢛࢟࢞࢞࢞																			 െ ࢛࢛࢟࢞࢞ െ ࢛࢛࢟࢞࢞  ࢚࢛࢟ െ ࢠ࢛࢞ ൌ ,																																																																										(4.3.1)	

shallow	water	equation,	based	on	conservation	of	mass	and	momentum,	describes	the	propagation	
of	long	water	waves	in	oceans,	estuaries,	and	impoundments.	This	system	of	equation	has	
applications	in	weather	simulations,	tidal	waves,	river	and	irrigation	flows,	tsunami	prediction	and	
more,	which	was	investigated	in	different	ways.	

The	traveling	wave	variable	(2.2)	permits	us	converting	Eq.(4.3.1)	into	the	following	ODE:	

ࢉ																																		  ᇱᇱᇱ࢛ െ ࢛ᇱ െ ሺࢂ  ሻ࢛ᇱ ൌ ,																																																																																	(4.3.2)	

where	ࢉ	is	a	constant	of	integration.	Consider	the	homogenus	balance	between		࢛ᇱᇱᇱ	and	࢛ᇱ	in	
(4.3.2),	we	get	 ൌ .	Using	the	same	idea	in	Sec	3.1,	we	may	choose	the	solution	of	Eq.(4.3.2)	in	
the	form:	

ሻࣈሺࢁ																																													 ൌ ࢇ  ′ࡳሺࢇ ⁄ࡳ ሻ  ′ࡲሺ࢈ ⁄ࡲ ሻ,	

																																																							ൌ ࢇ െ ࡲࢇ  ିࡲ൫࢈ െ 	(4.3.3)																																																																					൯,ࡲ

Substituting	Eq.	(4.3.3)	into	Eq.	(4.3.2)	,	collecting	the	coefficients	of	ሺࡲሻሺ ൌ ,േ,േሻ,and	letting	
it	be	zero,		yields	a	set	of	simultaneous	algebraic	equations	for	ࢇ, ,ࢇ ,	࢈ 			.	ࢉ	and	ࢂ
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After	solving	these	algebraic	equations	for		ࢇ, ,ࢇ ,࢈ 	,Maple	software	of	help	the	with	ࢉ		and	ࢂ
yields	the	following	results.	

Case	1:			
ࢉ									 ൌ 	,			ࢂ ൌ 	, ࢇ ൌ 	, ࢈ ൌ െ	,																																																																																																		(4.3.4)	

where		ࢇ			is	arbitrary.	

Case	2:		

ࢉ											 ൌ 	,			ࢂ ൌ 	, ࢇ ൌ 	, ࢈ ൌ െ		,																																																																																																	(4.3.5)				
where		ࢇ		is	arbitrary.	
Substituting	Eqs.(4.3.4),(4.3.5)	into	Eq.(4.3.3)	we	get	two	types	of	the	exact	solutions	of	Eq.(4.3.1)	
as	follows:	

According	to	case	1.	

Type	1:	 	
Class	I:	࢛ሺ࢞, ሻ࢚ ൌ ࢇ െ  ࢞ሺࢎࢇ࢚  ࢟  ࢠ െ ࢚ሻ െ 	 ሺࢎ࢚ࢉ ࢞  ࢟  ࢠ െ ࢚ሻ.																						(4.3.6) 																															

Class	II:࢛ሺ࢞, ሻ࢚ ൌ ࢇ െ 	 ሺࢎ࢚ࢉ ࢞  ࢟  ࢠ െ ࢚ሻ െ  ࢞ሺࢎࢇ࢚  ࢟  ࢠ െ ࢚ሻ.																					(4.3.7)	

According	to	case	2.	

Type	2:	
Class	I:			࢛ሺ࢞, ሻ࢚ ൌ ࢇ െ ࢎ࢚ࢉሺ ࢞  ࢟  ࢠ െ ࢚ሻ		.																																																																										(4.3.8) 																																

Class	II:			࢛ሺ࢞, ሻ࢚ ൌ ࢇ െ  ሺࢎࢇ࢚ ࢞  ࢟  ࢠ െ ࢚ሻ.																																																																										(4.3.9)				

The	solutions	can	be	expressed	as	follows:	

ሻࣈሺݑ													 ൌ ࢇ  ࢇ ቀ
ᇲࡳ

ࡳ
ቁ  ࢈ ቀ

ᇲࡳ

ࡳ
ቁ
ି
,																																																																																																		(4.3.10)	

where	ܽ, ܽଵ, ܾଵ	are	unknown	constants.	We	substitute	Eq.(4.3.10)	into	(4.3.2)	along	with	Eq.(3.5)	

to	collect	all	the	coefficients	with	the	same	power	of		ቀ
ீᇲ

ீమ
ቁ

, ሺ݅ ൌ 0,േ1,േ2,… ሻ.	From	Eq.(4.3.10)	

each	coefficient	of		ቀ
ீᇲ

ீమ
ቁ

	is	set	to	zero,	and	system	of	algebraic	equations	about	ܽ, ܽଵ, ܾଵ	is	attained	

as	follows: 

The	following	results	are	obtained	upon	solving	the	above	system	of	algebraic	equations	using	
Maple	

Case	1:		ࢉ ൌ 	, ࢂ ൌ െࣆࣅ െ 		, ࢇ ൌ ,		ࢇ ࢇ ൌ 	, ࢈ ൌ െࣆ.	

Case	2: 	ࢉ ൌ 	, ࢂ ൌ െࣆࣅ െ 			, ࢇ ൌ ,		ࢇ ࢇ ൌ ࣅ		, ࢈ ൌ .	
Case	3: 	ࢉ ൌ 	, ࢂ ൌ െࣆࣅ െ 	, ࢇ ൌ ,		ࢇ ࢇ ൌ ࣅ	, ࢈ ൌ െࣆ.	
In	Eq.(4.3.10)	we	substitute	the	above	cases	along	with	ratios	(3.6)‐(3.8),	and	three	groups	of	
solutions	for	Eq.(4.3.1)	exist.	



12 
 

Solution	1:  When	ࣅࣆ  0,	the	trigonometric	solution	corresponding	to	case	1	can	be	expressed	
as	

ଵଵݑ						 ൌ ܽ െ ߤ2 ൭ට
ఓ

ఒ
൬
	 ୡ୭ୱඥఓఒకା ୱ୧୬ඥఓఒక

	 ୡ୭ୱඥఓఒకି ୱ୧୬ඥఓఒక
൰൱

ିଵ

,																																																																																			(4.3.11)	

when	ࣅࣆ ൏ 0	the	hyperbolic	solution	corresponding	to	case	1	can	be	expressed	as	

ଵଶݑ					 ൌ ܽ െ ߤ2 ൭െ
ඥ|ఓఒ|

ఒ
ቆ
	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁା

	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁି
ቇ൱

ିଵ

,																																																					(4.3.12)	

when	ߤ ൌ 0	, ߣ ് 0,	the	rational	solution	corresponding	to	case	1	can	be	expressed	as	
														
ଵଷݑ									 ൌ ܽ,																																																																																																																																																				(4.3.13)	
where	ߦ ൌ ݔ  ݕ  ݖ െ ሺെ4ߤߣ െ 1ሻݐ.	
	
Solution	2:	
When	ࣅࣆ  0,	the	trigonometric	solution	corresponding	to	case	2	can	be	expressed	as	

ଶଵݑ								 ൌ ܽ  ߣ2 ൭ට
ఓ

ఒ
൬
	 ୡ୭ୱඥఓఒకା ୱ୧୬ඥఓఒక

	 ୡ୭ୱඥఓఒకି ୱ୧୬ඥఓఒక
൰൱	,																																																																																		(4.3.14)	

when	ࣅࣆ ൏ 0	the	hyperbolic	solution	corresponding	to	case	2	can	be	expressed	as	

ଶଶݑ					 ൌ ܽ  ߣ2 ൭െ
ඥ|ఓఒ|

ఒ
ቆ
	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁା

	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁି
ቇ൱,																																																							(4.3.15)	

when	ߤ ൌ 0	, ߣ ് 0,	the	rational	solution	corresponding	to	case	2	can	be	expressed	as	
														

ଶଷݑ						 ൌ ܽ  ߣ2 ቀെ


ఒሺకାሻ
ቁ,																																																																																																																					(4.3.16)	

	where		ߦ ൌ ݔ  ݕ  ݖ െ ሺെ4ߤߣ െ 1ሻݐ.	
	
Solution	3:	
When	ࣅࣆ  0,	the	trigonometric	solution	corresponding	to	case	3	can	be	expressed	as	

ଷଵݑ		 ൌ ܽ  ߣ2 ൭ට
ఓ

ఒ
൬
	 ୡ୭ୱඥఓఒకା ୱ୧୬ඥఓఒక

	 ୡ୭ୱඥఓఒకି ୱ୧୬ඥఓఒక
൰൱ െ ߤ2 ൭ට

ఓ

ఒ
൬
	 ୡ୭ୱඥఓఒకା ୱ୧୬ඥఓఒక

	 ୡ୭ୱඥఓఒకି ୱ୧୬ඥఓఒక
൰൱

ିଵ

,																							(4.3.17)	

when	ࣅࣆ ൏ 0	the	hyperbolic	solution	corresponding	to	case	3	can	be	expressed	as	
ଶଶݑ ൌ

ܽ  ߣ2 ൭െ
ඥ|ఓఒ|

ఒ
ቆ
	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁା

	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁି
ቇ൱ െ

ߤ2 ൭െ
ඥ|ఓఒ|

ఒ
ቆ
	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁା

	 ୱ୧୬୦ቀଶඥ|ఓఒ|	కቁା ୡ୭ୱ୦ቀଶඥ|ఓఒ|	కቁି
ቇ൱

ିଵ

,																																																																																	(4.3.18)	

when	ߤ ൌ 0	, ߣ ് 0,	the	rational	solution	corresponding	to	case	3	can	be	expressed	as	
														



13 
 

ଶଷݑ			 ൌ ܽ  ߣ2 ቀെ


ఒሺకାሻ
ቁ,																																																																																																																										(4.3.19)	

	where		ߦ ൌ ݔ  ݕ  ݖ െ ሺെ16ߤߣ െ 1ሻݐ.	
5.	Geometry	of	the	exact	solution:	

					The	geometry	of	the	exact	solutions	of	various	equations	has	been	intensely	studied	by	different	
authors	in	various	ways[19‐24].	In	this	section,	we	are	going	to	investigate	the	exact	solution	and	
the	numerical	solutions	in	the	3‐dimensional	space‐time	known	as	Lorentz‐Minkowski	space	Թଵ

ଷ.	
The	main	reason	for	choosing	to	work	in	this	space	is	that	the	Lorentz‐Minkowski	space	plays	an	
important	role	in	both	special	relativity	and	general	relativity	with	space	coordinates	and	time	
coordinates.	

First,	we	need	to	recall	some	basic	facts	and	notations	in	Թଵ
ଷ	[25‐32].	

Let		ࢄ ൌ ሺ࢞, ,࢞ ࢅ		and		ሻ࢞ ൌ ሺ࢟, ,࢟ Թଵ	in	fields	vector	two	any	be	ሻ࢟
ଷ.	Then	inner	product	of		ܺ		and		

ܻ		is	defined	by		

,ࢄ〉												 〈ࢅ ൌ ࢟࢞  ࢟࢞ െ 	.                                                                                                             (5.1)࢟࢞

Note	that	a	vector	field		ܺ	is	called		

(i) a	timelike	vector	if		〈ࢄ, 〈ࢄ ൏ 0	,	
(ii) a	spacelike	vector	if		〈ࢄ, 〈ࢄ  0	,	
(iii) a	lightlike	(or	degenerate)	vector	if	〈ࢄ, 〈ࢄ ൌ 	and	ࢄ ് .	

Thus,	the	inner	product	in	Թଵ
ଷ		splits	each	vector	field	into	three	categories,	namely		

(i)	spacelike,	(ii)	timelike,	and	(iii)	lightlike	(degenerate)	vectors.	The	category	is	known	as	causal	
character	of	a	vector.	The	set	of	all	lightlike	vectors	is	called	null	cone.	Furthermore,	the	norm	of	a	
vector	ܺ	is	defined	by	its	causal	character	as	follows:	

(i) ‖ܺ‖ ൌ ඥ〈ܺ, ܺ〉		if		ܺ	is	a	spacelike	vector,	

(ii) ‖ܺ‖ ൌ െඥ〈ܺ, ܺ〉		if		ܺ	is	a	timelike	vector.	
Let		ܺ	be	a	unit	timelike	vector	and	݁ ൌ ሺ0,0,1ሻ	in	Թଵ

ଷ.	Then	ܺ	is	called		

(i) a	timelike	future	pointing	vector	if	〈ܺ, ݁〉  0,	
(ii) a	timelike	past	pointing	vector	if	〈ܺ, ݁〉 ൏ 0.	

Now,	let		ݎሺݔ, Թଵ	in	surface	a	be	ሻݐ
ଷ.	Then	the	normal	vector	ܰ	at	a	point	in	ݎሺݔ, 	by	given	is	ሻݐ

ࡺ																		 ൌ
࢚࢘	∧	࢞࢘
‖࢚࢘	∧	࢞࢘‖

	,																																																																																																																																												(5.2)	

where	∧	denotes	the	wedge	product	in		Թଵ
ଷ.	A	surface	is	called		

(i) a	timelike	surface	if		ܰ	is	spacelike.	
(ii) a	spacelike	surface	if		ܰ	is	timelike.	
(iii) a	lightlike	(or	degenerate)	surface	if		ܰ	is	lightlike.	

We	note	that	a	point	is	called	regular	if		ܰ ് 0	and	singular	if		ܰ ൌ 0.	
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Now,	let	us	consider	a	surface	given	by	:	

,࢞ሺ࢘																													 ሻ࢚ ൌ ൫࢞, ,࢚ ,࢞ሺ࢛ 	(5.3)																																																																																																													ሻ൯,࢚

where	࢛ሺ࢞, 	the	equation,	(ZK)	Zakhrov‐Kuznetsov	(3+1)‐dimensional	the	of	solution	exact	the	is	ሻ࢚
(3+1)‐dimensional	Potential‐YTSF	Equation	and	the	(3+1)‐dimensional	generalized	Shallow	water	
equation	given	by	(4.1.7)	,	(4.2.8)	,	(4.3.8)		respectively	

In	view	of	(5.2),	the	normal	vector	field	of		࢘ሺ࢞, 	:becomes	ሻ࢚

,࢞ሺࡺ ሻ࢚ ൌ

െ


ඨା


ࢇ ൯ࢠష࢟ష࢞షࢇ࢚ࢇ൫ܐܛܗ܋
ା

ࢇ


൯ࢠష࢟ష࢞షࢇ࢚ࢇ൫ܐܛܗ܋
 ሻࢠି࢟ି࢞ିࢇ࢚ࢇሺܐܛܗ܋܉	



࢞ࢋ	 

ࢇ

ඨା


ࢇ ൯ࢠష࢟ష࢞షࢇ࢚ࢇ൫ܐܛܗ܋
ା

ࢇ


൯ࢠష࢟ష࢞షࢇ࢚ࢇ൫ܐܛܗ܋
 ሻࢠି࢟ି࢞ିࢇ࢚ࢇሺܐܛܗ܋	



࢟ࢋ	 


ඨା


ࢇ ൯ࢠష࢟ష࢞షࢇ࢚ࢇ൫ܐܛܗ܋
ା

ࢇ


൯ࢠష࢟ష࢞షࢇ࢚ࢇ൫ܐܛܗ܋


ࢠࢋ	 																																							

																																																																																																																																																																																						(5.4)	

,࢞ሺࡺ ሻ࢚ ൌ


ඩ
ା

ૠૠ

శࢠశ࢟శ࢞ቀܐܛܗ܋
ૢ
 ቁ࢚


ቆܐܛܗ܋ቀ࢞శ࢟శࢠశ

ૢ
 ቁ࢚


షቇ

		ܐܛܗ܋ቀ࢞ା࢟ାࢠା
ૢ

ቁ࢚

൬ܐܛܗ܋ቀ࢞ା࢟ାࢠା

ૢ

ቁ࢚

ି൰	

࢞ࢋ 

ૢ

ඩ
ା

ૠૠ

శࢠశ࢟శ࢞ቀܐܛܗ܋
ૢ
 ቁ࢚


ቆܐܛܗ܋ቀ࢞శ࢟శࢠశ

ૢ
 ቁ࢚


షቇ

		ܐܛܗ܋ቀ࢞ା࢟ାࢠା
ૢ

ቁ࢚

൬ܐܛܗ܋ቀ࢞ା࢟ାࢠା

ૢ

ቁ࢚

ି൰

࢟ࢋ 



ඩ
ା

ૠૠ

శࢠశ࢟శ࢞ቀܐܛܗ܋
ૢ
 ቁ࢚


ቆܐܛܗ܋ቀ࢞శ࢟శࢠశ

ૢ
 ቁ࢚


షቇ

	

	(5.5)																																																																																																																ࢠࢋ

	
,࢞ሺࡺ ሻ࢚ ൌ

െ


ඨା


൫ܐܛܗ܋ሺష࢞ష࢟షࢠశ࢚ሻష൯
			ሺܐܛܗ܋ሺିࢠି࢟ି࢞ା࢚ሻ

ିሻ
࢞ࢋ	 



ඨା


൫ܐܛܗ܋ሺష࢞ష࢟షࢠశ࢚ሻష൯
			ሺܐܛܗ܋ሺିࢠି࢟ି࢞ା࢚ሻ

ିሻ
࢟ࢋ	 



ඨା


൫ܐܛܗ܋ሺష࢞ష࢟షࢠశ࢚ሻష൯
	

	(5.6)																																														ࢠࢋ	

Form	(5.4),	(5.5),	(5.6)	it	is	clear	that		࢘ሺ࢞, 	regular	a	is	it	of	point	every	is,	that	surface,	regular	a	is	ሻ࢚
point.	

6.	Gaussian	curvature	and	Mean	curvature	of	node	points	
						Another	important	fact	for	a	surface	is	to	compute	the	Gaussian	curvature	and	Mean	curvature	
which	are	an	intrinsic	character	of	it.	The	Gaussian	curvature	is	the	determinant	of	the	shape	
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operator.	For	a	surface	࢘ሺ࢞, 	Gaussian	the	compute	to	way	useful	following	the	apply	shall	we	ሻ,࢚
curvature:	

Consider	〈ࡺ,ࡺ〉 ൌ ࢿ		where	,‖ࡺ‖ࢿ ൌ ∓.	Let	us	define	

ࡱ ൌ ,࢞࢘〉 ࡲ									,〈࢞࢘ ൌ ,࢞࢘〉 ࡳ														,〈࢚࢘ ൌ ,࢚࢘〉 																																																																				〈࢚࢘

and																																																																																																																																																																											(6.1)	

ࢋ ൌ ࢌ																	,〈ࡺ,࢛࢞࢞〉 ൌ ,࢚࢛࢞〉 ࢍ														,〈ࡺ ൌ ,࢚࢚࢛〉 		.〈ࡺ

Then	the	Gaussian	curvature	ܭሺሻ	at	a	point				of	a	surface	satisfies	

ሻሺࡷ																									 ൌ ࢿ
ࢌିࢍࢋ

ࡲିࡳࡱ
	.																																																																																																																											(6.2)	

We	note	that	

(i) ࡷሺሻ  0	means	that	the	surface	࢘ሺ࢞, 	In	.			near	paraboloid	elliptic	an	like	shaped	is	ሻ࢚
this	case,		is	called	an	elliptic	point.	

(ii) ࡷሺሻ ൏ 0	means	that	the	surface	࢘ሺ࢞, 	.		near	paraboloid	hyperbolic	a	like	shaped	is	ሻ࢚
In	this	case,		is	called	a	hyperbolic	point.	

(iii) ࡷሺሻ ൌ 	means	that	the	surface	࢘ሺ࢞, 	plane	a	or	cylinder	parabolic	a	like	shaped	is	ሻ࢚
near			.	In	this	case,		is	called	a	parabolic	point.	

Now,	let	us	consider	the	surface	given	in	(5.3).	Form	(6.1)	and	(6.2),	by	a	straightforward	
computation,	we	get		ࡷ ൌ 		for	equations	(4.1.7)	,(4.2.8)	,(4.3.8)		.	

												Another	important	kind	of	curvatures	is	mean	curvature	which	measures	the	surface	tension	
from	the	surrounding	space	at	a	point.	The	mean	curvature	is	a	trace	of	the	second	fundamental	
form.	For	a	surface		࢘ሺ࢞, 	curvature	mean	the	compute	to	way	useful	following	the	apply	shall	we	ሻ,࢚
	:ሻሺࡴ

ሻሺࡴ																							 ൌ ࢿ




ࡱࢍାࡲࢌିࡳࢋ

ࡲିࡳࡱ
	.																																																																																																																			(6.3)				

If			ࡴሺሻ ൌ 		for	all	points	of		࢘ሺ࢞, 	value	the	if	Furthermore,	minimal.	called	is	surface	the	then		ሻ,࢚
of	the	mean	curvature	at	a	point				receives	at	least	a	possible	amount	of	tension	from	the	
surrounding	space,	then				is	called	ideal	point.	That	is,	if	a	point	in	a	surface	is	affected	as	little	as	
possible	from	the	external	influence,	then	it	becomes	ideal.			

From	(6.3),	for	equation	(4.1.7)	we	obtain	

ࡴ ൌ
ܐܖܑܛሺࢇ࢚ࢇିࢠି࢟ି࢞ሻ	ࢇ ࢇࢇሻ൫ࢠି࢟ି࢞ିࢇ࢚ࢇሺܐܛܗ܋

ା൯

ඨ
൯ࢠష࢟ష࢞షࢇ࢚ࢇ൫ܐܛܗ܋


శࢇ

ࢇశ

ࢇ ൯ࢠష࢟ష࢞షࢇ࢚ࢇ൫ܐܛܗ܋
 ା൫	܉ܐܛܗ܋ሺࢇ࢚ࢇିࢠି࢟ି࢞ሻାࢇ

ࢇା൯

		

From	(6.3),	for	equation	(4.2.8)			we	obtain	

ࡴ	 ൌ ൬ૠૠܐܖܑܛ ቀ࢞  ࢟  ࢠ 
ૢ


ቁ࢚ ൬ ܐܛܗ܋ ቀ࢞  ࢟  ࢠ 

ૢ


ቁ࢚


െ ൰ ܐܛܗ܋ ቀ࢞  ࢟  ࢠ 

ૢ


ቁ൰࢚ /	
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ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

	

ඨ ࢞൬ܐܛܗ܋  ࢟  ࢠ 
ૢ

൰࢚

ૡ

െ ૡܐܛܗ܋ ൬࢞  ࢟  ࢠ 
ૢ

൰࢚



ܐܛܗ܋൬࢞  ࢟  ࢠ 
ૢ

൰࢚



 ૠૠ	.

ቆ ܐܛܗ܋ ൬࢞  ࢟  ࢠ 
ૢ

൰࢚

ૡ

െ ૡܐܛܗ܋ ൬࢞  ࢟  ࢠ 
ૢ

൰࢚



ܐܛܗ܋ ൬࢞  ࢟  ࢠ 
ૢ

൰࢚



 ૠૠቇ

/ቌඨܐܛܗ܋൬࢞  ࢟  ࢠ 
ૢ

൰࢚



ቆܐܛܗ܋൬࢞  ࢟  ࢠ 
ૢ

൰࢚



െ ቇ


ቍ	
ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	

From	(6.3),	for	equation	(4.3.8)			we	obtain	

ࡴ	 ൌ
ܐܛܗ܋ሺିࢠି࢟ି࢞ା࢚ሻ ሻ࢚ାࢠି࢟ି࢞ሺିܐܖܑܛ

ඨ
ሻశ࢚శࢠష࢟ష࢞ሺషܐܛܗ܋ሻష࢚శࢠష࢟ష࢞ሺషܐܛܗ܋

൫ܐܛܗ܋ሺష࢞ష࢟షࢠశ࢚ሻష൯
 	ሺܐܛܗ܋ሺିࢠି࢟ି࢞ା࢚ሻିܐܛܗ܋ሺିࢠି࢟ି࢞ା࢚ሻାሻ	

	

7.	Numerical	solutions	for	the	exact	solutions	for		the		above	NPD	equations:	
						We	can	study	the	behavior	of	the	travelling	wave	solutions	which	obtained	above	by	illustrating	
the	following	figures:	
	

                     
Figure 1.The plot of kink solution(4.1.7)    Figure 2.The plot of singular solution(4.1.9) 
When ࢇ ൌ . ,ࢇ ൌ 	, ࢟ ൌ 	, ࢠ ൌ                       when ࢇ ൌ . ,ࢇ ൌ 	, ࢟ ൌ 	, ࢠ ൌ  
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Figure 3.The plot of kink solution(4.2.7)  Figure 4.The plot of singular kink solution(4.2.8) 
When ࢇ ൌ . 	, ࢟ ൌ , ࢠ ൌ                         when ࢇ ൌ െ. 	, ࢟ ൌ , ࢠ ൌ   

 

       

Figure 5.The plot of singular kink solution(4.3.6)  Figure 6.The plot of kink solution(4.3.9) 
When ࢇ ൌ െ. 	, ࢟ ൌ , ࢠ ൌ                                    when ࢇ ൌ . 	, ࢟ ൌ , ࢠ ൌ  

7.	Conclusions:	
      In	this	article,	the	variation	of	the	ሺࡳ′ ⁄ࡳ ሻ‐expansion	method	is	developed	,	by	knowing	the	

advantage	solution	of	the	coupled	Riccati	equation	and	the		ቀ
ᇲࡳ

ࡳ
ቁ‐expansion	method,		

	are	used	to	find	new	exact	solutions	of	the	(3+1)‐dimensional	Zakhrov‐Kuznetsov	equation	,	the	
(3+1)‐dimensional	Potential‐YTSF	Equation	and	the	(3+1)‐dimensional	generalized	Shallow	water	
equation,	then	we	can	find	its	geometrical	properties	by	calculating	its	Gaussian	Curvature	and	
Mean	curvature	.	Our	results	show	that	the	methods	can	be	used	for	solving	many	nonlinear	partial	
differential	equations	in	mathematical	physics.	
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